1
|
González-González E, Requena C, Barbosa F. Examining the influence of self-care practices on brain activity in healthy older adults. Front Aging Neurosci 2024; 16:1420072. [PMID: 39026994 PMCID: PMC11254819 DOI: 10.3389/fnagi.2024.1420072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Studies on the aging brain often occur in active settings, but comparatively few investigate brain activity in resting states. However, exploring brain activity in a resting state offers valuable insights into spontaneous neural processes unaffected by task-specific influences. Objective: To investigate the relationship between self-care practices, cognitive function, and patterns of brain activity in healthy older adults, taking into account predictions from aging brain models. Methodology 77 older adults aged 61 to 87 completing a self-care practices questionnaire, neuropsychological tests, and resting-state electroencephalogram (EEG) recordings. Participants were classified into two groups according to their self-care practices: traditional self-care (T-SC) and developmental self-care (D-SC). Results Although neuropsychological tests did not yield significant differences between the D-SC and T-SC groups, patterns of brain activity revealed distinct behaviors. The T-SC group demonstrated patterns more consistent with established aging brain models, contrasting with the D-SC group, which exhibited brain activity akin to that observed in younger adults. Specifically, the T-SC group displayed hyperactivation related to memory and executive function performance, alongside heightened alpha power in posterior regions. Furthermore, bilateral frontal activation in the beta band was evident. Conclusions The findings suggest a nuanced relationship between self-care practices and brain activity in older adults. While the T-SC group demonstrated brain activity patterns consistent with conservative aging, indicating the preservation of typical aging characteristics, the D-SC group displayed activity suggestive of a potential protective effect. This effect may be linked to self-care strategies that foster development and resilience in cognitive aging.
Collapse
Affiliation(s)
| | - Carmen Requena
- Laboratory of Lab-EEG-Lifespan, University of León, León, Spain
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Chino B, López-Sanz D, Doval S, Torres-Simón L, de Frutos Lucas J, Giménez-Llort L, Zegarra-Valdivia J, Maestú F. Resting State Electrophysiological Profiles and Their Relationship with Cognitive Performance in Cognitively Unimpaired Older Adults: A Systematic Review. J Alzheimers Dis 2024; 100:453-468. [PMID: 38875030 PMCID: PMC11307078 DOI: 10.3233/jad-231009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Background Aging is a complex and natural process. The physiological decline related to aging is accompanied by a slowdown in cognitive processes, which begins shortly after individuals reach maturity. These changes have been sometimes interpreted as a compensatory sign and others as a fingerprint of deterioration. Objective In this context, our aim is to uncover the mechanisms that underlie and support normal cognitive functioning in the brain during the later stages of life. Methods With this purpose, a systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, which identified 781 potential articles. After applying inclusion and exclusion criteria, we selected 12 studies that examined the brain oscillations patterns in resting-state conditions associated with cognitive performance in cognitively unimpaired older adults. Results Although cognitive healthy aging was characterized differently across studies, and various approaches to analyzing brain activity were employed, our review indicates a relationship between alpha peak frequency (APF) and improved performance in neuropsychological scores among cognitively unimpaired older adults. Conclusions A higher APF is linked with a higher score in intelligence, executive function, and general cognitive performance, and could be considered an optimal, and easy-to-assess, electrophysiological marker of cognitive health in older adults.
Collapse
Affiliation(s)
- Brenda Chino
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaisalmer de Frutos Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Lydia Giménez-Llort
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
3
|
Soleimani B, Das P, Dushyanthi Karunathilake IM, Kuchinsky SE, Simon JZ, Babadi B. NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis. Neuroimage 2022; 260:119496. [PMID: 35870697 PMCID: PMC9435442 DOI: 10.1016/j.neuroimage.2022.119496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from the MEG measurements, integrated with source localization, and employs the resulting parameter estimates to produce a precise statistical characterization of the detected GC links. We offer several theoretical and algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and application to MEG data from an auditory task involving tone processing from both younger and older participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-level characterization of neural activity during tone processing and resting state by delineating task- and age-related connectivity changes.
Collapse
Affiliation(s)
- Behrad Soleimani
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Proloy Das
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA; Department of Biology, University of Maryland College Park, MD, USA.
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
4
|
Huang Y, Deng Y, Jiang X, Chen Y, Mao T, Xu Y, Jiang C, Rao H. Resting-state occipito-frontal alpha connectome is linked to differential word learning ability in adult learners. Front Neurosci 2022; 16:953315. [PMID: 36188469 PMCID: PMC9521374 DOI: 10.3389/fnins.2022.953315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Adult language learners show distinct abilities in acquiring a new language, yet the underlying neural mechanisms remain elusive. Previous studies suggested that resting-state brain connectome may contribute to individual differences in learning ability. Here, we recorded electroencephalography (EEG) in a large cohort of 106 healthy young adults (50 males) and examined the associations between resting-state alpha band (8-12 Hz) connectome and individual learning ability during novel word learning, a key component of new language acquisition. Behavioral data revealed robust individual differences in the performance of the novel word learning task, which correlated with their performance in the language aptitude test. EEG data showed that individual resting-state alpha band coherence between occipital and frontal regions positively correlated with differential word learning performance (p = 0.001). The significant positive correlations between resting-state occipito-frontal alpha connectome and differential world learning ability were replicated in an independent cohort of 35 healthy adults. These findings support the key role of occipito-frontal network in novel word learning and suggest that resting-state EEG connectome may be a reliable marker for individual ability during new language learning.
Collapse
Affiliation(s)
- Yan Huang
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
- School of Foreign Languages, East China University of Science and Technology, Shanghai, China
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Xiaoming Jiang
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
| | - Yiyuan Chen
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Yong Xu
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Chino B, Cuesta P, Pacios J, de Frutos-Lucas J, Torres-Simón L, Doval S, Marcos A, Bruña R, Maestú F. Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: a study of 379 individuals. GeroScience 2022; 45:477-489. [PMID: 36109436 PMCID: PMC9886758 DOI: 10.1007/s11357-022-00656-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer's disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance.
