1
|
Paucar-Quishpe V, Berkvens D, Pérez-Otáñez X, Rodríguez-Hidalgo R, Cepeda-Bastidas D, Perez C, Guasumba Y, Balseca D, Villareal K, Chávez-Larrea MA, Enríquez S, Grijalva J, Vanwambeke SO, Saegerman C, Ron-Garrido L. What is the value of testing for tick-borne diseases in cattle in endemic areas? A case study of bovine anaplasmosis. PLoS One 2025; 20:e0315202. [PMID: 40072965 DOI: 10.1371/journal.pone.0315202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 03/14/2025] Open
Abstract
Anaplasmosis is a tick-borne disease (TBDs) caused by Anaplasma spp. In areas where TBDs are endemic, it is crucial to consider the animals' immunological status in relation to these diseases. The true prevalence of bovine anaplasmosis, the percentage of animals with protective antibodies against this TBD, and the diagnostic characteristics of three tests (multiplex polymerase chain reaction (mPCR), competitive-inhibition enzyme-linked immunosorbent assay (cELISA), and blood smear (BS)) were estimated using a Bayesian approach. A total of 620 samples were collected in two subtropical areas of Ecuador. A significant finding of this study is that approximately 70% of cattle in those endemic areas harbored protective antibodies against Anaplasma marginale. This elevated percentage may stem from persistent exposure with a high pathogen prevalence in ticks. The decline in cELISA specificity must be attributed to cross-reactivity with protective antibodies against Anaplasma spp. It is crucial to interpret this test outcome alongside exposure history and clinical manifestations. The elevated apparent prevalence detected by cELISA and BS should be contextualized with mPCR results. The high seroprevalence and infrequent clinical outbreaks suggest that the pathogen has achieved endemic stability. This study provides valuable insights into the dynamics of anaplasmosis in endemic areas and may serve as a foundation for devising TBDs control strategies in these areas.
Collapse
Affiliation(s)
- Valeria Paucar-Quishpe
- Research Unit of Epidemiology and Risk Analysis applied to Veterinary Science (UREAR-ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center/Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Dirk Berkvens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ximena Pérez-Otáñez
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Georges Lemaitre Centre for Earth and Climate Research, Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Richar Rodríguez-Hidalgo
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | | | - Cecilia Perez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Yadira Guasumba
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Daniela Balseca
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- Centro de Biología, Universidad Central del Ecuador. Quito, Ecuador
| | - Kamilo Villareal
- Facultad de Ciencias Químicas, Universidad Central del Ecuador. Quito, Ecuador
| | - María-Augusta Chávez-Larrea
- Research Unit of Epidemiology and Risk Analysis applied to Veterinary Science (UREAR-ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center/Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
- Departamento de Ciencias de la Vida y la Agricultura, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Sandra Enríquez
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Jorge Grijalva
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Sophie O Vanwambeke
- Georges Lemaitre Centre for Earth and Climate Research, Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis applied to Veterinary Science (UREAR-ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center/Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Lenin Ron-Garrido
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
2
|
Nyamota R, Middlebrook EA, Abkallo HM, Akoko J, Gakuya F, Wambua L, Ronoh B, Lekolool I, Mwatondo A, Muturi M, Bett B, Fair JM, Bartlow AW. The Bacterial and pathogenic landscape of African buffalo (Syncerus caffer) whole blood and serum from Kenya. Anim Microbiome 2025; 7:6. [PMID: 39800778 PMCID: PMC11725222 DOI: 10.1186/s42523-024-00374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance. This study investigated the blood microbiome of clinically healthy wild buffaloes in Kenya to determine its applicability in agnostic testing for bacteria in apparently healthy wild animals. METHODS Whole blood and serum samples were collected from 46 wild African buffalos from Meru National Park (30), Buffalo Springs (6) and Shaba (10) National Reserves in upper eastern Kenya. Total deoxyribonucleic acid (DNA) was extracted from these samples and subjected to amplicon-based sequencing targeting the 16 S rRNA gene. The bacteria operational taxonomic units (OTU) were identified to species levels by mapping the generated V12 and V45 regions of 16 S rRNA gene to the SILVA database. These OTU tables were used to infer the microbial abundance in each sample type and at the individual animal level. The sequences for the corresponding OTUs were also used to generate phylogenetic trees and thus infer evolution for the OTUs of interest. RESULTS Here, we demonstrate that buffaloes harbor many bacteria in their blood. We also report a diversity of 16 S rRNA gene sequences for Anaplasma and Mycoplasma from individual animals. By sequencing both whole blood and serum in triplicate for each animal, we provide evidence of the differences in detecting bacteria in both sample types. CONCLUSIONS Diverse bacteria, including some potential pathogens, can be found in the blood of clinically healthy wild African buffalo. Agnostic surveillance for such pathogens can be achieved through blood microbiome sequencing. However, considerations for the question being asked for the blood microbiome in wildlife will impact the choice for using whole blood or serum for sequencing.
