1
|
Mylius M, Guendelman S, Iliopoulos F, Gallese V, Kaltwasser L. Meditation expertise influences response bias and prestimulus alpha activity in the somatosensory signal detection task. Psychophysiology 2025; 62:e14712. [PMID: 39558602 PMCID: PMC11870818 DOI: 10.1111/psyp.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024]
Abstract
This study investigates the proposed mechanism of mindfulness, its impact on body awareness and interoception, and its potential benefits for mental and physical health. Using psychophysical assessments, we compared 31 expert meditators with 33 matched controls (non-meditators who engage in regular reading, more than 5 h per week) in terms of somatosensory accuracy with a somatosensory signal detection task (SSDT) and interoceptive sensibility via self-report measures. We hypothesized that meditators would demonstrate superior somatosensory accuracy, indicative of heightened body awareness, potentially linked to increased alpha modulation in the somatosensory cortex, as observed via electroencephalography (EEG). In the SSDT, participants attempted to detect near-threshold tactile stimuli presented with a non-informative light in half of the trials. Contrary to our expectations, the findings showed that meditators had a lower decision threshold rather than higher accuracy. EEG results corroborated earlier research, indicating reduced prestimulus alpha power in meditators, suggesting enhanced alpha modulation. Furthermore, a trial-by-trial analysis revealed a negative correlation between prestimulus alpha activity and tactile perception. Compared to controls, meditators also reported greater interoceptive sensibility, less emotional suppression, and fewer difficulties in describing feelings. These findings may imply that enhanced tactile perception is associated with lower prestimulus alpha activity by reducing sensory filtering in the somatosensory cortex, thus increasing response rates without necessarily improving accuracy among meditators.
Collapse
Affiliation(s)
- Maik Mylius
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
- Institute of Computer ScienceGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Simon Guendelman
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| | - Fivos Iliopoulos
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Vittorio Gallese
- Unit of Neuroscience, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Laura Kaltwasser
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
2
|
Coldea A, Veniero D, Morand S, Trajkovic J, Romei V, Harvey M, Thut G. Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance. Front Neurosci 2022; 16:886342. [PMID: 35784849 PMCID: PMC9247279 DOI: 10.3389/fnins.2022.886342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objective measures of visual task performance (discrimination accuracy). The primary aim of the present transcranial magnetic stimulation (TMS) study was to investigate whether causality can be established for this relationship, using rhythmic (alpha-band) TMS entrainment protocols. It was anticipated that pre-stimulus 10 Hz-TMS would induce changes in subjective awareness ratings but not accuracy, in the visual hemifield contralateral to TMS. To test this, we administered 10 Hz-TMS over the right intraparietal sulcus prior to visual stimulus presentation in 17 participants, while measuring their objective performance and subjective awareness in a visual discrimination task. Arrhythmic and 10 Hz sham-TMS served as control conditions (within-participant design). Resting EEG was used to record individual alpha frequency (IAF). A study conducted in parallel to ours with a similar design but reported after we completed data collection informed further, secondary analyses for a causal relationship between pre-stimulus alpha-frequency and discrimination accuracy. This was explored through a regression analysis between rhythmic-TMS alpha-pace relative to IAF and performance measures. Our results revealed that contrary to our primary expectation, pre-stimulus 10 Hz-TMS did not affect subjective measures of performance, nor accuracy, relative to control-TMS. This null result is in accord with a recent finding showing that for influencing subjective measures of performance, alpha-TMS needs to be applied post-stimulus. In addition, our secondary analysis showed that IAF was positively correlated with task accuracy across participants, and that 10 Hz-TMS effects on accuracy—but not awareness ratings—depended on IAF: The slower (or faster) the IAF, relative to the fixed 10 Hz TMS frequency, the stronger the TMS-induced performance improvement (or worsening), indicating that 10 Hz-TMS produced a gain (or a loss) in individual performance, directly depending on TMS-pace relative to IAF. In support of recent reports, this is evidence for alpha-frequency playing a causal role in perceptual sensitivity likely through regulating the speed of sensory sampling.