Collapse
Affiliation(s)
- Brenda Chino
- Institute of Neuroscience, Autonomous University of Barcelona, Barcelona, Spain. .,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain.
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Radiology, Rehabilitation, and Physiotherapy, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Javier Pacios
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaisalmer de Frutos-Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain ,Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027 Australia ,Centro de Investigación Nebrija en Cognición (CINC), Universidad de Nebrija, Madrid, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Alberto Marcos
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Neurology Department, Hospital Clinico San Carlos, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Radiology, Rehabilitation, and Physiotherapy, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Kamal F, Campbell K, Taler V. Effects of the Duration of a Resting-State EEG Recording in Healthy Aging and Mild Cognitive Impairment. Clin EEG Neurosci 2022; 53:443-451. [PMID: 33370162 DOI: 10.1177/1550059420983624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The recording of resting-state EEG may provide a means to predict early cognitive decline associated with mild cognitive impairment (MCI). Previous studies have typically used very short recording times to avoid a confound with drowsiness that may occur in longer recordings. The effects of a longer recording have not however been systematically examined. METHODS Eyes-closed resting-state EEG activity was recorded in 40 older adult participants (20 healthy older adults and 20 people with MCI). The recording period was a relatively long 6 minutes, divided into two equal 3-minute halves to determine if drowsiness will be more apparent as the recording progresses. The participants also completed standardized neuropsychological tasks that assessed global cognition (Montreal Cognitive Assessment) and memory (California Verbal Learning Test, Second Edition). A spectral analysis was performed on both short (2 seconds) and long (8 seconds) segments in both 3-minute halves. RESULTS No differences in power density for any of the EEG frequency bands were found between the 2 halves of the study for either group. There was little evidence of increased drowsiness in the second half of the study even when frequency resolution was increased with the 8-second segmentation. Theta power density was overall larger for people with MCI compared to healthy older adults. A negative correlation was also observed between theta power and global cognition in healthy older adults. CONCLUSIONS The present results indicate that longer resting-state EEG recording can be reliably employed without increased risk of drowsiness.
Collapse
Affiliation(s)
- Farooq Kamal
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Kenneth Campbell
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa Taler
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Bruyère Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Massullo C, Bersani FS, Carbone GA, Panno A, Farina B, Murillo-Rodríguez E, Yamamoto T, Machado S, Budde H, Imperatori C. Decreased Resting State Inter- and Intra-Network Functional Connectivity Is Associated with Perceived Stress in a Sample of University Students: An eLORETA Study. Neuropsychobiology 2022; 81:286-295. [PMID: 35130552 DOI: 10.1159/000521565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Although the study of the Triple Network (TN) model has gained attention in the exploration of stress-related processes, the neurophysiological mechanisms of TN in relation to perceived stress have been relatively understudied in nonclinical samples so far. The main objective of the present study was to investigate, in a sample of university students, the association of perceived stress with resting state electroencephalography (EEG) functional connectivity in the TN. METHODS Ninety university students (40 males and 50 females; mean age 22.30 ± 2.43 years; mean educational level 16.60 ± 1.62 years) were enrolled. EEG data were analyzed through the exact low-resolution electromagnetic tomography (eLORETA). RESULTS Higher levels of perceived stress were associated with decreased delta EEG connectivity within the central executive network (CEN) and between the CEN and the salience network (SN). Higher levels of perceived stress were also associated with decreased theta EEG connectivity between the CEN and the SN. The associations between perceived stress and EEG connectivity data were significant even when relevant confounding factors (i.e., sex, age, educational level, and psychopathological symptoms) were controlled for. DISCUSSION Taken together, our results suggest that higher levels of perceived stress are associated with a dysfunctional synchronization within the CEN and between the SN and the CEN. This functional pattern might in part reflect the negative impact of high levels of perceived stress on cognitive functioning.
Collapse
Affiliation(s)
| | | | - Giuseppe Alessio Carbone
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Angelo Panno
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Benedetto Farina
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Mexico
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil.,Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Faculty of Human Sciences, Institute for Systems Medicine, Medical School Hamburg, Hamburg, Germany
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy.,Intercontinental Neuroscience Research Group, Mérida, Mexico
| |
Collapse
|
8
|
Karatygin NA, Korobeinikova II, Pertsov SS. Influence of Rhythmically Organized Optical Stimulation on the Performance of Human Cognitive Activity and Spatial Characteristics of the EEG Alpha Range. Bull Exp Biol Med 2022; 173:409-414. [DOI: 10.1007/s10517-022-05558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 10/14/2022]
|
9
|
Power Spectrum and Connectivity Analysis in EEG Recording during Attention and Creativity Performance in Children. NEUROSCI 2022. [DOI: 10.3390/neurosci3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The present research aims at examining the power spectrum and exploring functional brain connectivity/disconnectivity during concentration performance, as measured by the d2 test of attention and creativity as measured by the CREA test in typically developing children. To this end, we examined brain connectivity by using phase synchrony (i.e., phase locking index (PLI) over the EEG signals acquired by the Emotiv EPOC neuroheadset in 15 children aged 9- to 12-years. Besides, as a complement, a power spectrum analysis of the acquired signals was performed. Our results indicated that, during d2 Test performance there was an increase in global gamma phase synchronization and there was a global alpha and theta band desynchronization. Conversely, during CREA task, power spectrum analysis showed a significant increase in the delta, beta, theta, and gamma bands. Connectivity analysis revealed marked synchronization in theta, alpha, and gamma. These findings are consistent with other neuroscience research indicating that multiple brain mechanisms are indeed involved in creativity. In addition, these results have important implications for the assessment of attention functions and creativity in clinical and research settings, as well as for neurofeedback interventions in children with typical and atypical development.
