1
|
Xu L, Zhang J, Luo J, Cui Y, Chen J, Zeng B, Deng Z, Shao L. "Double-sided protector" Janus hydrogels for skin and mucosal wound repair: applications, mechanisms, and prospects. J Nanobiotechnology 2025; 23:387. [PMID: 40426120 PMCID: PMC12117736 DOI: 10.1186/s12951-025-03438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Skin and mucous membranes serve as crucial barrier tissues within the human body. Defective wound healing not only inflicts pain but also heightens the risk of infection and impairs immune function. Janus hydrogels possess two-sided distinct asymmetric structures that endow them with diverse properties such as high water absorbency, flexibility, anti-adhesion ability etc. These hydrogels also exhibit great potential in biofluid transport, drug delivery and promoting tissue repair. Currently, research efforts predominantly concentrate on the preparation techniques, properties, and biomedical applications. This review summarized its structural characteristics and different forms of designations, and focused on the possible mechanisms, the existing problems and improvement strategies for the skin and mucous tissues wound, aiming to provide new design ideas for repairing complex skin and mucous membrane tissue defects.
Collapse
Affiliation(s)
- Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Junyi Zhang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Junsi Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Yiteng Cui
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Jinhong Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
- School of Stomatology, Changsha Medical University, Changsha, 410219, China.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Liu D, Yu T, Ma S, Su L, Zhong S, Wang W, Liu Y, Yu JA, Gao M, Chen Y, Xu H, Liu Y. Insulin/PHMB-grafted sodium alginate hydrogels improve infected wound healing by antibacterial-prompted macrophage inflammatory regulation. J Nanobiotechnology 2025; 23:328. [PMID: 40319298 PMCID: PMC12048987 DOI: 10.1186/s12951-025-03398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Non-healing chronic wounds with high susceptibility to infection represent a critical challenge in modern healthcare. While growth factors play a pivotal role in regulating chronic wound repair, their therapeutic efficacy is compromised in infected microenvironments. Current wound dressings inadequately address the dual demands of sustained bioactive molecule delivery and robust antimicrobial activity. RESULTS In this study, we developed a sodium alginate hydrogel (termed P-SA/Ins), which incorporated polyhexamethylene biguanide (PHMB) grafting and long-acting glargine insulin loading. P-SA/Ins exhibited the favorable physicochemical performance, biocompatibility and antibacterial efficacy against both Gram-negative and Gram-positive pathogens through inhibition of bacterial proliferation and biofilm formation. Glargine insulin was applied to prolonged insulin delivery. P-SA/Ins treatment attenuated S. aureus induced pro-inflammatory cytokine cascades in macrophages. The evaluation in vivo using a rat model with S. aureus infected wound demonstrated that P-SA/Ins significantly enhanced wound healing and optimized skin barrier through antimicrobial-mediated modulation of macrophage polarization and subsequent inflammatory cytokine profiling. CONCLUSIONS Our findings demonstrate that P-SA/Ins promotes wound healing and restores epidermal barrier integrity, indicating its potential as a therapeutic dressing for chronic wound healing, particularly in cases with infection risk.
Collapse
Affiliation(s)
- Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Tianyi Yu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shan Ma
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lefeng Su
- College of Chemistry & Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China
| | - Shan Zhong
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wenao Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yang Liu
- Department of Pediatric Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jia-Ao Yu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Min Gao
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yunsheng Chen
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - He Xu
- College of Chemistry & Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
3
|
Jiang Z, Feng J, Wang F, Wang J, Wang N, Zhang M, Hsieh CY, Hou T, Cui W, Ma L. AI-Guided Design of Antimicrobial Peptide Hydrogels for Precise Treatment of Drug-resistant Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500043. [PMID: 40159831 DOI: 10.1002/adma.202500043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Traditional biomaterial development lacks systematicity and predictability, posing significant challenges in addressing the intricate engineering issues related to infections with drug-resistant bacteria. The unprecedented ability of artificial intelligence (AI) to manage complex systems offers a novel paradigm for materials development. However, no AI model currently guides the development of antibacterial biomaterials based on an in-depth understanding of the interplay between biomaterials and bacteria. In this study, an AI-guided design platform (AMP-hydrogel-Designer) is developed to generate antibacterial biomaterials. This platform utilizes generative design and multi-objective constrained optimization to generate a novel thiol-containing high-efficiency antimicrobial peptide (AMP), that is functionally coupled with hydrogel to form a complex network structure. Additionally, Cu-modified barium titanate (Cu-BTO) is incorporated to facilitate further complex cross-linking via Cu2+/SH coordination to produce an AI-AMP-hydrogel. In vitro, the AI-AMP-hydrogel exhibits > 99.99% bactericidal efficacy against Methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Furthermore, Cu-BTO converts mechanical stimulation into electrical signals, thereby promoting the expression of growth factors and angiogenesis. In a rat model with dynamic wounds, the AI-AMP hydrogel significantly reduces the MRSA load and markedly accelerates wound healing. Therefore, the AI-guided biomaterial development strategy offers an innovative solution to precisely treat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhihui Jiang
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, Guangdong, 510010, P.R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, P.R. China
| | - Jianwen Feng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China
| | - Fan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P.R. China
| | - Jike Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Ningtao Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P.R. China
| | - Mengmiao Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P.R. China
| | - Limin Ma
- Department of Orthopedics, Guang Dong Engineering Technology Research Center of Functional, Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, P. R. China
- Department of Orthopedics, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, NO.49, Dagong Road, Ganzhou, Jiangxi, 341000, P. R. China
| |
Collapse
|
4
|
Al-Hammood O, Muhammed Muzher H, Hasan Mousa R, Vahedian Boroujeni V, Noory P, Mirhaj M, Al-Musawi MH, Talib Al-Sudani B, A Mohammed A, Shahriari-Khalaji M, Valizadeh H, Sharifianjazi F, Bazli L, Tavamaishvili K, Mortazavi Moghadam F, Tavakoli M. Deferoxamine-Loaded Trilayer Scaffold Containing Propolis and Sulfated Polysaccharides Promotes In Vivo Wound Healing through Angiogenesis Stimulation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23484-23498. [PMID: 40197030 DOI: 10.1021/acsami.4c20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The skin exhibits a hierarchical structure, and the application of tissue engineering techniques is recommended for the treatment of severe cutaneous injuries. To biologically mimic the structural characteristics of the distinct layers of the skin, the utilization of multilayered scaffolds has become a prominent approach. In the current study, an asymmetric trilayered scaffold was fabricated, consisting of a middle layer (ML) composed of 3D printed poly(vinyl alcohol)-carrageenan (PVA.Crg), a top layer (TL) of nanofibrous polycaprolactone-propolis (PCL.Pp), and a bottom layer (BL) of poly(vinyl alcohol)-fucoidan-deferoxamine (PVA.Fu.Def) nanofibers. It was indicated that the tensile strength and elastic modulus of the trilayer scaffold were significantly higher compared to other samples. The in vitro degradation rate of the studied scaffolds as well as the release of Def from the trilayer scaffold after 7 days were quantified within the range of 36-40 and 91.1%, respectively. The release of Def did not induce cytotoxicity and chicken chorioallantoic membrane assay revealed that the release of Def remarkably enhanced angiogenesis. Furthermore, the in vivo examinations exhibited the fastest re-epithelialization in the group treated with the trilayer scaffold containing Def. The findings of this study suggest the potential application of the fabricated trilayer scaffold as a skin substitute or wound dressing.
