1
|
Hernández-Ospina MC, Chitan-Guerrero D, Alvarez-Londoño J, Bohada-Murillo M, Martínez-Sánchez ET, Rivera-Páez FA, Castaño-Villa GJ. Avian haemosporidians of the genera Plasmodium and Haemoproteus from resident and Neotropical migrant birds in Colombia. Parasitol Res 2024; 123:252. [PMID: 38922536 PMCID: PMC11208266 DOI: 10.1007/s00436-024-08260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Avian haemosporidians of the genera Plasmodium and Haemoproteus are a group of widely distributed blood parasites that can negatively affect the fitness of their hosts. Colombia contains the greatest diversity of birds on the planet, but knowledge about the associations between haemosporidian and its avifauna is scarce and fragmented. We collected blood samples from 255 birds (203 residents and 52 neotropical migrants) belonging to 27 families and 108 species. The study was conducted in six localities in the inter-Andean valleys of the Cauca and Magdalena rivers. Parasites of the genera Plasmodium and Haemoproteus were identified in the samples by morphological and molecular analysis of a fragment of the mitochondrial gene cyt b. Among the samples, 9.3% (n = 24) were positive for Plasmodium or Haemoproteus. Co-infection with Plasmodium and Haemoproteus was found in Red-eyed Vireo. Seventeen haemosporidian lineages were identified, five of which were reported for the first time in resident birds (Common Ground Dove, Checker-throated Stipplethroat, Tropical Kingbird, Pale-breasted Thrush, and Ruddy-breasted Seedeater) and one in the Summer Tanager (neotropical migrant). The research results confirm the wide diversity of haemosporidian present in tropical lowlands and the possible role of neotropical migratory birds in dissemination on haemosporidian along their migratory routes.
Collapse
Affiliation(s)
- Maria Camila Hernández-Ospina
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas-GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Diego Chitan-Guerrero
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas-GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Johnathan Alvarez-Londoño
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas-GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
- Maestría en Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Mauricio Bohada-Murillo
- Maestría en Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
- Grupo de Investigación en Ecosistemas Tropicales, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Estefani T Martínez-Sánchez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas-GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas-GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia.
| | - Gabriel J Castaño-Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas-GEBIOME, Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Carrera 35 No. 62-160 A.A 275, Manizales, Caldas, Colombia
| |
Collapse
|
2
|
Marinho MDS, Ferreira GM, Grosche VR, Nicolau-Junior N, Campos TDL, Santos IA, Jardim ACG. Evolutionary Profile of Mayaro Virus in the Americas: An Update into Genome Variability. Viruses 2024; 16:809. [PMID: 38793690 PMCID: PMC11126029 DOI: 10.3390/v16050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024] Open
Abstract
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.
Collapse
Affiliation(s)
- Mikaela dos Santos Marinho
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Giulia Magalhães Ferreira
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Victória Riquena Grosche
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto 15054-000, SP, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil;
| | - Túlio de Lima Campos
- Aggeu Magalhães Institute (Fiocruz), Bioinformatics Core Facility, Recife 50740-465, PE, Brazil;
| | - Igor Andrade Santos
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
3
|
Yan WL, Sun HT, Zhao YC, Hou XW, Zhang M, Zhao Q, Elsheikha HM, Ni HB. Global prevalence of Plasmodium infection in wild birds: A systematic review and meta-analysis. Res Vet Sci 2024; 168:105136. [PMID: 38183894 DOI: 10.1016/j.rvsc.2024.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Avian malaria is a vector-borne parasitic disease caused by Plasmodium infection transmitted to birds by mosquitoes. The aim of this systematic review was to analyze the global prevalence of malaria and risk factors associated with infection in wild birds. A systematic search of the databases CNKI, WanFang, VIP, PubMed, and ScienceDirect was performed from database inception to 24 February 2023. The search identified 3181 retrieved articles, of which 52 articles met predetermined inclusion criteria. Meta-analysis was performed using the random-effects model. The estimated pooled global prevalence of Plasmodium infection in wild birds was 16%. Sub-group analysis showed that the highest prevalence was associated with adult birds, migrant birds, North America, tropical rainforest climate, birds captured by mist nets, detection of infection by microscopy, medium quality studies, and studies published after 2016. Our study highlights the need for more understanding of Plasmodium prevalence in wild birds and identifying risk factors associated with infection to inform future infection control measures.