Collapse
|
10
|
Kliesch M, Becker R, Hervais-Adelman A. Global and localized network characteristics of the resting brain predict and adapt to foreign language learning in older adults. Sci Rep 2022; 12:3633. [PMID: 35256672 PMCID: PMC8901791 DOI: 10.1038/s41598-022-07629-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Resting brain (rs) activity has been shown to be a reliable predictor of the level of foreign language (L2) proficiency younger adults can achieve in a given time-period. Since rs properties change over the lifespan, we investigated whether L2 attainment in older adults (aged 64-74 years) is also predicted by individual differences in rs activity, and to what extent rs activity itself changes as a function of L2 proficiency. To assess how neuronal assemblies communicate at specific frequencies to facilitate L2 development, we examined localized and global measures (Minimum Spanning Trees) of connectivity. Results showed that central organization within the beta band (~ 13-29.5 Hz) predicted measures of L2 complexity, fluency and accuracy, with the latter additionally predicted by a left-lateralized centro-parietal beta network. In contrast, reduced connectivity in a right-lateralized alpha (~ 7.5-12.5 Hz) network predicted development of L2 complexity. As accuracy improved, so did central organization in beta, whereas fluency improvements were reflected in localized changes within an interhemispheric beta network. Our findings highlight the importance of global and localized network efficiency and the role of beta oscillations for L2 learning and suggest plasticity even in the ageing brain. We interpret the findings against the background of networks identified in socio-cognitive processes.
Collapse
Affiliation(s)
- Maria Kliesch
- Zurich Center for Linguistics, University of Zurich, Andreasstrasse 15, 8050, Zürich, Switzerland.
- Chair of Romance Linguistics, Institute of Romance Studies, University of Zurich, Zürich, Switzerland.
| | - Robert Becker
- Neurolinguistics, Department of Psychology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, Zürich, Switzerland
| | - Alexis Hervais-Adelman
- Zurich Center for Linguistics, University of Zurich, Andreasstrasse 15, 8050, Zürich, Switzerland
- Neurolinguistics, Department of Psychology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, Zürich, Switzerland
| |
Collapse
|
11
|
Brancaccio A, Tabarelli D, Belardinelli P. A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. J Pers Med 2022; 12:jpm12010059. [PMID: 35055374 PMCID: PMC8778334 DOI: 10.3390/jpm12010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke constitutes the main cause of adult disability worldwide. Even after application of standard rehabilitation protocols, the majority of patients still show relevant motor impairment. Outcomes of standard rehabilitation protocols have led to mixed results, suggesting that relevant factors for brain re-organization after stroke have not been considered in explanatory models. Therefore, finding a comprehensive model to optimally define patient-dependent rehabilitation protocols represents a crucial topic in clinical neuroscience. In this context, we first report on the rehabilitation models conceived thus far in the attempt of predicting stroke rehabilitation outcomes. Then, we propose a new framework to interpret results in stroke literature in the light of the latest evidence regarding: (1) the role of the callosum in inter-hemispheric communication, (2) the role of prefrontal cortices in exerting a control function, and (3) diaschisis mechanisms. These new pieces of evidence on the role of callosum can help to understand which compensatory mechanism may take place following a stroke. Moreover, depending on the individual impairment, the prefrontal control network will play different roles according to the need of high-level motor control. We believe that our new model, which includes crucial overlooked factors, will enable clinicians to better define individualized motor rehabilitation protocols.
Collapse
|
12
|
Zhang DW, Zaphf A, Klingberg T. Resting State EEG Related to Mathematical Improvement After Spatial Training in Children. Front Hum Neurosci 2021; 15:698367. [PMID: 34305556 PMCID: PMC8297825 DOI: 10.3389/fnhum.2021.698367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Spatial cognitive abilities, including mental rotation (MR) and visuo-spatial working memory (vsWM) are correlated with mathematical performance, and several studies have shown that training of these abilities can enhance mathematical performance. Here, we investigated the behavioral and neural correlates of MR and vsWM training combined with number line (NL) training. Fifty-seven children, aged 6–7, performed 25 days of NL training combined with either vsWM or MR and participated in an Electroencephalography (EEG)-session in school to measure resting state activity and steady-state visual evoked potentials during a vsWM task before and after training. Fifty children, aged 6–7, received usual teaching and acted as a control group. Compared to the control group, both training groups improved on a combined measure of mathematics. Cognitive improvement was specific to the training. Significant pre-post changes in resting state-EEG (rs-EEG), common to both training groups, were found for power as well as for coherence, with no significant differences in rs-EEG-changes between the vsWM and MR groups. Two of the common rs-EEG changes were correlated with mathematical improvement: (1) an increase in coherence between the central frontal lobe and the right parietal lobe in frequencies ranging from 16 to 25 Hz, and (2) an increase in coherence between the left frontal lobe and the right parietal lobe ranging from 23 to 25 Hz. These results indicate that changes in fronto-parietal coherence are related to an increase in mathematical performance, which thus might be a useful measure in further investigations of mathematical interventions in children.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Zaphf
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Yoshida K, Takeda K, Kasai T, Makinae S, Murakami Y, Hasegawa A, Sakai S. Focused attention meditation training modifies neural activity and attention: longitudinal EEG data in non-meditators. Soc Cogn Affect Neurosci 2021; 15:215-224. [PMID: 32064537 PMCID: PMC7304517 DOI: 10.1093/scan/nsaa020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 10/08/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