Collapse
Affiliation(s)
- Orooba Al-Hammood
- Department of Forensic Science, College of Science, Al-Nahrain University, Baghdad 10072, Iraq
| | - Huda Muhammed Muzher
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Ruqaya Hasan Mousa
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Vala Vahedian Boroujeni
- Department of Food and Drug Control, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1461884513, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Ahmed A Mohammed
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Mina Shahriari-Khalaji
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Hamideh Valizadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
| | - Leila Bazli
- School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., 0160 Tbilisi, Georgia
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
5
|
Park H, Patil TV, Mo C, Lim KT. Nanodiamond: a multifaceted exploration of electrospun nanofibers for antibacterial and wound healing applications. J Nanobiotechnology 2025; 23:285. [PMID: 40205555 PMCID: PMC11980292 DOI: 10.1186/s12951-025-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
In this review, we explore the exciting potential of nanodiamonds (NDs) as innovative materials for future wound dressings. These materials aim to tackle important issues in wound care and offer fresh solutions. While NDs show promising mechanical and structural properties, their full potential in wound healing applications is still not fully explored. We emphasize their unique features-like high surface area, the dispersion of functional groups, and excellent purity-which contribute to their mechanical stability, adhesion, growth, and movement-all critical for effective wound healing and tissue repair. We also focused on modifying the surface of these particles using various functionalization, which can enhance their biocompatibility, antibacterial properties, heat conductivity, and wettability. This positions NDs as a powerful tool for improving chronic wound care in the future. However, there are notable challenges when it comes to scaling up ND-based nanofiber matrices, which currently limits the electrospinning process for mass production. Also, issues with the physical and chemical stability of ND-based nanofibers when interacting with cells need to be resolved to guarantee long-lasting effectiveness. In this study, we tackle these challenges by suggesting solutions like surface functionalization, optimizing the electrospinning process, and creating hybrid scaffolds. Our findings show that these innovations can effectively address scalability and stability issues, paving the way for broader clinical applications. This review not only emphasizes the advantages of NDs in wound healing but also introduces new insights for enhancing the biocompatibility and functionality of ND-based nanofibers, finally pushing the technology of wound dressings forward.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Changyeun Mo
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
6
|
Cheriyan S, Shin H, Razack SA, Kang M, Boopathi TS, Kang HW, Mani K. In-vitro and in-vivo studies of Tridax procumbens leaf extract incorporated bilayer polycaprolactone/polyvinyl alcohol-chitosan electrospun nanofiber for wound dressing application. Int J Biol Macromol 2025; 299:139920. [PMID: 39855518 DOI: 10.1016/j.ijbiomac.2025.139920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
This study was an attempt to fabricate an antibacterial wound dressing, which was a bilayered polycaprolactone / polyvinyl alcohol-chitosan (PCL/PVA-CS) nanofibrous membrane. Entrapping ethanolic leaf extract of Tridax procumbens L. (PCL/PVA-CS/Tp). The membrane was prepared using the electrospinning technique to obtain beadless uniform nanofibers. The extract was then infused into the membrane by spraying and exposing to high temperature. in vitro antibacterial activity and cell viability of the membranes were performed. An optimized concentration of 800 μg. mL-1 of Tp extract in PCL/PVA-CS/Tp evinced better antibacterial effect on E. coli than S. aureus and also showed rapid wound closure with a positive impact on the viability of L929 cell line. The tissue regeneration efficacy of PCL/PVA-CS/Tp was validated by the experiments on mice models with subcutaneous wounds created using biopsy punch and laser radiation causing burns. Furthermore, in vivo assessments illustrated that the biopsy punch wounds healed more rapidly than laser burn though healing was significant in both. The healing processes such as anti-inflammation and re-epithelialization were observed through histological study. The upregulation of proteins namely VEGF and CD31 along with a decrease in protein levels of Wnt and TGF-β indicated significant wound healing. In conclusion, the bilayered membrane infused with plant extract could be considered a potential material for wound dressing.