Collapse
Affiliation(s)
- Richard Nyamota
- International Livestock Research Institute, Nairobi, Kenya.
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Earl A Middlebrook
- Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA
| | | | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | - Francis Gakuya
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Lillian Wambua
- World Organization for Animal Health, Sub-Regional Representation for Eastern Africa, Nairobi, Kenya
| | | | | | - Athman Mwatondo
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, Faculty of Health, University of Nairobi, Nairobi, Kenya
| | - Mathew Muturi
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Department of Veterinary Medicine, Dahlem Research School of Biomedical Sciences (DRS), Freie Universität Berlin, Berlin, Germany
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Jeanne M Fair
- Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA
| | - Andrew W Bartlow
- Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA
| |
Collapse
|
3
|
Akwongo CJ, Byaruhanga C. Epidemiology of Anaplasma species amongst cattle in Africa from 1970 to 2022: A systematic review and meta-analysis. Prev Vet Med 2024; 228:106214. [PMID: 38733736 DOI: 10.1016/j.prevetmed.2024.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Tick-borne pathogens of the genus Anaplasma cause anaplasmosis in livestock and humans, impacting health and livelihoods, particularly in Africa. A comprehensive review on the epidemiology of Anaplasma species is important to guide further research and for implementation of control approaches. We reviewed observational studies concerning Anaplasma species amongst cattle in Africa. Peer-reviewed studies published in PubMed, Google Scholar, and Web of Science - from database inception to 2022 - were searched. The quality of individual studies was assessed using the Joanna Briggs Institute Critical Appraisal Tool and the pooled prevalences by diagnostic method were estimated using random-effects models. Heterogeneity across the studies was tested and quantified using the Cochran's Q statistic and the I2 statistic. Potential sources of heterogeneity were investigated by subgroup analysis. A total of 1117 records were retrieved and at the end of the screening, 149 records (155 studies) were eligible for this meta-analysis. The occurrence of Anaplasma species was reported in 31/54 countries in all regions. Seven recognised species (A. marginale, A. centrale, A. phagocytophilum, A. platys, A. capra, A. bovis, A. ovis) and nine uncharacterised genotypes (Anaplasma sp. Hadesa; Anaplasma sp. Saso; Anaplasma sp. Dedessa; Anaplasma sp. Mymensingh; Anaplasma sp. Lambwe-1; Candidatus Anaplasma africae; Anaplasma sp.; Candidatus Anaplasma boleense) were reported in African cattle. Anaplasma marginale was the most frequently reported (n=144/155 studies) and the most prevalent species (serology methods 56.1%, 45.9-66.1; direct detection methods 19.9%, 15.4-24.7), followed by A. centrale (n=26 studies) with a prevalence of 8.0% (95% CI: 4.8-11.9) and A. platys (n=19 studies) with prevalence of 9.7% (95% CI: 5.4-15.2). Anaplasma marginale, A. centrale and A. platys were reported in all Africa's regions, while A. ovis and A. capra were reported only in the northern and central regions. The uncharacterised Anaplasma taxa were mostly detected in the eastern and southern regions. Subgroup analysis showed that significant determinants for A. marginale exposure (serology) were geographical region (p=0.0219), and longitude (p=0.0336), while the technique employed influenced (p<0.0001) prevalence in direct detection approaches. Temperature was the only significant variable (p=0.0269) for A. centrale. These findings show that various Anaplasma species, including those that are zoonotic, circulate in African cattle. There is need for more genetic and genome data, especially for unrecognised species, to facilitate effective identification, improve livestock and minimise the health risk in human populations. Additional epidemiological data including pathogen occurrence, tick vectors and host range, as well as pathogenicity are essential.