Focused attention meditation (FAM) is a basic meditation practice that cultivates attentional control and monitoring skills. Cross-sectional studies have highlighted high cognitive performance and discriminative neural activity in experienced meditators. However, a direct relationship between neural activity changes and improvement of attention caused by meditation training remains to be elucidated. To investigate this, we conducted a longitudinal study, which evaluated the results of electroencephalography (EEG) during three-stimulus oddball task, resting state and FAM before and after 8 weeks of FAM training in non-meditators. The FAM training group (n = 17) showed significantly higher P3 amplitude during the oddball task and shorter reaction time (RT) for target stimuli compared to that of the control group (n = 20). Furthermore, a significant negative correlation between F4-Oz theta band phase synchrony index (PSI) during FAM and P3 amplitude during the oddball task and a significant positive correlation between F4-Pz theta band PSI during FAM and P3 amplitude during the oddball task were observed. In contrast, these correlations were not observed in the control group. These findings provide direct evidence of the effectiveness of FAM training and contribute to our understanding of the mechanisms underpinning the effects of meditation on brain activity and cognitive performance.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Kenta Takeda
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Tetsuko Kasai
- Faculty of Education, Hokkaido University, Sapporo, Hokkaido 080-0811, Japan
| | - Shiika Makinae
- Graduate School of Education, Hokkaido University, Sapporo, Hokkaido 080-0811, Japan
| | - Yui Murakami
- Department of Occupational Therapy, Hokkaido Bunkyo University, Eniwa 061-4119, Japan
| | - Ai Hasegawa
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Shinya Sakai
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
14
|
Borhani S, Zhao X, Kelly MR, Gottschalk KE, Yuan F, Jicha GA, Jiang Y. Gauging Working Memory Capacity From Differential Resting Brain Oscillations in Older Individuals With A Wearable Device. Front Aging Neurosci 2021; 13:625006. [PMID: 33716711 PMCID: PMC7944100 DOI: 10.3389/fnagi.2021.625006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
Working memory is a core cognitive function and its deficits is one of the most common cognitive impairments. Reduced working memory capacity manifests as reduced accuracy in memory recall and prolonged speed of memory retrieval in older adults. Currently, the relationship between healthy older individuals’ age-related changes in resting brain oscillations and their working memory capacity is not clear. Eyes-closed resting electroencephalogram (rEEG) is gaining momentum as a potential neuromarker of mild cognitive impairments. Wearable and wireless EEG headset measuring key electrophysiological brain signals during rest and a working memory task was utilized. This research’s central hypothesis is that rEEG (e.g., eyes closed for 90 s) frequency and network features are surrogate markers for working memory capacity in healthy older adults. Forty-three older adults’ memory performance (accuracy and reaction times), brain oscillations during rest, and inter-channel magnitude-squared coherence during rest were analyzed. We report that individuals with a lower memory retrieval accuracy showed significantly increased alpha and beta oscillations over the right parietal site. Yet, faster working memory retrieval was significantly correlated with increased delta and theta band powers over the left parietal sites. In addition, significantly increased coherence between the left parietal site and the right frontal area is correlated with the faster speed in memory retrieval. The frontal and parietal dynamics of resting EEG is associated with the “accuracy and speed trade-off” during working memory in healthy older adults. Our results suggest that rEEG brain oscillations at local and distant neural circuits are surrogates of working memory retrieval’s accuracy and processing speed. Our current findings further indicate that rEEG frequency and coherence features recorded by wearable headsets and a brief resting and task protocol are potential biomarkers for working memory capacity. Additionally, wearable headsets are useful for fast screening of cognitive impairment risk.
Collapse
Affiliation(s)
- Soheil Borhani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xiaopeng Zhao
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Margaret R Kelly
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Karah E Gottschalk
- Center on Gerontology, School of Public Health, University of Kentucky, Lexington, KY, United States.,Department of Audiology, Nova Southeastern University, Florida, FL, United States
| | - Fengpei Yuan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yang Jiang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Zangrossi A, Zanzotto G, Lorenzoni F, Indelicato G, Cannas Aghedu F, Cermelli P, Bisiacchi PS. Resting-state functional brain connectivity predicts cognitive performance: An exploratory study on a time-based prospective memory task. Behav Brain Res 2021; 402:113130. [PMID: 33444694 DOI: 10.1016/j.bbr.2021.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
Resting-state functional brain connectivity (rsFC) is in wide use for the investigation of a variety of cognitive neuroscience phenomena. In the first phase of this study, we explored the changes in EEG-reconstructed rsFC in young vs. older adults, in the both the open-eyes (OE) and the closed-eyes (CE) conditions. The results showed significant differences in several rsFC network metrics in the two age groups, confirming and detailing established knowledge that aging modulates brain functional organisation. In the study's second phase we investigated the role of rsFC architecture on cognitive performance through a time-based Prospective Memory task involving participants who monitored the passage of time to perform a specific action at an appropriate time in the future. Regression models revealed that the monitoring strategy (i.e. the number of clock checks) can be predicted by rsFC graph metric, specifically, eccentricity and betweenness in the OE condition, and assortativity in the CE condition. These results show for the first time how metrics qualifying functional brain connectivity at rest can account for the differences in the way individuals strategically handle cognitive loads in the Prospective Memory domain.