Collapse
Affiliation(s)
- Wei-Lan Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; College of Life Science, Changchun Sci-Tech University, Shuangyang 130600, Jilin Province, PR China
| | - He-Ting Sun
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang 110034, Liaoning Province, PR China
| | - Yi-Chen Zhao
- Academy of Forestry Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, PR China
| | - Xin-Wen Hou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang 130600, Jilin Province, PR China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| |
Collapse
|
4
|
Trillo PA, Bernal XE, Hall RJ. Mixed-species assemblages and disease: the importance of differential vector and parasite attraction in transmission dynamics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220109. [PMID: 37066659 PMCID: PMC10107280 DOI: 10.1098/rstb.2022.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/13/2023] [Indexed: 04/18/2023] Open
Abstract
Individuals from multiple species often aggregate at resources, group to facilitate defense and foraging, or are brought together by human activity. While it is well-documented that host-seeking disease vectors and parasites show biases in their responses to cues from different hosts, the influence of mixed-species assemblages on disease dynamics has received limited attention. Here, we synthesize relevant research in host-specific vector and parasite bias. To better understand how vector and parasite biases influence infection, we provide a conceptual framework describing cue-oriented vector and parasite host-seeking behaviour as a two-stage process that encompasses attraction of these enemies to the assemblage and their choice of hosts once at the assemblage. We illustrate this framework, developing a case study of mixed-species frog assemblages, where frog-biting midges transmit trypanosomes. Finally, we present a mathematical model that investigates how host species composition and asymmetries in vector attraction modulate transmission dynamics in mixed-species assemblages. We argue that differential attraction of vectors by hosts can have important consequences for disease transmission within mixed-species assemblages, with implications for wildlife conservation and zoonotic disease. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Paula A. Trillo
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - Ximena E. Bernal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama, República de Panama
| | - Richard J. Hall
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Noni V, Tan CS. Prevalence of haemosporidia in Asian Glossy Starling with discovery of misbinding of Haemoproteus-specific primer to Plasmodium genera in Sarawak, Malaysian Borneo. BMC Vet Res 2023; 19:66. [PMID: 37081458 PMCID: PMC10116663 DOI: 10.1186/s12917-023-03619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Plasmodium, Haemoproteus and Leucocytozoon are three mainly studied blood parasites known to cause malarial and pseudomalarial infections in avian worldwide. Although Sarawak is a biodiversity hotspot, molecular data on blood parasite diversity in birds are absent. The objective of the study is to determine the prevalence of blood parasite in Asian Glossy Starlings (AGS), an urban bird with high population density in Sarawak and to elucidate the phylogenetic relationship with other blood parasite. METHODS Twenty-nine carcasses of juvenile AGS that were succumbed to death due to window collision were collected around the vicinity of Universiti Malaysia Sarawak. Nested-multiplex and nested PCR targeting the Cytochrome B gene were used to detect Plasmodium and Haemoproteus, and Leucocytozoon respectively. Two primer sets were used for Haemoproteus detection to increase detection sensitivity, with one being a genus-specific primer. RESULTS Fourteen samples (prevalence rate: 48.28%) were found positive for avian Plasmodium. Phylogenetic analysis divided our sequences into five lineages, pFANTAIL01, pCOLL4, pACCBAD01, pALPSIS01 and pALPSIS02, with two lineages being novel. No Haemoproteus and Leucocytozoon was found in this study. However, Haemoproteus-specific primer used amplified our Plasmodium samples, making the primer non-specific to Haemoproteus only. CONCLUSION This is the first blood parasite detection study on AGS using carcasses and blood clot as sample source in Sarawak. Due to the scarcity of longer sequences from regions with high genetic plasticity, usage of genus-specific primers should be validated with sequencing to ensure correct prevalence interpretation.
Collapse
Affiliation(s)
- Vaenessa Noni
- Center for Tropical and Emerging Diseases, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Cheng Siang Tan
- Center for Tropical and Emerging Diseases, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
6
|
Haemosporidians in Non-Passerine Birds of Colombia: An Overview of the Last 20 Years of Research. DIVERSITY 2023. [DOI: 10.3390/d15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Neotropics are highly diverse in avian species. Neotropical countries contribute a large part of the estimated diversity of haemosporidian parasites reported for the planet’s tropical zones. However, sampling is limited and biased, illustrated by only 30% of the genetic records (barcodes) from non-passerines, most of them not linked to a nominal species. This paper aimed to perform the molecular and morphological characterization of the haemosporidians that infect non-passerine birds from Colombia deposited in the biological collection named “Grupo de Estudio Relación Parásito Hospedero (GERPH)”. We analyzed 1239 samples from twelve biomes and two animal care facilities. Phylogenetic relationships using barcodes and mitochondrial genomes were estimated. In addition, the reports of haemosporidian infections in non-passerine birds from the Neotropics recorded after 1978 were summarized. We reported the presence of thirteen morphological haemosporidian species, four potential new species deposited in GERPH, a host range expansion for two Plasmodium species, and a barcode sequence for Haemoproteus caprimulgi. We confirmed the species associated with 56 molecular lineages reported in other neotropical countries at the genus level. Thus, biological collections and curated databases such as MalAvi are essential to support integrative approaches demanded in modern taxonomy.