Collapse
Affiliation(s)
- Andra Coldea
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Morand
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Jelena Trajkovic
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Dipartimento di Psicologia, Centro Studi e Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Vincenzo Romei
- Dipartimento di Psicologia, Centro Studi e Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Monika Harvey
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Gregor Thut,
| |
Collapse
|
3
|
Janssens SEW, Sack AT, Ten Oever S, de Graaf TA. Calibrating rhythmic stimulation parameters to individual EEG markers: the consistency of individual alpha frequency in practical lab settings. Eur J Neurosci 2021; 55:3418-3437. [PMID: 34363269 PMCID: PMC9541964 DOI: 10.1111/ejn.15418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Rhythmic stimulation can be applied to modulate neuronal oscillations. Such 'entrainment' is optimized when stimulation frequency is individually-calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres, and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short EEG measurements at rest or during an attention task (cognitive state), using single parieto-occipital electrodes in 24 participants on four days (between-sessions), with multiple measurements over an hour on one day (within-session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional 'maximum' method and a 'Gaussian fit' method. IAF was reliable within- and between-sessions for both cognitive states and hemispheres, though task-IAF estimates tended to be more variable. Overall, the 'Gaussian fit' method was more reliable than the 'maximum' method. Furthermore, we evaluated how far from an approximated 'true' task-related IAF the selected 'stimulation frequency' was, when calibrating this frequency based on a short rest-EEG, a short task-EEG, or simply selecting 10Hertz for all participants. For the 'maximum' method, rest-EEG calibration was best, followed by task-EEG, and then 10 Hertz. For the 'Gaussian fit' method, rest-EEG and task-EEG-based calibration were similarly accurate, and better than 10 Hertz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre , Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Uemura JI, Hoshino A, Igarashi G, Matsui Y, Chishima M, Hoshiyama M. Pre-stimulus alpha oscillation and post-stimulus cortical activity differ in localization between consciously perceived and missed near-threshold somatosensory stimuli. Eur J Neurosci 2021; 54:5518-5530. [PMID: 34251060 PMCID: PMC8456933 DOI: 10.1111/ejn.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 12/04/2022]
Abstract
Conscious perception of a near‐threshold (NT) stimulus is characterized by the pre‐ and post‐stimulus brain state. However, the power of pre‐stimulus neural oscillations and strength of post‐stimulus cortical activity that lead to conscious perception have rarely been examined in individual cortical areas. This is because most previous electro‐ and magnetoencephalography (EEG and MEG, respectively) studies involved scalp‐ and sensor‐level analyses. Therefore, we recorded MEG during a continuous NT somatosensory stimulus detection task and applied the reconstructed source data in order to identify cortical areas where the post‐stimulus cortical activity and pre‐stimulus alpha oscillation predict the conscious perception of NT somatosensory stimuli. We found that the somatosensory hierarchical processing areas, prefrontal areas and cortical areas belonging to the default mode network showed stronger cortical activity for consciously perceived trials in the post‐stimulus period, but the cortical activity in primary somatosensory area (SI) is independent of conscious perception during the early stage of NT stimulus processing. In addition, we revealed that the pre‐stimulus alpha oscillation only in SI is predictive of conscious perception. These findings suggest that the bottom‐up stream of somatosensory information flow following SI and pre‐stimulus alpha activity fluctuation in SI as a top‐down modulation are crucial constituents of conscious perception.
