1
|
Wanelik KM, Farine DR. A new method for characterising shared space use networks using animal trapping data. Behav Ecol Sociobiol 2022; 76:127. [PMID: 36042847 PMCID: PMC9418289 DOI: 10.1007/s00265-022-03222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022]
Abstract
Abstract Studying the social behaviour of small or cryptic species often relies on constructing networks from sparse point-based observations of individuals (e.g. live trapping data). A common approach assumes that individuals that have been detected sequentially in the same trapping location will also be more likely to have come into indirect and/or direct contact. However, there is very little guidance on how much data are required for making robust networks from such data. In this study, we highlight that sequential trap sharing networks broadly capture shared space use (and, hence, the potential for contact) and that it may be more parsimonious to directly model shared space use. We first use empirical data to show that characteristics of how animals use space can help us to establish new ways to model the potential for individuals to come into contact. We then show that a method that explicitly models individuals’ home ranges and subsequent overlap in space among individuals (spatial overlap networks) requires fewer data for inferring observed networks that are more strongly correlated with the true shared space use network (relative to sequential trap sharing networks). Furthermore, we show that shared space use networks based on estimating spatial overlap are also more powerful for detecting biological effects. Finally, we discuss when it is appropriate to make inferences about social interactions from shared space use. Our study confirms the potential for using sparse trapping data from cryptic species to address a range of important questions in ecology and evolution. Significance statement Characterising animal social networks requires repeated (co-)observations of individuals. Collecting sufficient data to characterise the connections among individuals represents a major challenge when studying cryptic organisms—such as small rodents. This study draws from existing spatial mark-recapture data to inspire an approach that constructs networks by estimating space use overlap (representing the potential for contact). We then use simulations to demonstrate that the method provides consistently higher correlations between inferred (or observed) networks and the true underlying network compared to current approaches and requires fewer observations to reach higher correlations. We further demonstrate that these improvements translate to greater network accuracy and to more power for statistical hypothesis testing. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-022-03222-5.
Collapse
|
2
|
Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Godfrey SS, Wohlfeil C, Sih A. Intrinsic traits, social context, and local environment shape home range size and fidelity of sleepy lizards. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E. Payne
- Department of Environmental Science and Policy University of California Davis Davis USA
| | - O. Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University Tel Aviv Israel
| | - D. L. Sinn
- Department of Environmental Science and Policy University of California Davis Davis USA
- Department of Biological Sciences University of Tasmania, Hobart Tasmania Australia
| | - S. T. Leu
- School of Animal and Veterinary Sciences, University of Adelaide Adelaide Australia
| | - M. G. Gardner
- College of Science and Engineering, Flinders University Adelaide Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide Australia
| | - S. S. Godfrey
- Department of Zoology University of Otago Dunedin New Zealand
| | - C. Wohlfeil
- College of Science and Engineering, Flinders University Adelaide Australia
| | - A. Sih
- Department of Environmental Science and Policy University of California Davis Davis USA
| |
Collapse
|
3
|
Wohlfeil CK, Godfrey SS, Leu ST, Clayton J, Gardner MG. Spatial proximity and asynchronous refuge sharing networks both explain patterns of tick genetic relatedness among lizards, but in different years. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Caroline K. Wohlfeil
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | | | - Stephan T. Leu
- School of Animal and Veterinary Sciences University of Adelaide Adelaide South Australia Australia
| | - Jessica Clayton
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Michael G. Gardner
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
- Evolutionary Biology Unit South Australian Museum Adelaide South Australia Australia
| |
Collapse
|
4
|
Payne E, Sinn DL, Spiegel O, Leu ST, Wohlfeil C, Godfrey SS, Gardner M, Sih A. Consistent individual differences in ecto‐parasitism of a long‐lived lizard host. OIKOS 2020. [DOI: 10.1111/oik.06670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eric Payne
- Dept of Environmental Science and Policy, Univ. of California Davis 1 Shields Ave. Davis CA 95616‐5270 USA
| | - David L. Sinn
- Dept of Environmental Science and Policy, Univ. of California Davis 1 Shields Ave. Davis CA 95616‐5270 USA
- Dept of Biological Sciences, Univ. of Tasmania Hobart Tasmania Australia
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv Univ. Tel Aviv Israel
| | - Stephan T. Leu
- Dept of Biological Sciences, Macquarie Univ. Sydney Australia
| | - Caroline Wohlfeil
- College of Science and Engineering, Flinders Univ. Adelaide Australia
| | | | - Michael Gardner
- College of Science and Engineering, Flinders Univ. Adelaide Australia
- Evolutionary Biology Unit, South Australian Museum North Terrace Adelaide Australia
| | - Andy Sih
- Dept of Environmental Science and Policy, Univ. of California Davis 1 Shields Ave. Davis CA 95616‐5270 USA
| |
Collapse
|
5
|
Taggart PL, Leu ST, Spiegel O, Godfrey SS, Sih A, Bull CM. Endure your parasites: Sleepy Lizard (Tiliqua rugosa) movement is not affected by their ectoparasites. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Movement is often used to indicate host vigour, as it has various ecological and evolutionary implications, and has been shown to be affected by parasites. We investigate the relationship between tick load and movement in the Australian Sleepy Lizard (Tiliqua rugosa (Gray, 1825)) using high resolution GPS tracking. This allowed us to track individuals across the entire activity season. We hypothesized that tick load negatively affects host movement (mean distance moved per day). We used a multivariate statistical model informed by the ecology and biology of the host and parasite, their host–parasite relationship, and known host movement patterns. This allowed us to quantify the effects of ticks on lizard movement above and beyond effects of other factors such as time in the activity season, lizard body condition, and stress. We did not find any support for our hypothesis. Instead, our results provide evidence that lizard movement is strongly driven by internal state (sex and body condition independent of tick load) and by external factors (environmental conditions). We suggest that the Sleepy Lizard has largely adapted to natural levels of tick infection in this system. Our results conform to host–parasite arms race theory, which predicts varying impacts of parasites on hosts in natural systems.