Collapse
Affiliation(s)
- Silpa Cheriyan
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India; Biomaterials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - Sirajunnisa Abdul Razack
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - Myungji Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - T S Boopathi
- Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea.
| | - Karthega Mani
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India; Biomaterials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India.
| |
Collapse
|
7
|
Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. Antibacterial and osteogenic properties of chitosan-polyethylene glycol nanofibre-coated 3D printed scaffold with vancomycin and insulin-like growth factor-1 release for bone repair. Int J Biol Macromol 2025; 298:139883. [PMID: 39818389 DOI: 10.1016/j.ijbiomac.2025.139883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing. To modify the surface properties and facilitate the loading and release of therapeutics, the scaffold was coated with chitosan-polyethylene glycol (CS-PEG) nanofibers incorporating vancomycin (V) and insulin-like growth factor-1 (IGF1). The characterization was conducted using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the release of V (93.43 %) and IGF1 (95.86 %) from the fabricated scaffolds persisted for 28 days in a phosphate-buffered saline (PBS) solution. The release of V resulted in antibacterial activity against Staphylococcus aureus (S. aureus), forming an inhibition zone of 21.16 mm. Additionally, it was demonstrated that the release of IGF1 could counteract the adverse effect of V release on cell behavior, and enhance the adhesion and proliferation of MG63 cells. Preclinical in vivo studies conducted on a rat calvarial defect model validated that the bone repair was fully completed in the group treated with the fabricated scaffold within 8 weeks. Consequently, the scaffold designed in this study can serve as a versatile scaffold for achieving perfect repair of craniofacial defects.
Collapse
Affiliation(s)
- Saiedeh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamed Ghomi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
8
|
Ma Q, Yin A, Wan X, Sun B, Wang H, El-Newehy M, Abdulhameed MM, Mo X, Wu J, Tu T. Chitosan and ibuprofen grafted electrospun polylactic acid/gelatin membrane mitigates inflammatory response. Biomed Mater 2025; 20:025024. [PMID: 39854846 DOI: 10.1088/1748-605x/adae48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Electrospun membranes with biomimetic fibrous structures and high specific surfaces benefit cell proliferation and tissue regeneration but are prone to cause chronic inflammation and foreign body response. To solve these problems, we herein report an approach to functionalize electrospun membranes with antibacterial and anti-inflammatory components to modulate inflammatory responses and improve implantation outcomes. Specifically, electrospun polylactic acid (PLA)/gelatin (Gel) fibers were grafted with chitosan (CS) and ibuprofen (IBU) via carbodiimide chemistry. Our results show that the surface modification strategy endows electrospun membranes with moderate antibacterial activities and sustained release of anti-inflammatory drugs. The electrospun PLA/Gel-CS-IBU membrane showed good antioxidant and anti-inflammatory activity as evidenced by suppressing M1 polarization and promoting M2 polarization of macrophagesin vitro. Similarly, it induced significantly milder chronic inflammatory responsesin vivothan unmodified electrospun membranes. Given the good anti-inflammatory and antibacterial effects, this strategy might improve the biological performance of electrospun membranes as implants in clinics.
Collapse
Affiliation(s)
- Qiaolin Ma
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Anlin Yin
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Tian Tu
- Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| |
Collapse
|
9
|
Lin YH, Chen Y, Liu EW, Chen MC, Yu MH, Chen CY, Ho CC, Hsu-Jiang TY, Lee JJ, Cho DY, Shie MY. Immunomodulation effects of collagen hydrogel encapsulating extracellular vesicles derived from calcium silicate stimulated-adipose mesenchymal stem cells for diabetic healing. J Nanobiotechnology 2025; 23:45. [PMID: 39865263 PMCID: PMC11770968 DOI: 10.1186/s12951-025-03097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing. CSEV exhibited enhanced protein content, surface marker expression, and bioactive cargo enriched with pro-angiogenic and anti-inflammatory factors. In vitro, CSEV-loaded collagen significantly reduced reactive oxygen species production, promoted cell proliferation and migration compared to standard EV-loaded collagen. Cytokine profiling revealed the upregulation of anti-inflammatory cytokines and extracellular matrix components, highlighting their immunomodulatory and regenerative potential. In vivo, histological evaluation of diabetic rabbit models treated with CSEV-loaded collagen revealed superior reepithelialization and organized collagen deposition, indicating accelerated wound closure. These findings underscore the potential of CSEV-loaded collagen hydrogels as an innovative and effective therapeutic platform for enhancing diabetic wound healing by simultaneously addressing inflammation and tissue regeneration.
Collapse
Affiliation(s)
- Yen-Hong Lin
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - En-Wei Liu
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
- Department and Development Department, Shine Out Bio Technology Co., Ltd, Taichung, 407608, Taiwan
| | - Min-Hua Yu
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Cheng-Yu Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413305, Taiwan
- High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung, 413305, Taiwan
| | - Tai-Yi Hsu-Jiang
- School of Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Jian-Jr Lee
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung, 404327, Taiwan.
- School of Medicine, China Medical University, Taichung, 406040, Taiwan.
| | - Der-Yang Cho
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- Department of Neurosurgery, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Ming-You Shie
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
- Research & Development Center for x-Dimensional Extracellular Vesicles, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413305, Taiwan.
| |
Collapse
|
10
|
Xu W, Sun K, Hou S, Chen A. Research progress of advanced polymer composite antibacterial materials based on electrospinning. Eur Polym J 2025; 222:113623. [DOI: 10.1016/j.eurpolymj.2024.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Pant N, Wairkar S. Mupirocin-Doped α-Cellulose Nanopaper for Wound Dressing: Development, In Vitro Characterization and Antimicrobial Studies. AAPS PharmSciTech 2024; 26:11. [PMID: 39668286 DOI: 10.1208/s12249-024-03013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
This research aimed to develop a mupirocin-doped α-cellulose nanopaper (MDAC-NP) as a wound dressing to accelerate wound healing while limiting localized bacterial growth. The α-cellulose nanofibrils suspension was prepared by ultrasonication followed by microfluidization and subsequently doped with 0.05% w/v mupirocin to prepare nanopaper (MDAC-NP-A). The optimized batch of MDAC-NP had a porosity of 47.46 ± 0.60%, a thickness of 30 μm and a tensile strength of 0.113 MPa. The transmission electron microscopy images revealed long, slender, intertwined nanofibrillar structures and the scanning electron microscopy confirmed stable lamellar structures with tight nanofibrillar networks, giving them translucency. MDAC-NP-A had an excellent water vapor transmission rate of 2963 ± 10.26 g/m2/day, providing an optimal moist environment locally to promote wound healing. The mupirocin inclusion in the nanopapers was corroborated by the Fourier transform infrared spectroscopy and its crystallinity by X-ray diffraction, and differential scanning calorimetry results. The 100% drug release, was observed at 12 h from optimized MDAC-NP-A with a controlled release pattern. The MDAC-NP showed better antimicrobial activity, against S. aureus (41 mm) than E. coli (25 mm) and P. aeruginosa (17 mm) and was found to be better than marketed ointment. Thus, mupirocin-doped α-cellulose nanopapers emerge as a potential wound dressing for treating primary and secondary skin infections caused by external wounds.