Collapse
Affiliation(s)
- Andrea Zangrossi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| | - Giovanni Zanzotto
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy
| | | | - Giuliana Indelicato
- York Cross-disciplinary Centre for Systems Analysis, Department of Mathematics, University of York, UK
| | | | | | - Patrizia Silvia Bisiacchi
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Januszko P, Gmaj B, Piotrowski T, Kopera M, Klimkiewicz A, Wnorowska A, Wołyńczyk-Gmaj D, Brower KJ, Wojnar M, Jakubczyk A. Delta resting-state functional connectivity in the cognitive control network as a prognostic factor for maintaining abstinence: An eLORETA preliminary study. Drug Alcohol Depend 2021; 218:108393. [PMID: 33158664 DOI: 10.1016/j.drugalcdep.2020.108393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cortical regions that support cognitive control are increasingly well recognized, but the functional mechanisms that promote such control over emotional and behavioral hyperreactivity to alcohol in recently abstinent alcohol-dependent patients are still insufficiently understood. This study aimed to identify neurophysiological biomarkers of maintaining abstinence in alcohol-dependent individuals after alcohol treatment by investigating the resting-state EEG-based functional connectivity in the cognitive control network (CCN). METHODS Lagged phase synchronization between CCN areas by means of eLORETA as well as the Barratt Impulsiveness Scale (BIS-11) and Beck Depression Inventory (BDI) were assessed in abstinent alcohol-dependent patients recruited from treatment centers. A preliminary prospective study design was used to classify participants into those who did and did not maintain abstinence during a follow-up period (median 12 months) after discharge from residential treatment. RESULTS Alcohol-dependent individuals, who maintained abstinence (N = 18), showed significantly increased lagged phase synchronization between the left dorsolateral prefrontal cortex (DLPFC) and the left posterior parietal cortex (IPL) as well as between the right anterior insula cortex/frontal operculum (IA/FO) and the right inferior frontal junction (IFJ) in the delta band compared to those who later relapsed (N = 16). Regression analysis showed that the increased left frontoparietal delta connectivity in the early period of abstinence significantly predicted maintaining abstinence over the ensuing 12 months. Furthermore, right frontoinsular delta connectivity correlated negatively with impulsivity and depression measures. CONCLUSIONS These results suggest that the increased delta resting-state functional connectivity in the CCN may be a promising neurophysiological predictor of maintaining abstinence in individuals with alcohol dependence.
Collapse
Affiliation(s)
- Piotr Januszko
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Bartłomiej Gmaj
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland.
| | - Tadeusz Piotrowski
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Anna Klimkiewicz
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Anna Wnorowska
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Dorota Wołyńczyk-Gmaj
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| | - Kirk J Brower
- Department of Psychiatry, Addiction Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland; Department of Psychiatry, Addiction Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, 00-665 Warsaw, Poland
| |
Collapse
|
17
|
McCabe L, Johnstone SJ, Watts A, Jiang H, Sun L, Zhang D. EEG coherence during subjectively-rated psychological state variations. Int J Psychophysiol 2020; 158:380-388. [PMID: 33171138 DOI: 10.1016/j.ijpsycho.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Neurofeedback training aims to develop awareness and control of psychological states in order to self-regulate brain activity and while used widely therapeutically, important questions remain unanswered. Central to these aims is an assumed association between the live EEG-based feedback and the subjective experience of a psychological state. To date, there is little evidence to support this relationship. Previous studies examining the association between an EEG index and subjective experience have explored only the presence or absence of the state, or merely assumed state variations. The current study aims to examine this association by considering how different levels of a psychological state (i.e., attention) are reflected in EEG coherence. METHODS Our approach aims to allow comparisons of EEG coherence between psychological states (attention vs. rest), and also within subjectively-rated levels of a psychological state (attention) through a purpose-designed questionnaire. Thirty healthy adult participants performed a resting eyes-open (REO) and attention modulation task, while 28 channels of EEG were recorded. Levels within the psychological state were subjectively-attested by participants on a trial-by-trial basis. RESULTS The main analyses examined the effect of subjectively-rated attention levels (SRALs) on EEG coherence, with results suggesting that high and low SRALs may be represented by: 1) different levels of alpha and theta coherence at anterior and posterior electrodes of the frontal lobe bilaterally, and 2) different levels of alpha coherence between central and parietal lobes, also bilaterally. DISCUSSION These findings provide partial, preliminary evidence for EEG correlates of SRALs. These findings may have implications for understanding underlying mechanisms of NFT, which is an underdeveloped area.
Collapse
Affiliation(s)
- Laura McCabe
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Stuart J Johnstone
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Australia.
| | - Allira Watts
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Han Jiang
- School of Special Education, Zhejiang Normal University, Hangzhou, China
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China; National Clinical Research Centre for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Dawei Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
Ren Y, Pan L, Du X, Hou Y, Li X, Song Y. Functional brain network mechanism of executive control dysfunction in temporal lobe epilepsy. BMC Neurol 2020; 20:137. [PMID: 32295523 PMCID: PMC7161158 DOI: 10.1186/s12883-020-01711-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Executive control dysfunction is observed in a sizable number of patients with temporal lobe epilepsy (TLE). Neural oscillations in the theta band are increasingly recognized as having a crucial role in executive control network. The purpose of this study was to investigate the alterations in the theta band in executive control network and explore the functional brain network mechanisms of executive control dysfunction in TLE patients. Methods A total of 20 TLE patients and 20 matched healthy controls (HCs) were recruited in the present study. All participants were trained to perform the executive control task by attention network test while the scalp electroencephalogram (EEG) data were recorded. The resting state signals were collected from the EEG in the subjects with quiet and closed eyes conditions. Functional connectivity among EEGs in the executive control network and resting state network were respectively calculated. Results We found the significant executive control impairment in the TLE group. Compared to the HCs, the TLE group showed significantly weaker functional connectivity among EEGs in the executive control network. Moreover, in the TLE group, we found that the functional connectivity was significantly positively correlated with accuracy and negatively correlated with EC_effect. In addition, the functional connectivity of the executive control network was significantly higher than that of the resting state network in the HCs. In the TLE group, however, there was no significant change in functional connectivity strengths between the executive control network and resting state network. Conclusion Our results indicate that the decreased functional connectivity in theta band may provide a potential mechanism for executive control deficits in TLE patients.