Collapse
Affiliation(s)
- Patrick L. Taggart
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Stephan T. Leu
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephanie S. Godfrey
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin 9054, New Zealand
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, 1023 Wickson Hall, One Shields Avenue, Davis, CA 95616, USA
| | - C. Michael Bull
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| |
Collapse
|
6
|
Eifler D, Eifler M, Malela K, Childers J. Social networks in the Little Scrub Island ground lizard (Ameiva corax). J ETHOL 2016. [DOI: 10.1007/s10164-016-0481-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Leu ST, Jackson G, Roddick JF, Bull CM. Lizard movement tracks: variation in path re-use behaviour is consistent with a scent-marking function. PeerJ 2016; 4:e1844. [PMID: 27019790 PMCID: PMC4806635 DOI: 10.7717/peerj.1844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/03/2016] [Indexed: 11/20/2022] Open
Abstract
Individual movement influences the spatial and social structuring of a population. Animals regularly use the same paths to move efficiently to familiar places, or to patrol and mark home ranges. We found that Australian sleepy lizards (Tiliqua rugosa), a monogamous species with stable pair-bonds, repeatedly used the same paths within their home ranges and investigated whether path re-use functions as a scent-marking behaviour, or whether it is influenced by site familiarity. Lizards can leave scent trails on the substrate when moving through the environment and have a well-developed vomeronasal system to detect and respond to those scents. Path re-use would allow sleepy lizards to concentrate scent marks along these well-used trails, advertising their presence. Hypotheses of mate attraction and mating competition predict that sleepy lizard males, which experience greater intra-sexual competition, mark more strongly. Consistent with those hypotheses, males re-used their paths more than females, and lizards that showed pairing behaviour with individuals of the opposite sex re-used paths more than unpaired lizards, particularly among females. Hinterland marking is most economic when home ranges are large and mobility is low, as is the case in the sleepy lizard. Consistent with this strategy, re-used paths were predominantly located in the inner 50% home range areas. Together, our detailed movement analyses suggest that path re-use is a scent marking behaviour in the sleepy lizard. We also investigated but found less support for alternative explanations of path re-use behaviour, such as site familiarity and spatial knowledge. Lizards established the same number of paths, and used them as often, whether they had occupied their home ranges for one or for more years. We discuss our findings in relation to maintenance of the monogamous mating system of this species, and the spatial and social structuring of the population.
Collapse
Affiliation(s)
- Stephan T Leu
- School of Biological Sciences, Flinders University , Adelaide, South Australia , Australia
| | - Grant Jackson
- School of Computer Science, Engineering and Mathematics, Flinders University , Adelaide, South Australia , Australia
| | - John F Roddick
- School of Computer Science, Engineering and Mathematics, Flinders University , Adelaide, South Australia , Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University , Adelaide, South Australia , Australia
| |
Collapse
|
8
|
Jones AR, Bull CM, Brook BW, Wells K, Pollock KH, Fordham DA. Tick exposure and extreme climate events impact survival and threaten the persistence of a long-lived lizard. J Anim Ecol 2016; 85:598-610. [PMID: 26559641 DOI: 10.1111/1365-2656.12469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022]
Abstract
Assessing the impacts of multiple, often synergistic, stressors on the population dynamics of long-lived species is becoming increasingly important due to recent and future global change. Tiliqua rugosa (sleepy lizard) is a long-lived skink (>30 years) that is adapted to survive in semi-arid environments with varying levels of parasite exposure and highly seasonal food availability. We used an exhaustive database of 30 years of capture-mark-recapture records to quantify the impacts of both parasite exposure and environmental conditions on the lizard's survival rates and long-term population dynamics. Lizard abundance was relatively stable throughout the study period; however, there were changing patterns in adult and juvenile apparent survival rates, driven by spatial and temporal variation in levels of tick exposure and temporal variation in environmental conditions. Extreme weather events during the winter and spring seasons were identified as important environmental drivers of survival. Climate models predict a dramatic increase in the frequency of extreme hot and dry winter and spring seasons in our South Australian study region; from a contemporary probability of 0.17 up to 0.47-0.83 in 2080 depending on the emissions scenario. Our stochastic population model projections showed that these future climatic conditions will induce a decline in the abundance of this long-lived reptile of up to 67% within 30 years from 2080, under worst case scenario modelling. The results have broad implications for future work investigating the drivers of population dynamics and persistence. We highlight the importance of long-term data sets and accounting for synergistic impacts between multiple stressors. We show that predicted increases in the frequency of extreme climate events have the potential to considerably and negatively influence a long-lived species, which might previously have been assumed to be resilient to environmental perturbations.
Collapse
Affiliation(s)
- Alice R Jones
- The Environment Institute & School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - Barry W Brook
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Konstans Wells
- The Environment Institute & School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth H Pollock
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Damien A Fordham
- The Environment Institute & School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|