Collapse
Affiliation(s)
- Nivedita Pant
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
12
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
13
|
Wang H, Luo Y, Wang L, Liu Z, Kang Z, Che X. A separable double-layer self-pumping dressing containing astragaloside for promoting wound healing. Int J Biol Macromol 2024; 281:136342. [PMID: 39374715 DOI: 10.1016/j.ijbiomac.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Some skin wounds often have many exudate. Ordinary single layer electrospunning nanofiber wound dressings often don't have enough capacity to absorb them. Therefore, a separable double layer electrospunning nanofiber dressing was developed in this work. The dressing had a separable feature that allowed the upper layer to be separated and removed after it had absorbed a significant amount of wound exudate. This dressing consisted of an upper layer of super hydrophilic sodium polyacrylate nanofibers and a bottom layer of 3D-structure coaxial nanofibers with encapsulated Astragaloside (AS). The results showed that nanofibers had better morphology. The water absorption rate, water vapor transmission rate and free radical scavenging rate of the double-layer dressings were 1461.71 ± 39.72 %, 1193.63 ± 134 g·m-2·day-1, and 63.35 ± 3.65 %, respectively. The double-layer nanofiber dressing achieved 65.69 ± 2.62 % and 75.10 ± 6.26 % inhibition against Staphylococcus aureus and Escherichia coli, respectively. The double-layer dressing had proliferative, migratory, and adhesive effects on L929 fibroblasts. And the double-layer dressing resulted in a 96.78 ± 1.0 % wound healing rate in rats after giving a 14 days treatment. Therefore, the 3D-structure separable double-layer wound dressing designed and prepared in this study was effective in promoting wound healing.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Yongming Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zhichao Kang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
14
|
Unalan I, Slavik B, Buettner A, Boccaccini AR. Phytotherapeutic Hierarchical PCL-Based Scaffolds as a Multifunctional Wound Dressing: Combining 3D Printing and Electrospinning. Macromol Biosci 2024; 24:e2400253. [PMID: 39254603 DOI: 10.1002/mabi.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Indexed: 09/11/2024]
Abstract
This study focuses on developing hybrid scaffolds incorporating phytotherapeutic agents via a combination of three-dimensional (3D) printing and electrospinning to enhance mechanical properties and provide antibacterial activity, in order to address the limitations of traditional antibiotics. In this regard, 3D-printed polycaprolactone (PCL) struts are first fabricated using fused deposition modeling (FDM). Then, alkaline surface treatment is applied to improve the adhesion of electrospun nanofibers. Finally, peppermint oil (PEP) or clove oil (CLV)-incorporated PCL-gelatin (GEL) electrospun nanofibers are collected on top of the 3D-printed PCL scaffolds by electrospinning. Incorporating PEP or CLV into PCL-GEL electrospun nanofibers enhances the scaffold's layer detachment and adhesion force. In addition, the DPPH free radical scavenging activity assay indicates that incorporating PEP or CLV improves the antioxidant properties of the scaffolds. Further, antibacterial activity results reveal that PEP or CLV incorporated scaffolds exhibit inhibition against Staphylococcus aureus and Escherichia coli bacteria. Moreover, anti-inflammatory assays show that scaffolds reduce the concentration of nitric oxide (NO) released from Raw 264.7 macrophage-like cells. On the other hand, the phytotherapeutic hierarchical scaffolds have no toxic effect on normal human dermal fibroblast (NHDF) cells, and PEP or CLV enhance cell attachment and proliferation. Overall, incorporating natural phytotherapeutic agents into hierarchical scaffolds shows promise for advancing wound healing applications.
Collapse
Affiliation(s)
- Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Benedikt Slavik
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Almajidi YQ, Muslim RK, Issa AA, Al-Musawi MH, Shahriari-Khalaji M, Mirhaj M. Three-dimensional printed polyelectrolyte construct containing mupirocin-loaded quaternized chitosan nanoparticles for skin repair. Int J Biol Macromol 2024; 280:136214. [PMID: 39362446 DOI: 10.1016/j.ijbiomac.2024.136214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Despite substantial advancements in wound dressing development, effective skin repair remains a significant challenge, largely due to the persistent issue of recurrent infections. Three-dimensional printed constructs that integrate bioactive and antibacterial agents hold significant potential to address this challenge. In this study, a 3D-printed hydrogel scaffold composed of polyallylamine hydrochloride (PAH) and pectin (Pc), incorporated with mupirocin (Mp)-loaded quaternized chitosan nanoparticles (QC NPs) was fabricated. The primary objective of this study was to facilitate a controlled and sustained release of Mp via the QC NPs. The average size of QC-Mp nanoparticles was measured to be 66.05 nm and the average strand diameter and pore size of the 3D-printed construct were measured as 147.22 ± 5.83 and 388.44 ± 14.50 μm, respectively. The hemolysis rate of all scaffolds was below 2 %, indicating that they can be classified as non-hemolytic materials with sufficient blood compatibility. The PAH-Pc/QC-Mp scaffold exhibited significant antibacterial activity, enhanced cell viability in HaCat cells, sustained Mp release until day 7 (⁓60 %), and in-vivo wound healing promotion by stimulation of human keratinocytes. In conclusion, the proposed biocompatible construct demonstrates significant potential for the treatment of chronic and infected wounds by preventing infection and promoting accelerated wound healing.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Department of Pharmaceutics, College of Pharmacy, Al-Nahrain university, Baghdad, Iraq
| | - Rana Kadum Muslim
- Department of Pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq.