Collapse
Affiliation(s)
- Yanping Ren
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Liping Pan
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xueyun Du
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yuying Hou
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xun Li
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yijun Song
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and 4Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin, 300052, China.
| |
Collapse
|
19
|
Miraglia F, Vecchio F, Marra C, Quaranta D, Alù F, Peroni B, Granata G, Judica E, Cotelli M, Rossini PM. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia. Int J Neural Syst 2020; 30:2050004. [DOI: 10.1142/s0129065720500045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aim of this study was to explore the EEG functional connectivity in amnesic mild cognitive impairments (MCI) subjects with multidomain impairment in order to characterize the Default Mode Network (DMN) in converted MCI (cMCI), which converted to Alzheimer’s disease (AD), compared to stable MCI (sMCI) subjects. A total of 59 MCI subjects were recruited and divided -after appropriate follow-up- into cMCI or sMCI. They were further divided in MCI with linguistic domain (LD) impairment and in MCI with executive domain (ED) impairment. Small World (SW) index was measured as index of balance between integration and segregation brain processes. SW, computed restricting to nodes of DMN regions for all frequency bands, evaluated how they differ between MCI subgroups assessed through clinical and neuropsychological four-years follow-up. In addition, SW evaluated how this pattern differs between MCI with LD and MCI with ED. Results showed that SW index significantly decreased in gamma band in cMCI compared to sMCI. In cMCI with LD impairment, the SW index significantly decreased in delta band, while in cMCI with ED impairment the SW index decreased in delta and gamma bands and increased in alpha1 band. We propose that the DMN functional alterations in cognitive impairment could reflect an abnormal flow of brain information processing during resting state possibly associated to a status of pre-dementia.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
- Via Val Cannuta, 247, 00166 Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Camillo Marra
- Memory Clinic, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | - Davide Quaranta
- Memory Clinic, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | - Francesca Alù
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Benedetta Peroni
- Institute of Neurology, Area of Neuroscience, Catholic University of The Sacred Heart, Rome, Italy
| | - Giuseppe Granata
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | |
Collapse
|
20
|
Fleck JI, Arnold M, Dykstra B, Casario K, Douglas E, Morris O. Distinct Functional Connectivity Patterns Are Associated With Social and Cognitive Lifestyle Factors: Pathways to Cognitive Reserve. Front Aging Neurosci 2019; 11:310. [PMID: 31798441 PMCID: PMC6863775 DOI: 10.3389/fnagi.2019.00310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of diverse lifestyle factors in sustaining cognition during aging and delaying the onset of decline in Alzheimer's disease and related dementias cannot be overstated. We explored the influence of cognitive, social, and physical lifestyle factors on resting-state lagged linear connectivity (LLC) in high-density electroencephalography (EEG) in adults, ages 35-75 years. Diverse lifestyle factors build cognitive reserve (CR), protecting cognition in the presence of physical brain decline. Differences in LLC were examined between high- and low-CR groups formed using cognitive, social, and exercise lifestyle factors. LLC is a measure of lagged coherence that excludes zero phase contributions and limits the effects of volume conduction on connectivity estimates. Significant differences in LLC were identified for cognitive and social factors, but not exercise. Participants high in social CR possessed greater local and long-range connectivity in theta and low alpha for eyes-open and eyes-closed recording conditions. In contrast, participants high in cognitive CR exhibited greater eyes-closed long-range connectivity between the occipital lobe and other cortical regions in low alpha. Greater eyes-closed local LLC in delta was also present in men high in cognitive CR. Cognitive factor scores correlated with sustained attention, whereas social factors scores correlated with spatial working memory. Gender was a significant covariate in our analyses, with women displaying higher local and long-range LLC in low beta. Our findings support distinct relationships between CR and LLC, as well as CR and cognitive function for cognitive and social subcomponents. These patterns reflect the importance of diverse lifestyle factors in building CR.
Collapse
Affiliation(s)
- Jessica I. Fleck
- School of Social and Behavioral Sciences, Stockton University, Galloway, NJ, United States
| | | | | | | | | | | |
Collapse
|
21
|
Perone S, Gartstein MA. Relations between dynamics of parent-infant interactions and baseline EEG functional connectivity. Infant Behav Dev 2019; 57:101344. [DOI: 10.1016/j.infbeh.2019.101344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023]
|
22
|
Carmona Arroyave JA, Tobón Quintero CA, Suárez Revelo JJ, Ochoa Gómez JF, García YB, Gómez LM, Pineda Salazar DA. Resting functional connectivity and mild cognitive impairment in Parkinson’s disease. An electroencephalogram study. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Parkinson’s disease (PD) is characterized by cognitive deficits. There is not clarity about electroencephalogram (EEG) connectivity related to the cognitive profile of patients. Our objective was to evaluate connectivity over resting EEG in nondemented PD. Methods: PD subjects with and without mild cognitive impairment (MCI) were assessed using coherence from resting EEG for local, intra and interhemispheric connectivity. Results: PD subjects without MCI (PD-nMCI) had lower intra and interhemispheric coherence in alpha2 compared with controls. PD with MCI (PD-MCI) showed higher intra and posterior interhemispheric coherence in alpha2 and beta1, respectively, in comparison to PD-nMCI. PD-MCI presented lower frontal coherence in beta frequencies compared with PD-nMCI. Conclusion: EEG coherence measures indicate distinct cortical activity in PD with and without MCI.