Collapse
|
7
|
Pacheco MA, Ferreira FC, Logan CJ, McCune KB, MacPherson MP, Albino Miranda S, Santiago-Alarcon D, Escalante AA. Great-tailed Grackles (Quiscalus mexicanus) as a tolerant host of avian malaria parasites. PLoS One 2022; 17:e0268161. [PMID: 35998118 PMCID: PMC9397854 DOI: 10.1371/journal.pone.0268161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Great-tailed Grackles (Quiscalus mexicanus) are a social, polygamous bird species whose populations have rapidly expanded their geographic range across North America over the past century. Before 1865, Great-tailed Grackles were only documented in Central America, Mexico, and southern Texas in the USA. Given the rapid northern expansion of this species, it is relevant to study its role in the dynamics of avian blood parasites. Here, 87 Great-tailed grackles in Arizona (a population in the new center of the range) were screened for haemosporidian parasites using microscopy and PCR targeting the parasite mitochondrial cytochrome b gene. Individuals were caught in the wild from January 2018 until February 2020. Haemosporidian parasite prevalence was 62.1% (54/87). A high Plasmodium prevalence was found (60.9%, 53/87), and one grackle was infected with Haemoproteus (Parahaemoproteus) sp. (lineage SIAMEX01). Twenty-one grackles were infected with P. cathemerium, sixteen with P. homopolare, four with P. relictum (strain GRW04), and eleven with three different genetic lineages of Plasmodium spp. that have not been characterized to species level (MOLATE01, PHPAT01, and ZEMAC01). Gametocytes were observed in birds infected with three different Plasmodium lineages, revealing that grackles are competent hosts for some parasite species. This study also suggests that grackles are highly susceptible and develop chronic infections consistent with parasite tolerance, making them competent to transmit some generalist haemosporidian lineages. It can be hypothesized that, as the Great-tailed Grackle expands its geographic range, it may affect local bird communities by increasing the transmission of local parasites but not introducing new species into the parasite species pool.
Collapse
Affiliation(s)
- M. Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CJL); (MAP); (AAE)
| | - Francisco C. Ferreira
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, United States of America
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Corina J. Logan
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- * E-mail: (CJL); (MAP); (AAE)
| | - Kelsey B. McCune
- University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Maggie P. MacPherson
- University of California, Santa Barbara, Santa Barbara, California, United States of America
- Louisiana State University Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sergio Albino Miranda
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología, Xalapa, Veracruz, Mexico
| | - Diego Santiago-Alarcon
- Department of Integrative Biology, University of South Florida, Tampa, Florida, United States of America
| | - Ananias A. Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CJL); (MAP); (AAE)
| |
Collapse
|
8
|
Messina S, Edwards DP, Van Houtte N, Tomassi S, Benedick S, Eens M, Costantini D. Impacts of selective logging on haemosporidian infection and physiological correlates in tropical birds. Int J Parasitol 2021; 52:87-96. [PMID: 34450133 DOI: 10.1016/j.ijpara.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Tropical forest degradation affects host-parasite interactions, determining the probability of animals acquiring an infection. The activation of an immune response to fight off infections requires energy and other resources such as antioxidants which may be redirected from growth and reproduction. A key question is how selective logging-the most common form of tropical forest degradation-impacts the prevalence of avian haemosporidian infection and its correlated physiological responses (nutritional and oxidative status markers). We investigated the prevalence of Plasmodium, Haemoproteus, and Leucocytozoon parasites in 14 understorey bird species in lowland, logged and unlogged, old-growth forests of Borneo. Prevalences of infections were similar between selectively logged and unlogged forests. To explore nutritional and oxidative status effects of haemosporidian infections, we examined associations between infections and plasma proteins, plasma triglycerides, and multiple blood-based markers of oxidative status, testing for an impact of selective logging on those markers. Birds infected with Plasmodium showed higher levels of plasma proteins and non-enzymatic antioxidant capacity, and lower levels of plasma triglycerides and glutathione, compared with haemosporidian-free individuals. Conversely, birds infected with Haemoproteus showed no changes in nutritional or physiological markers compared with uninfected individuals. These results indicate higher metabolic and physiological costs of controlling Plasmodium infection, compared with Haemoproteus, possibly due to higher pathogenicity of Plasmodium. Selectively logged forests had no effect on the responses of birds to infection, suggesting that the environmental conditions of degraded forests do not appear to induce any appreciable physiological demands in parasitised birds.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - David Paul Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Natalie Van Houtte
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Suzan Benedick
- School of Sustainable Agriculture, Universiti Malaysia Sabah, Malaysia
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoirie Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005 Paris, France
| |
Collapse
|