| | - Anmar A Issa
- College of pharmacy, Al-Esraa University, Baghdad, Iraq.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq.
| | | | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
16
|
Al-Naymi HAS, Al-Musawi MH, Mirhaj M, Valizadeh H, Momeni A, Danesh Pajooh AM, Shahriari-Khalaji M, Sharifianjazi F, Tavamaishvili K, Kazemi N, Salehi S, Arefpour A, Tavakoli M. Exploring nanobioceramics in wound healing as effective and economical alternatives. Heliyon 2024; 10:e38497. [PMID: 39391491 PMCID: PMC11466581 DOI: 10.1016/j.heliyon.2024.e38497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Wound healing is a sophisticated process for which various treatment methods have been developed. Bioceramics with the ability to release inorganic ions in biological environments play a crucial role in cellular metabolism and exhibit bactericidal activity, contributing to numerous physiological processes. Their multifaceted roles in biological systems highlight their significance. The release of different metallic ions from bioceramics enables the repair of both hard and soft tissues. These ions may be effective in cell motility, proliferation, differentiation, adhesion, angiogenesis, and antibiosis. Unlike conventional medications, the bioactivity and antibacterial properties of bioceramics are typically not associated with side effects or bacterial resistance. Bioceramics are commonly recognized for their capcity to facilitate the healing of hard tissues due to their exceptional mechanical properties. In this review, we first explore wound treatment and its prevalent methods, and subsequently, we discuss the application of three primary categories of bioceramics-oxide ceramics, silicate-based ceramics, and calcium-phosphate ceramics-in the context of wound treatment. This review introduces bioceramics as a cost-effective and efficient alternative for wound repair. Our aim is to inspire researchers to incorporate bioceramics with other biomaterials to achieve enhanced, economical, expedited, and safer wound healing.
Collapse
Affiliation(s)
- Hanan Adnan Shaker Al-Naymi
- Department of Chemistry, College of Education for Pure Science/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Mastafa H. Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hamideh Valizadeh
- Department of tissue engineering and regenerative medicine, Faculty of advanced technologies in medicine, Iran university of medical sciences, Tehran, Iran
| | - Arefeh Momeni
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Amir Mohammad Danesh Pajooh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., Tbilisi, 0160, Georgia
| | - Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmadreza Arefpour
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
17
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
18
|
Zhao C, Huang L, Tang J, Lv L, Wang X, Dong X, Yang F, Guan Q. Multifunctional nanofibrous scaffolds for enhancing full-thickness wound healing loaded with Bletilla striata polysaccharides. Int J Biol Macromol 2024; 278:134597. [PMID: 39127286 DOI: 10.1016/j.ijbiomac.2024.134597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The considerable challenge of wound healing remains. In this study, we fabricated a novel multifunctional core-shell nanofibrous scaffold named EGF@BSP-CeO2/PLGA (EBCP), which is composed of Bletilla striata polysaccharide (BSP), Ceria nanozyme (CeO2) and epidermal growth factor (EGF) as the core and poly(lactic-co-glycolic acid) (PLGA) as the shell via an emulsion electrospinning technique. An increase in the BSP content within the scaffolds corresponded to improved wound healing performance. These scaffolds exhibited increased hydrophilicity and porosity and improved mechanical properties and anti-UV properties. EBCP exhibited sustained release, and the degradation rate was <4 % in PBS for 30 days. The superior biocompatibility was confirmed by the MTT assay, hemolysis, and H&E staining. In addition, the in vitro results revealed that, compared with the other groups, the EBCP group presented excellent antioxidant and antibacterial effects. More importantly, the in vivo results indicated that the wound closure rate of the EBCP group reached 94.0 % on day 10 in the presence of H2O2. The results demonstrated that EBCP could comprehensively regulate the wound microenvironment, possess hemostatic abilities, and significantly promote wound healing. In conclusion, the EBCP is promising for facilitating the treatment of infected wounds and represents a potential material for clinical applications.
Collapse
Affiliation(s)
- Chaoyue Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Long Huang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jie Tang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Linlin Lv
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Xinying Wang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Xiyao Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Fengrui Yang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Qingxiang Guan
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
19
|
Liu Y, Zhang Y, Yang Q, Yu Z, He M, Zhu Y, Fu X, Meng F, Ma Q, Kong L, Pan S, Che Y. Tunicate cellulose nanocrystal reinforced multifunctional hydrogel with super flexible, fatigue resistant, antifouling and self-adhesive capability for effective wound healing. Int J Biol Macromol 2024; 277:134337. [PMID: 39111482 DOI: 10.1016/j.ijbiomac.2024.134337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Hydrogels as skin wound dressings have been extensively studied owing to their good flexibility and biocompatibility. Nevertheless, the mechanical performance, adhesive capability, antifouling and antibacterial properties of conventional hydrogels are still unsatisfactory, which hinder the application of hydrogel for cutaneous healing. Here, we developed a novel biocompatible multifunctional hydrogel with super flexible, fatigue resistant, antifouling and self-adhesive capability for effective wound healing, where naturally rigid polymers including quaternized chitosan (QCS) and Tunicate cellulose nanocrystals (TCNCs) are used as bioactive cross-linkers and reinforcers to endow the hydrogel with excellent mechanical and antibacterial property, and the synergistic contributions from the poly(acrylic acid/methacrylate anhydride dopamine/sulfobetaine methacrylate) (poly(AA/DMA/SBMA)) chains and QCS endow the hydrogel with excellent adhesive property, antioxidant, antifouling and pH-responsive sustained drug release capabilities. The optimized hydrogel exhibited high tensile strength (77.69 KPa), large tensile strain (889.9 %), large toughness (307.51KJ.m-3), high adhesive strength (35.57 KPa) and ideal compressive property. The in vivo infected full-thickness skin model demonstrated that the hydrogel with vanvomycin sustained release ability efficiently improved the granulation tissue formation, facilitating collagen deposition and reducing inflammatory expression, thus effectively accelerating wound healing. This superiorly skin-adhesive antibacterial biocompatible hydrogel appears to be a promising candidate for wound therapy.