Collapse
Affiliation(s)
- Jairo Alexander Carmona Arroyave
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
| | - Carlos Andrés Tobón Quintero
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
| | - Jasmín Jimena Suárez Revelo
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Bioinstrumentation & Clinical Engineering Research Group (GIBIC), Bioengineering Program, University of Antioquia, Calle 70 No. 52–21, Medellín, Colombia
| | - John Fredy Ochoa Gómez
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Bioinstrumentation & Clinical Engineering Research Group (GIBIC), Bioengineering Program, University of Antioquia, Calle 70 No. 52–21, Medellín, Colombia
| | - Yamile Bocanegra García
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
| | - Leonardo Moreno Gómez
- Neurology Unit, Pablo Tobón Uribe Hospital, Calle 78B No. 69–240, Medellín, Colombia
| | - David Antonio Pineda Salazar
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Psychology Department, University of San Buenaventura, Carrera 56 C No. 51–110, Medellín, Colombia
| |
Collapse
|
23
|
Mitsuboshi N, Kouzuki M, Mochida S, Morimoto K, Urakami K. How the Post-Fracture Rehabilitation Choice Affects Brain Function in Older People? Dement Geriatr Cogn Dis Extra 2019; 9:34-43. [PMID: 31043962 PMCID: PMC6477489 DOI: 10.1159/000495937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND We investigated how the type of rehabilitation affects brain function and antioxidant potential. METHODS Twenty-eight patients hospitalized for fall-related fractures were assigned to either a physical therapy group or an occupational therapy group. Cognition was assessed using the Touch Panel-type Dementia Assessment Scale (TDAS) and oxidative stress with serum pentosidine levels. Spectral analysis and coherence analysis were also performed. RESULTS Changes in TDAS scores and serum pentosidine levels did not differ significantly between the 2 therapies. Power spectral analysis revealed a significant intergroup difference in δ waves. Coherence analysis showed significant intergroup differences in the activities of δ waves and β waves. CONCLUSIONS Cognitive function and antioxidant potential did not differ between the 2 types of rehabilitation. However, the impact on cerebral neuronal activity may have differed.
Collapse
Affiliation(s)
- Noriko Mitsuboshi
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
- Yukoukai Kaikeonsen Hospital, Yonago, Japan
| | - Minoru Kouzuki
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | - Katsuya Urakami
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
24
|
Cui D, Qi S, Gu G, Li X, Li Z, Wang L, Yin S. Magnitude Squared Coherence Method based on Weighted Canonical Correlation Analysis for EEG Synchronization Analysis in Amnesic Mild Cognitive Impairment of Diabetes Mellitus. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1908-1917. [DOI: 10.1109/tnsre.2018.2862396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Snyder AC, Issar D, Smith MA. What does scalp electroencephalogram coherence tell us about long-range cortical networks? Eur J Neurosci 2018; 48:2466-2481. [PMID: 29363843 PMCID: PMC6497452 DOI: 10.1111/ejn.13840] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/20/2017] [Accepted: 01/17/2018] [Indexed: 01/01/2023]
Abstract
Long-range interactions between cortical areas are undoubtedly a key to the computational power of the brain. For healthy human subjects, the premier method for measuring brain activity on fast timescales is electroencephalography (EEG), and coherence between EEG signals is often used to assay functional connectivity between different brain regions. However, the nature of the underlying brain activity that is reflected in EEG coherence is currently the realm of speculation, because seldom have EEG signals been recorded simultaneously with intracranial recordings near cell bodies in multiple brain areas. Here, we take the early steps towards narrowing this gap in our understanding of EEG coherence by measuring local field potentials with microelectrode arrays in two brain areas (extrastriate visual area V4 and dorsolateral prefrontal cortex) simultaneously with EEG at the nearby scalp in rhesus macaque monkeys. Although we found inter-area coherence at both scales of measurement, we did not find that scalp-level coherence was reliably related to coherence between brain areas measured intracranially on a trial-to-trial basis, despite that scalp-level EEG was related to other important features of neural oscillations, such as trial-to-trial variability in overall amplitudes. This suggests that caution must be exercised when interpreting EEG coherence effects, and new theories devised about what aspects of neural activity long-range coherence in the EEG reflects.
Collapse
Affiliation(s)
- Adam C. Snyder
- Dept. of Electrical and Computer Engineering, Carnegie Mellon Univ., Pittsburgh, PA, USA,Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, Univ. of Pittsburgh, Pittsburgh, PA, USA
| | - Deepa Issar
- Dept. of Bioengineering, Univ. of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A. Smith
- Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, Univ. of Pittsburgh, Pittsburgh, PA, USA,Dept. of Bioengineering, Univ. of Pittsburgh, Pittsburgh, PA, USA,Fox Center for Vision Restoration, Univ. of Pittsburgh, Pittsburgh, PA, USA,Address correspondence to: Matthew A. Smith, Department of Ophthalmology, University of Pittsburgh, Eye and Ear Institute, 203 Lothrop St., 9 Fl., Pittsburgh, PA, 15213, Tel: (412) 647-2313,
| |
Collapse
|
26
|
Mendez-Balbuena I, Arrieta P, Huidobro N, Flores A, Lemuz-Lopez R, Trenado C, Manjarrez E. Augmenting EEG-global-coherence with auditory and visual noise: Multisensory internal stochastic resonance. Medicine (Baltimore) 2018; 97:e12008. [PMID: 30170407 PMCID: PMC6393074 DOI: 10.1097/md.0000000000012008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present investigation documents the electrophysiological occurrence of multisensory internal stochastic resonance (MISR) in the human electroencephalographic (EEG) coherence elicited by auditory and visual noise.We define MISR of EEG coherence as the phenomenon for which an intermediate level of input noise of a sensory modality enhances EEG coherence in response to another noisy sensory modality. Here, EEG coherence is computed by the global weighted coherence (GWC), modulated by quasi-Brownian noise. Specifically, we examined whether a particular level of auditory noise together with constant visual noise (experimental condition 1) and a specified level of visual noise together with constant auditory noise (experimental condition 2), improves EEG's GWC. We compared GWC between ongoing EEG basal activity (BA), zero noise (ZN), optimal noise (ON), and high noise (HN).The data disclosed an intermediate level of input noise that enhances the GWC for the majority of the subjects, thus demonstrating for the first time the occurrence of multisensory internal stochastic resonance (SR) in visuoauditory processing within the central nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Lemuz-Lopez
- Faculty of Computational Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Carlos Trenado
- Department of Psychology and Neurosciences, Translational Neuromodulation Unit, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | | |
Collapse
|
27
|
González-Garrido AA, Gómez-Velázquez FR, Salido-Ruiz RA, Espinoza-Valdez A, Vélez-Pérez H, Romo-Vazquez R, Gallardo-Moreno GB, Ruiz-Stovel VD, Martínez-Ramos A, Berumen G. The analysis of EEG coherence reflects middle childhood differences in mathematical achievement. Brain Cogn 2018; 124:57-63. [PMID: 29747149 DOI: 10.1016/j.bandc.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
Symbolic numerical magnitude processing is crucial to arithmetic development, and it is thought to be supported by the functional activation of several brain-interconnected structures. In this context, EEG beta oscillations have been recently associated with attention and working memory processing that underlie math achievement. Due to that EEG coherence represents a useful measure of brain functional connectivity, we aimed to contrast the EEG coherence in forty 8-to-9-year-old children with different math skill levels (High: HA, and Low achievement: LA) according to their arithmetic scores in the Fourth Edition of the Wide Range Achievement Test (WRAT-4) while performing a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger). The analysis showed significantly greater coherence over the right hemisphere in the two groups, but with a distinctive connectivity pattern. Whereas functional connectivity in the HA group was predominant in parietal areas, especially involving beta frequencies, the LA group showed more extensive frontoparietal relationships, with higher participation of delta, theta and alpha band frequencies, along with a distinct time-frequency domain expression. The results seem to reflect that lower math achievements in children mainly associate with cognitive processing steps beyond stimulus encoding, along with the need of further attentional resources and cognitive control than their peers, suggesting a lower degree of numerical processing automation.
