1
|
Fu P, Yang XF, Deng WW, Yu JN, Xu XM. Advances in cerebral edema research and targeted drug delivery systems. Eur J Pharmacol 2025; 1000:177744. [PMID: 40389128 DOI: 10.1016/j.ejphar.2025.177744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Cerebral edema, marked by excessive brain fluid accumulation, hinders stroke recovery and impacts survival, highlighting the need for effective therapies. This review examines the glymphatic system's role in post-stroke edema pathogenesis, explores edema formation mechanisms, and identifies therapeutic targets. While small molecule drugs show promise, their limited solubility and brain targeting necessitate advanced delivery approaches. Nanodrug delivery systems, capable of crossing the blood-brain barrier (BBB) and targeting cells via ligands, offer a compelling solution. We discuss the application of novel nanodrugs to enhance post-stroke edema treatment, aiming to improve survival and neurological recovery. This review seeks to guide future research in post-stroke edema management.
Collapse
Affiliation(s)
- Peng Fu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Xiu-Fen Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Wen-Wen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| | - Jiang-Nan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| | - Xi-Ming Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| |
Collapse
|
2
|
Kim M, Jung MY, Lee DY, Ahn SM, Lee GM, Park CY. How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics 2024; 16:1604. [PMID: 39771582 PMCID: PMC11680071 DOI: 10.3390/pharmaceutics16121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to examine existing research on the development of ocular drug delivery devices utilizing hyaluronic acid (HA). Renowned for its exceptional biocompatibility, viscoelastic properties, and ability to enhance drug bioavailability, HA is a naturally occurring biopolymer. The review discussed specific mechanisms by which HA enhances drug delivery, including prolonging drug residence time on ocular surfaces, facilitating controlled drug release, and improving drug penetration through ocular tissues. By focusing on these unique functionalities, this review highlights the potential of HA-based systems to revolutionize ocular treatment. Various fabrication techniques for HA-based ocular drug delivery systems, including hydrogels, nanoparticles, and microneedles, are discussed, highlighting their respective advantages and limitations. Additionally, this review explores the clinical applications of HA-based devices in treating a range of ocular diseases, such as dry eye syndrome, glaucoma, retinal disorders, and ocular infections. By comparing the efficacy and safety profiles of these devices with traditional ocular drug delivery methods, this review aims to provide a comprehensive understanding of the potential benefits and challenges associated with HA-based systems. Moreover, this review discusses current limitations and future directions in the field, such as the need for standardized fabrication protocols, long-term biocompatibility studies, and large-scale clinical trials. The insights and advancements presented in this review aim to guide future research and development efforts, ultimately enhancing the effectiveness of ocular drug delivery and improving patient outcomes.
Collapse
Affiliation(s)
- Martha Kim
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Mi-Young Jung
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Do-Yeon Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - So Min Ahn
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Gyeong Min Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Choul Yong Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
3
|
Wang J, Fan D, Cai D, Jin Y. Targeted delivery of rhein via hyaluronic acid modified liposomes for suppression of growth and metastasis of breast cancer. Int J Biol Macromol 2024; 282:137105. [PMID: 39486702 DOI: 10.1016/j.ijbiomac.2024.137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Targeting and suppressing the malignant growth and metastasis of breast cancer has been challenging for years. Herein, a nanocarrier based on hyaluronic acid (HA)-modified cationic liposomes was developed for targeted delivery of rhein to achieve breast cancer therapy. The optimum HA-Lip-rhein had spherical and core-shell-like morphologies with an appropriate size of 189.7 ± 5.2 nm. Moreover, the HA-Lip-rhein exhibited higher cellular uptake in 4 T1 cells and enhanced cytotoxicity compared with unmodified liposomal rhein. Furthermore, in vitro cell migration and invasion inhibition assays showed that the HA-Lip-rhein exhibited superior inhibitory effects on breast cancer metastasis. HA-Lip-rhein improved the tumor targeting ability, anti-breast cancer activity, with good safety profile in the 4 T1 breast cancer-bearing mice compared with free rhein and Lip-rhein. The appearance of metastatic tumor nodules in the lungs and H&E staining of liver and lung organs confirmed that HA-Lip-rhein exerted strong antitumor efficacy and inhibited distant metastasis of breast cancer. Overall, the developed HA-Lip-rhein exhibited a good antitumor effect and suppression effect of distant metastasis, making it a novel and promising nanoplatform for further development.
Collapse
Affiliation(s)
- Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, PR China; Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Dijing Fan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Yingxue Jin
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, PR China.
| |
Collapse
|
4
|
Della Sala F, Longobardo G, di Gennaro M, Messina F, Borzacchiello A. The interplay between hyaluronic acid and stem cell secretome boosts pulmonary differentiation in 3D biomimetic microenvironments. Int J Biol Macromol 2024; 276:133793. [PMID: 38992542 DOI: 10.1016/j.ijbiomac.2024.133793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Mesenchymal stem cells (MCSs) secretome provide MSC-like therapeutic effects in preclinical models of lung injury, circumventing safety concerns with the use of live cells. Secretome consists of Extracellular Vesicles (EVs), including populations of nano- to micro-sized particles (exosomes and microvesicles) delimited by a phospholipidic bilayer. However, its poor stability and bioavailability severely limit its application. The role of Hyaluronic acid (HA) as potential carrier in biomedical applications has been widely demonstrated. Here, we investigated the interplay between HA and MSCs- secretome blends and their ability to exert a bioactive effect on pulmonary differentiation in a 3D microenvironment mimicking lung niche. To this aim, the physical-chemical properties of HA/Secre blends have been characterized at low, medium and high HA Molecular Weights (MWs), by means of SEM/TEM, DLS, confocal microscopy and FTIR. Collectively physical-chemical properties highlight the interplay between the HA and the EVs. In 3D matrices, HA/Secre blends showed to promote differentiation in pulmonary lineage, improved as the MW of the HA in the blends decreased. Finally, HA/Secre blends' ability to cross an artificial mucus has been demonstrated. Overall, this work provides new insights for the development of future devices for the therapy of respiratory diseases that are still unmet.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | - Gennaro Longobardo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | | | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy.
| |
Collapse
|
5
|
di Gennaro M, Della Sala F, Vinale F, Borzacchiello A. Design of Carboxymethylcellulose/Poloxamer-Based Bioformulation Embedding Trichoderma afroharzianum for Agricultural Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12159-12166. [PMID: 38815139 DOI: 10.1021/acs.langmuir.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Microbial biological control agents are believed to be a potential alternative to classical fertilizers to increase the sustainability of agriculture. In this work, the formulation of Trichoderma afroharzianum T22 (T22) spores with carboxymethyl cellulose (CMC) and Pluronic F-127 (PF-127) solutions was investigated. Rheological and microscopical analysis were performed on T22-based systems at three different CMC/PF-127 concentrations, showing that polymer aggregates tend to surround T22 spores, without viscosity, and the viscoelastic properties of the formulations were affected. Contact angle measurements showed the ability of PF-127 to increase the wettability of the systems, and the effect of the formulations on the viability of the spores was evaluated. The viability of the spores was higher over 21 days in all the formulations, compared to the control in water, at 4 and 25 °C. Finally, the effectiveness of the formulations on sweet basil was estimated by greenhouse tests. The results revealed a beneficial effect of the CMC/PF-127 mixture, but none on the formulation with T22. The data show the potential of CMC/PF-127 mixtures for the future design of microorganism-based formulations.
Collapse
Affiliation(s)
- Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Napoli 80125, Italy
| | - Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Napoli 80125, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, Napoli 80137, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Napoli 80125, Italy
| |
Collapse
|