Collapse
Affiliation(s)
- Yijie Liu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Qin Yang
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Zhongrui Yu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Mingtao He
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yifei Zhu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Xin Fu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Fanjun Meng
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Qinglin Ma
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
20
|
Han Y, Wei H, Ding Q, Ding C, Zhang S. Advances in Electrospun Nanofiber Membranes for Dermatological Applications: A Review. Molecules 2024; 29:4271. [PMID: 39275118 PMCID: PMC11396802 DOI: 10.3390/molecules29174271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
In recent years, a wide variety of high-performance and versatile nanofiber membranes have been successfully created using different electrospinning methods. As vehicles for medication, they have been receiving more attention because of their exceptional antibacterial characteristics and ability to heal wounds, resulting in improved drug delivery and release. This quality makes them an appealing choice for treating various skin conditions like wounds, fungal infections, skin discoloration disorders, dermatitis, and skin cancer. This article offers comprehensive information on the electrospinning procedure, the categorization of nanofiber membranes, and their use in dermatology. Additionally, it delves into successful case studies, showcasing the utilization of nanofiber membranes in the field of skin diseases to promote their substantial advancement.
Collapse
Affiliation(s)
- Yuanyuan Han
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Hewei Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| |
Collapse
|
21
|
Zhou H, Chen L, Huang C, Jiang Z, Zhang H, Liu X, Zhu F, Wen Q, Shi P, Liu K, Yang L. Endogenous electric field coupling Mxene sponge for diabetic wound management: haemostatic, antibacterial, and healing. J Nanobiotechnology 2024; 22:530. [PMID: 39218901 PMCID: PMC11367980 DOI: 10.1186/s12951-024-02799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Improper management of diabetic wound effusion and disruption of the endogenous electric field can lead to passive healing of damaged tissue, affecting the process of tissue cascade repair. This study developed an extracellular matrix sponge scaffold (K1P6@Mxene) by incorporating Mxene into an acellular dermal stroma-hydroxypropyl chitosan interpenetrating network structure. This scaffold is designed to couple with the endogenous electric field and promote precise tissue remodelling in diabetic wounds. The fibrous structure of the sponge closely resembles that of a natural extracellular matrix, providing a conducive microenvironment for cells to adhere grow, and exchange oxygen. Additionally, the inclusion of Mxene enhances antibacterial activity(98.89%) and electrical conductivity within the scaffold. Simultaneously, K1P6@Mxene exhibits excellent water absorption (39 times) and porosity (91%). It actively interacts with the endogenous electric field to guide cell migration and growth on the wound surface upon absorbing wound exudate. In in vivo experiments, the K1P6@Mxene sponge reduced the inflammatory response in diabetic wounds, increased collagen deposition and arrangement, promoted microvascular regeneration, Facilitate expedited re-epithelialization of wounds, minimize scar formation, and accelerate the healing process of diabetic wounds by 7 days. Therefore, this extracellular matrix sponge scaffold, combined with an endogenous electric field, presents an appealing approach for the comprehensive repair of diabetic wounds.
Collapse
Grants
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 82372526 the National Natural Science Foundation of China
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2023A1515012970, No. 2020A1515010107 Guangdong Basic and Applied Basic Research Foundation
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- No. 2018KJYZ005 The Science and Technology Innovation Project of Guangdong Province
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A2024389 Guangdong Medical Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- A20231001 Yunfu People's Hospital Research Fund Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- 2022B004 Yunfu Medical and Health Research Project
- Yunfu People’s Hospital Research Fund Project
Collapse
Affiliation(s)
- Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong, 510515, PR China
- Department of Microscopy and Hand and Foot Surgery, Yunfu People's Hospital, Central Laboratory of YunFu People's Hospital, No. 120 Huanshi East Road, Yuncheng District, Yunfu City, 527399, PR China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong, 510515, PR China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong, 510515, PR China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong, 510515, PR China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong, 510515, PR China
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong, 510515, PR China
| | - Fengyi Zhu
- Department of Microscopy and Hand and Foot Surgery, Yunfu People's Hospital, Central Laboratory of YunFu People's Hospital, No. 120 Huanshi East Road, Yuncheng District, Yunfu City, 527399, PR China
| | - Qiulan Wen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China
| | - Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Kun Liu
- Experimental Education/Administration Centre, National Demonstration Centre for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Lei Yang
- Department of Microscopy and Hand and Foot Surgery, Yunfu People's Hospital, Central Laboratory of YunFu People's Hospital, No. 120 Huanshi East Road, Yuncheng District, Yunfu City, 527399, PR China.
| |
Collapse
|
22
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
23
|
Wu H, Gao B, Wu H, Song J, Zhu L, Zhou M, Linghu X, Huang S, Zhou Z, Wa Q. A unidirectional water-transport antibacterial bilayer nanofibrous dressing based on chitosan for accelerating wound healing. Int J Biol Macromol 2024; 269:131878. [PMID: 38692530 DOI: 10.1016/j.ijbiomac.2024.131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Excessive accumulation of exudate from wounds often causes infection and hinders skin regeneration. To handle wound exudate quickly and prevent infection, we developed an antibacterial Janus nanofibrous dressing with a unidirectional water-transport function. The dressing consists of a hydrophilic chitosan aerogel (CS-A) as the outer layer and a hydrophobic laurylated chitosan (La-CS) nanofibrous membrane as the inner layer. These dressings achieved excellent liquid absorption performance (2987.8 ± 123.5 %), air and moisture permeability (997.8 ± 23.1 g/m2/day) and mechanical strength (5.1 ± 2.6 MPa). This performance was obtained by adjusting the density of CS-A and the thickness of the La-CS membrane. Moreover, the dressing did not induce significant toxicity to cells and can prevent bacterial aggregation and infection at the wound site. Animal experiments showed that the dressing can shorten the inflammatory phase, enhance blood vessel generation, and accelerate collagen deposition, thus promoting wound healing. Overall, these results suggest that this Janus dressing is a promising material for clinical wound care.