Collapse
Affiliation(s)
- Andrés A González-Garrido
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico; O.P.D. Hospital Civil de Guadalajara, Calle Coronel Calderón #777, El Retiro, 44280 Guadalajara, Jalisco, Mexico.
| | - Fabiola R Gómez-Velázquez
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| | | | | | - Hugo Vélez-Pérez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Mexico
| | - Rebeca Romo-Vazquez
- Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Mexico
| | - Geisa B Gallardo-Moreno
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| | - Vanessa D Ruiz-Stovel
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| | | | - Gustavo Berumen
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico
| |
Collapse
|
28
|
Fleck JI, Olsen R, Tumminia M, DePalma F, Berroa J, Vrabel A, Miller S. Changes in brain connectivity following exposure to bilateral eye movements. Brain Cogn 2018; 123:142-153. [PMID: 29573702 DOI: 10.1016/j.bandc.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
The present research assessed how engaging in bilateral eye movements influences brain activity. Participants had their resting-state brain activity recorded with electroencephalography (EEG) before and after they performed 30 s of bilateral eye movements or a center-control manipulation. We assessed differences in change scores for absolute power and coherence between the eye-movement and center-control conditions. A main effect for handedness was present for EEG power in the theta and beta frequency bands, with inconsistent-handed participants displaying a greater increase than consistent-handed participants in both frequency bands. For theta, the increase in power for inconsistent handers was specific to participants in the bilateral eye-movement condition, whose increase in theta power exceeded the increase in theta power for consistent-handed participants regardless of condition. In contrast, for coherence, a main effect for condition was present for the delta frequency band, with participants in the control condition exhibiting a significant drop in posterior delta coherence pre to post. We suggest that the maintenance of posterior delta coherence over time may be an important factor in sustaining attention. Further, the malleability of EEG power for inconsistent-handed participants reveals the importance of individual-differences variables in the potential for behavioral manipulations to change brain activity.
Collapse
Affiliation(s)
- Jessica I Fleck
- Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA.
| | - Robert Olsen
- Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA
| | - Michael Tumminia
- Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA
| | - Francesco DePalma
- Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA
| | - John Berroa
- Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA
| | - Abigail Vrabel
- Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA
| | - Shannon Miller
- Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA
| |
Collapse
|
29
|
Fleck JI, Kuti J, Mercurio J, Mullen S, Austin K, Pereira O. The Impact of Age and Cognitive Reserve on Resting-State Brain Connectivity. Front Aging Neurosci 2017; 9:392. [PMID: 29249962 PMCID: PMC5716980 DOI: 10.3389/fnagi.2017.00392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Cognitive reserve (CR) is a protective mechanism that supports sustained cognitive function following damage to the physical brain associated with age, injury, or disease. The goal of the research was to identify relationships between age, CR, and brain connectivity. A sample of 90 cognitively normal adults, ages 45–64 years, had their resting-state brain activity recorded with electroencephalography (EEG) and completed a series of memory and executive function assessments. CR was estimated using years of education and verbal IQ scores. Participants were divided into younger and older age groups and low- and high-CR groups. We observed greater left- than right-hemisphere coherence in younger participants, and greater right- than left-hemisphere coherence in older participants. In addition, greater coherence was observed under eyes-closed than eyes-open recording conditions for both low-CR and high-CR participants, with a more substantial difference between recording conditions in individuals high in CR regardless of age. Finally, younger participants low in CR exhibited greater mean coherence than younger participants high in CR, whereas the opposite pattern was observed in older participants, with greater coherence in older participants high in CR. Together, these findings suggest the possibility of a shift in the relationship between CR and brain connectivity during aging.
Collapse
Affiliation(s)
- Jessica I Fleck
- School of Social and Behavioral Sciences, Stockton University, Galloway Township, NJ, United States
| | - Julia Kuti
- School of Social and Behavioral Sciences, Stockton University, Galloway Township, NJ, United States
| | - Jeffrey Mercurio
- Department of Cell Biology and Molecular Biology, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Spencer Mullen
- School of Social and Behavioral Sciences, Stockton University, Galloway Township, NJ, United States
| | - Katherine Austin
- School of Graduate Studies, Stockton University, Galloway Township, NJ, United States
| | - Olivia Pereira
- Department of Biomedical Research, Nemours Hospital for Children, Wilmington, DE, United States
| |
Collapse
|