Collapse
Affiliation(s)
- Claire Julie Akwongo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, Napoli 80137, Italy
| | - Charles Byaruhanga
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; National Agricultural Research Organisation, P.O. Box 259, Entebbe, Uganda
| |
Collapse
|
4
|
Frias H, Murga L, Bardales W, Frias V, Portocarrero-Villegas SM, Segura Portocarrero T, Arista M, Saucedo-Uriarte JA. Prevalence and Risk Factors of Anaplasmosis in Simmental Cattle in the Peruvian Amazon. Vet Med Int 2024; 2024:4634440. [PMID: 38933691 PMCID: PMC11208101 DOI: 10.1155/2024/4634440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anaplasmosis, transmitted biologically and mechanically, is one of the most prevalent diseases responsible for high production costs worldwide. In this research, the prevalence and risk factors of anaplasmosis in Simmental cattle raised in the Peruvian Amazon were evaluated. 266 blood samples were collected from bovines of different categories such as calves male, calves females, heifers <1.3 years, heifers >1.3 years, steers, bulls, and cows from the districts of Omia and Molinopampa. The enzyme-linked immunosorbent assay (ELISA) technique was used to detect antibodies against Anaplasma marginale. Of the 266 animals sampled, 67% were positive for A. marginale. A higher prevalence was determined in the district of Omia (99.3%), while in the district of Molinopampa, 28.7% was obtained. A prevalence of A. marginale was recorded in females (67.7%) and in males (64.8%) (p > 0.05). There is a significant association of the disease with the category of cattle, verifying the highest prevalence of A. marginale in calves male, heifer >1.3 years, and bull. The multiple correspondence analysis shows that San Mateo, Puma Marca, Mashuyacu, Primavera, and Los Olivos have a higher prevalence of anaplasmosis, associated with altitude of 1701-2000 m, spray baths and paddock rotation. Anaplasmosis is prevalent in Simmental cattle from the Peruvian Amazon, with a higher incidence in Omia and in females, considering May to August the critical months and the altitude less than 2000 meters above sea level.
Collapse
Affiliation(s)
- Hugo Frias
- Faculty of Zootechnical EngineeringAgribusiness and Biotechnology of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| | - Luis Murga
- Faculty of Zootechnical EngineeringAgribusiness and Biotechnology of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| | - William Bardales
- Faculty of Zootechnical EngineeringAgribusiness and Biotechnology of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| | - Vanessa Frias
- Laboratory of Infectious and Parasitic Diseases of Domestic AnimalsLivestock and Biotechnology Research Institute of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| | - Segundo Melecio Portocarrero-Villegas
- Faculty of Zootechnical EngineeringAgribusiness and Biotechnology of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| | - Tatiana Segura Portocarrero
- Faculty of Zootechnical EngineeringAgribusiness and Biotechnology of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| | - Miguel Arista
- Laboratory of Infectious and Parasitic Diseases of Domestic AnimalsLivestock and Biotechnology Research Institute of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| | - José Américo Saucedo-Uriarte
- Faculty of Zootechnical EngineeringAgribusiness and Biotechnology of the Toribio Rodríguez de Mendoza National University of Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
5
|
Sutipatanasomboon A, Wongsantichon J, Sakdee S, Naksith P, Watthanadirek A, Anuracpreeda P, Blacksell SD, Saisawang C. RPA-CRISPR/Cas12a assay for the diagnosis of bovine Anaplasma marginale infection. Sci Rep 2024; 14:7820. [PMID: 38570576 PMCID: PMC10991388 DOI: 10.1038/s41598-024-58169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Anaplasma marginale infection is one of the most common tick-borne diseases, causing a substantial loss in the beef and dairy production industries. Once infected, the pathogen remains in the cattle for life, allowing the parasites to spread to healthy animals. Since clinical manifestations of anaplasmosis occur late in the disease, a sensitive, accurate, and affordable pathogen identification is crucial in preventing and controlling the infection. To this end, we developed an RPA-CRISPR/Cas12a assay specific to A. marginale infection in bovines targeting the msp4 gene. Our assay is performed at one moderately high temperature, producing fluorescent signals or positive readout of a lateral flow dipstick, which is as sensitive as conventional PCR-based DNA amplification. This RPA-CRISPR/Cas12a assay can detect as few as 4 copies/μl of Anaplasma using msp4 marker without cross-reactivity to other common bovine pathogens. Lyophilized components of the assay can be stored at room temperature for an extended period, indicating its potential for field diagnosis and low-resource settings of anaplasmosis in bovines.