Collapse
Affiliation(s)
- Hengpeng Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Honghan Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jiaxiang Song
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Li Zhu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Xiaogan 432000, China
| | - Meng Zhou
- Xiaonan District Branch of Hubei Agricultural Broadcasting and Television School, Xiaogan 432000, China
| | - Xitao Linghu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Shuai Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510632, China.
| | - Zongbao Zhou
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Xiaogan 432000, China.
| | - Qingde Wa
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
24
|
Bonde S, Chandarana C, Prajapati P, Vashi V. A comprehensive review on recent progress in chitosan composite gels for biomedical uses. Int J Biol Macromol 2024; 272:132723. [PMID: 38825262 DOI: 10.1016/j.ijbiomac.2024.132723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Chitosan (CS) composite gels have emerged as promising materials with diverse applications in biomedicine. This review provides a concise overview of recent advancements and key aspects in the development of CS composite gels. The unique properties of CS, such as biocompatibility, biodegradability, and antimicrobial activity, make it an attractive candidate for gel-based composites. Incorporating various additives, such as nanoparticles, polymers, and bioactive compounds, enhances the mechanical, thermal, and biological and other functional properties of CS gels. This review discusses the fabrication methods employed for CS composite gels, including blending and crosslinking, highlighting their influence on the final properties of the gels. Furthermore, the uses of CS composite gels in tissue engineering, wound healing, drug delivery, and 3D printing highlight their potential to overcome a number of the present issues with drug delivery. The biocompatibility, antimicrobial properties, electroactive, thermosensitive and pH responsive behavior and controlled release capabilities of these gels make them particularly suitable for biomedical applications. In conclusion, CS composite gels represent a versatile class of materials with significant potential for a wide range of applications. Further research and development efforts are necessary to optimize their properties and expand their utility in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Smita Bonde
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Chandani Chandarana
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Parixit Prajapati
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Vidhi Vashi
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| |
Collapse
|
25
|
Tian J, Fu C, Li W, Li N, Yao L, Xiao J. Biomimetic tri-layered artificial skin comprising silica gel-collagen membrane-collagen porous scaffold for enhanced full-thickness wound healing. Int J Biol Macromol 2024; 266:131233. [PMID: 38554907 DOI: 10.1016/j.ijbiomac.2024.131233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Full-thickness wounds are severe cutaneous damages with destroyed self-healing function, which need efficient clinical interventions. Inspired by the hierarchical structure of natural skin, we have for the first time developed a biomimetic tri-layered artificial skin (TLAS) comprising silica gel-collagen membrane-collagen porous scaffold for enhanced full-thickness wound healing. The TLAS with the thickness of 3-7 mm displays a hierarchical nanostructure consisting of the top homogeneous silica gel film, the middle compact collagen membrane, and the bottom porous collagen scaffold, exquisitely mimicking the epidermis, basement membrane and dermis of natural skin, respectively. The 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide-dehydrothermal (EDC/NHS-DHT) dual-crosslinked collagen composite bilayer, with a crosslinking degree of 79.5 %, displays remarkable biocompatibility, bioactivity, and biosafety with no risk of hemolysis and pyrogen reactions. Notably, the extra collagen membrane layer provides a robust barrier to block the penetration of silica gel into the collagen porous scaffold, leading to the TLAS with enhanced biocompatibility and bioactivity. The full-thickness wound rat model studies have indicated the TLAS significantly facilitates the regeneration of full-thickness defects by accelerating re-epithelization, collagen deposition and migration of skin appendages. The highly biocompatible and bioactive tri-layered artificial skin provides an improved treatment for full-thickness wounds, which has great potential in tissue engineering.
Collapse
Affiliation(s)
- Jing Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Caihong Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Na Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| |
Collapse
|
26
|
Mahmood A, Maher N, Amin F, Alqutaibi AY, Kumar N, Zafar MS. Chitosan-based materials for dental implantology: A comprehensive review. Int J Biol Macromol 2024; 268:131823. [PMID: 38677667 DOI: 10.1016/j.ijbiomac.2024.131823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Chitosan, a versatile biopolymer, has gained recognition in the discipline of dental implantology due to possessing salient properties. This comprehensive review explores the potential of chitosan in dental implants, focusing on its biocompatibility, bioactivity, and the various chitosan-based materials that have been utilized for dental implant therapy. The review also highlights the importance of surface treatment in dental implants to enhance osseointegration and inhibit bacterial biofilm formation. Additionally, the chemical structure, properties, and sources of chitosan are described, along with its different structural forms. The characteristics of chitosan particularly color, molecular weight, viscosity, and degree of deacetylation are discussed about their influence on its applications. This review provides valuable insights into the promising utilization of polymeric chitosan in enhancing the success and functionality of dental implants. This study highlights the potential applications of chitosan in oral implantology. Chitosan possesses various advantageous properties, including muco-adhesiveness, hemostatic action, biocompatibility, biodegradability, bioactivity, and antibacterial and antifungal activities, which enhance its uses in dental implantology. However, it has limited aqueous solubility at the physiological pH, which sometimes restricts its biological application, but this problem can be overcome by using modified chitosan or chitosan derivatives, which have also shown encouraging results. Recent research suggests that chitosan may act as a promising material for coating titanium-based implants, improving osteointegration together with antibacterial properties.
Collapse
Affiliation(s)
- Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Ahmed Yaseen Alqutaibi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman, Jordan; Department of Dental Materials, Islamic International College, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
27
|
Tavakoli M, Al-Musawi MH, Kalali A, Shekarchizadeh A, Kaviani Y, Mansouri A, Nasiri-Harchegani S, Kharazi AZ, Sharifianjazi F, Sattar M, Varshosaz J, Mehrjoo M, Najafinezhad A, Mirhaj M. Platelet rich fibrin and simvastatin-loaded pectin-based 3D printed-electrospun bilayer scaffold for skin tissue regeneration. Int J Biol Macromol 2024; 265:130954. [PMID: 38499125 DOI: 10.1016/j.ijbiomac.2024.130954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Alma Kalali
- School of Metallurgy and Materials Engineering, Iran University of Science & Technology, Tehran, Iran
| | | | - Yeganeh Kaviani
- Department of Biomedical Engineering, University of Meybod, Yazd, Iran
| | - Agrin Mansouri
- Department of Biology, Isfahan University, Isfahan, Iran
| | - Sepideh Nasiri-Harchegani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran.
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Mamoona Sattar
- Research group of Microbiological Engineering and Medical Materials, College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
28
|
Kazemi N, Javad Mahalati M, Kaviani Y, Al-Musawi MH, Varshosaz J, Soleymani Eil Bakhtiari S, Tavakoli M, Alizadeh M, Sharifianjazi F, Salehi S, Najafinezhad A, Mirhaj M. Core-shell nanofibers containing L-arginine stimulates angiogenesis and full thickness dermal wound repair. Int J Pharm 2024; 653:123931. [PMID: 38387821 DOI: 10.1016/j.ijpharm.2024.123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Despite the advances in medicine, wound healing is still challenging and piques the interest of biomedical engineers to design effective wound dressings using natural and artificial polymers. In present study, coaxial electrospinning was employed to fabricate core-shell nanofiber-based wound dressing, with core composed of polyacrylamide (PAAm) and shell comprising 0.5 % solution of L-Arginine (L-Arg) in aloe vera and keratin (AloKr). Aloe vera and keratin were added as natural polymers to promote angiogenesis, reduce inflammation, and provide antibacterial activity, whereas PAAm in core was used to improve the tensile properties of the wound dressing. Moreover, L-Arg was incorporated in shell to promote angiogenesis and collagen synthesis. The fiber diameter of PAAm/(AloKr/L-Arg) core-shell fibers was (93.33 ± 35.11 nm) with finer and straighter fibers and higher water holding capacity due to increased surface area to volume ratio. In terms of tensile properties, the PAAm/(AloKr/L-Arg) core-shell nanofibers with tensile strength and elastic modulus of 2.84 ± 0.27 MPa and 62.15 ± 5.32 MPa, respectively, showed the best mechanical performance compared to other nanofibers tested. Furthermore, PAAm/(AloKr/L-Arg) exhibited the highest L-Arg release (87.62 ± 3.02 %) and viability of L929 cells in vitro compared to other groups. In addition, the highest rate of in vivo full thickness wound healing was observed in PAAm/(AloKr/L-Arg) group compared to other groups. It significantly enhanced the angiogenesis, neovascularization, and cell proliferation. The prepared PAAm/(AloKr/L-Arg) core-shell nanofibrous dressing could be promising for full-thickness wound healing.
Collapse
Affiliation(s)
- Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Mohammad Javad Mahalati
- Organic Chemistry, Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Iran.
| | - Yeganeh Kaviani
- Department of Biomedical Engineering, University of Meybod, Yazd, Iran.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
29
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hydrogel Based on Riclin Cross-Linked with Polyethylene Glycol Diglycidyl Ether as a Soft Filler for Tissue Engineering. Biomacromolecules 2024; 25:1119-1132. [PMID: 38252967 DOI: 10.1021/acs.biomac.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hydrogels composed of natural polysaccharides have been widely used as filling materials, with a growing interest in medical cosmetology and skin care. However, conventional commercial dermal fillers still have limitations, particularly in terms of mechanical performance and durability in vivo. In this study, a novel injectable and implantable hydrogel with adjustable characteristics was prepared from succinoglycan riclin by introducing PEG diglycidyl ether as a cross-linker. FTIR spectra confirmed the cross-linking reaction. The riclin hydrogels exhibited shear-thinning behavior, excellent mechanical properties, and cytocompatibility through in vitro experiments. Furthermore, when compared with subcutaneous injection of a commercial hyaluronic acid hydrogel, the riclin hydrogels showed enhanced persistence and biocompatibility in Balb/c mice after 16 weeks. These results demonstrate the great potential of the riclin-based hydrogel as an alternative to conventional commercial soft tissue fillers.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
30
|
Tavakoli M, Salehi H, Emadi R, Varshosaz J, Labbaf S, Seifalian AM, Sharifianjazi F, Mirhaj M. 3D printed polylactic acid-based nanocomposite scaffold stuffed with microporous simvastatin-loaded polyelectrolyte for craniofacial reconstruction. Int J Biol Macromol 2024; 258:128917. [PMID: 38134992 DOI: 10.1016/j.ijbiomac.2023.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, Georgia.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
31
|
Mirhaj M, Varshosaz J, Nasab PM, Al-Musawi MH, Almajidi YQ, Shahriari-Khalaji M, Tavakoli M, Alizadeh M, Sharifianjazi F, Mehrjoo M, Labbaf S, Sattar M, Esfahani SN. A double-layer cellulose/pectin-soy protein isolate-pomegranate peel extract micro/nanofiber dressing for acceleration of wound healing. Int J Biol Macromol 2024; 255:128198. [PMID: 37992930 DOI: 10.1016/j.ijbiomac.2023.128198] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pegah Madani Nasab
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Yasir Q Almajidi
- Department of Pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Mohamadreza Tavakoli
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mamoona Sattar
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Salar Nasr Esfahani
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|