Collapse
Affiliation(s)
- Arpaporn Sutipatanasomboon
- Molecular Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Somsri Sakdee
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Piyaporn Naksith
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Amaya Watthanadirek
- Molecular Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Thailand
| | - Panat Anuracpreeda
- Molecular Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Thailand
| | - Stuart D Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Chonticha Saisawang
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
6
|
Arjentinia IPGY, Keomoungkhoun B, Thamrongyoswittayakul C, Sangmaneedet S, Taweenan W. First report on the molecular detection and genetic diversity of Anaplasma marginale in healthy dairy cattle in Khon Kaen province, Thailand. Vet World 2024; 17:389-397. [PMID: 38595664 PMCID: PMC11000469 DOI: 10.14202/vetworld.2024.389-397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Bovine anaplasmosis (BA) is one of the most important diseases of ruminants worldwide, causing significant economic losses in the livestock industry due to the high morbidity and mortality in susceptible cattle herds. Anaplasma marginale is the main causative agent of BA occurring worldwide in tropical and subtropical regions. This study aimed to investigate the first molecular detection and genetic diversity of A. marginale in dairy cattle in Khon Kaen Province, Thailand. Materials and Methods Blood samples were collected from 385 lactating cows from 40 dairy farms in five districts of Khon Kaen, regardless of age and health status. To detect A. marginale, all DNA preparations were used for molecular diagnosis using a single polymerase chain reaction with the msp4 gene target. A phylogenetic tree was constructed from the msp4 gene sequences using molecular genetic characterization. Genetic diversity was calculated as haplotype diversity, haplotype number, number of nucleotide differences, nucleotide diversity, and average number of nucleotide differences. Results The overall prevalence of A. marginale was 12.72% (49/385). The highest prevalence (17.19%) was found in Ubolratana district, followed by Muang, Kranuan, Khao Suan Kwang, and Nam Phong districts (14.94%, 14.74%, 13.79%, and 3.70%, respectively). Phylogenetic analysis showed that A. marginale was closely related to isolates from Australia (98.96%), China (99.68%), Spain (99.74%), and the USA (99.63%). Conclusion The molecular prevalence of BA in dairy cattle is the first to be observed in this area, and the genetic variability with separated clusters shown in the msp4 gene of A. marginale revealed species variation in dairy cattle. This significant genetic diversity contributes to the understanding of the diversity of A. marginale and will be important for the control and prevention of A. marginale in dairy cattle.
Collapse
Affiliation(s)
| | - Bamphen Keomoungkhoun
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002 Thailand
| | | | - Somboon Sangmaneedet
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Weerapol Taweenan
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002 Thailand
| |
Collapse
|
7
|
Makgabo SM, Brayton KA, Oosthuizen MC, Collins NE. Unravelling the diversity of Anaplasma species circulating in selected African wildlife hosts by targeted 16S microbiome analysis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100198. [PMID: 37675244 PMCID: PMC10477809 DOI: 10.1016/j.crmicr.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Organisms in the genus Anaplasma are obligate intracellular alphaproteobacteria. Bovine anaplasmosis, predominantly caused by Anaplasma marginale, is the most prevalent tick-borne disease (TBD) of cattle worldwide. Other Anaplasma species are known to cause disease; these include A. ovis, A. platys in dogs, A. capra in goats and humans, and A. phagocytophilum in humans. The rapid advancement of next-generation sequencing technologies has led to the discovery of many novel sequences ascribed to the genus Anaplasma, with over 20 putative new species being proposed since the last formal organization of the genus. Most 16S rRNA gene surveys for Anaplasma were conducted on cattle and to a lesser extent on rodents, dogs, and ticks. Little is known about the occurrence, diversity, or impact of Anaplasma species circulating in wildlife species. Therefore, we conducted a 16S rRNA gene survey with the goal of identifying Anaplasma species in a variety of wildlife species in the Kruger National Park and neighbouring game reserves, using an unbiased 16S rRNA gene microbiome approach. An Anaplasma/Ehrlichia-group specific quantitative real-time PCR (qPCR) assay revealed the presence of Anaplasma and/or Ehrlichia species in 70.0% (21/30) of African buffalo, 86.7% (26/30) of impala, 36.7% (11/30) of greater kudu, 3.2% (1/31) of African wild dog, 40.6% (13/32) of Burchell's zebra, 43.3% (13/30) of warthog, 22.6% (7/31) of spotted hyena, 40.0% (12/30) of leopard, 17.6% (6/34) of lion, 16.7% (5/30) of African elephant and 8.6% (3/35) of white rhinoceros samples. Microbiome sequencing data from the qPCR positive samples revealed four 16S rRNA sequences identical to previously published Anaplasma sequences, as well as nine novel Anaplasma 16S genotypes. Our results reveal a greater diversity of putative Anaplasma species circulating in wildlife than currently classified within the genus. Our findings highlight a potential expansion of the Anaplasma host range and the need for more genetic information from other important genes or genome sequencing of putative novel species for correct classification and further assessment of their occurrence in wildlife, livestock and companion animals.
Collapse
Affiliation(s)
- S. Marcus Makgabo
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Kelly A. Brayton
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|