Collapse
Affiliation(s)
- Jun-Ichi Uemura
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aiko Hoshino
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Go Igarashi
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yusuke Matsui
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Chishima
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Minoru Hoshiyama
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Sundman MH, Lim K, Ton That V, Mizell JM, Ugonna C, Rodriguez R, Chen NK, Fuglevand AJ, Liu Y, Wilson RC, Fellous JM, Rapcsak S, Chou YH. Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Commun 2020; 2:fcaa203. [PMID: 33376989 PMCID: PMC7750948 DOI: 10.1093/braincomms/fcaa203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Homoeostatic metaplasticity is a neuroprotective physiological feature that counterbalances Hebbian forms of plasticity to prevent network destabilization and hyperexcitability. Recent animal models highlight dysfunctional homoeostatic metaplasticity in the pathogenesis of Alzheimer's disease. However, the association between homoeostatic metaplasticity and cognitive status has not been systematically characterized in either demented or non-demented human populations, and the potential value of homoeostatic metaplasticity as an early biomarker of cognitive impairment has not been explored in humans. Here, we report that, through pre-conditioning the synaptic activity prior to non-invasive brain stimulation, the association between homoeostatic metaplasticity and cognitive status could be established in a population of non-demented human subjects (older adults across cognitive spectrums; all within the non-demented range). All participants (n = 40; age range, 65-74, 47.5% female) underwent a standardized neuropsychological battery, magnetic resonance imaging and a transcranial magnetic stimulation protocol. Specifically, we sampled motor-evoked potentials with an input/output curve immediately before and after repetitive transcranial magnetic stimulation to assess neural plasticity with two experimental paradigms: one with voluntary muscle contraction (i.e. modulated synaptic activity history) to deliberately introduce homoeostatic interference, and one without to serve as a control condition. From comparing neuroplastic responses across these experimental paradigms and across cohorts grouped by cognitive status, we found that (i) homoeostatic metaplasticity is diminished in our cohort of cognitively impaired older adults and (ii) this neuroprotective feature remains intact in cognitively normal participants. This novel finding suggests that (i) future studies should expand their scope beyond just Hebbian forms of plasticity that are traditionally assessed when using non-invasive brain stimulation to investigate cognitive ageing and (ii) the potential value of homoeostatic metaplasticity in serving as a biomarker for cognitive impairment should be further explored.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Koeun Lim
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Viet Ton That
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Chidi Ugonna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85721, USA
| | - Rudolph Rodriguez
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Yilin Liu
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Robert C Wilson
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Jean-Marc Fellous
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Steven Rapcsak
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Department of Neurology, University of Arizona, Tucson, AZ 85721, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Spontaneous Brain Oscillations and Perceptual Decision-Making. Trends Cogn Sci 2020; 24:639-653. [PMID: 32513573 DOI: 10.1016/j.tics.2020.05.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Making rapid decisions on the basis of sensory information is essential to everyday behaviors. Why, then, are perceptual decisions so variable despite unchanging inputs? Spontaneous neural oscillations have emerged as a key predictor of trial-to-trial perceptual variability. New work casting these effects in the framework of models of perceptual decision-making has driven novel insight into how the amplitude of spontaneous oscillations impact decision-making. This synthesis reveals that the amplitude of ongoing low-frequency oscillations (<30 Hz), particularly in the alpha-band (8-13 Hz), bias sensory responses and change conscious perception but not, surprisingly, the underlying sensitivity of perception. A key model-based insight is that various decision thresholds do not adapt to alpha-related changes in sensory activity, demonstrating a seeming suboptimality of decision mechanisms in tracking endogenous changes in sensory responses.
Collapse
|
7
|
Distinct Montages of Slow Oscillatory Transcranial Direct Current Stimulation (so-tDCS) Constitute Different Mechanisms during Quiet Wakefulness. Brain Sci 2019; 9:brainsci9110324. [PMID: 31739576 PMCID: PMC6896026 DOI: 10.3390/brainsci9110324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Slow oscillatory- (so-) tDCS has been applied in many sleep studies aimed to modulate brain rhythms of slow wave sleep and memory consolidation. Yet, so-tDCS may also modify coupled oscillatory networks. Efficacy of weak electric brain stimulation is however variable and dependent upon the brain state at the time of stimulation (subject and/or task-related) as well as on stimulation parameters (e.g., electrode placement and applied current. Anodal so-tDCS was applied during wakefulness with eyes-closed to examine efficacy when deviating from the dominant brain rhythm. Additionally, montages of different electrodes size and applied current strength were used. During a period of quiet wakefulness bilateral frontolateral stimulation (F3, F4; return electrodes at ipsilateral mastoids) was applied to two groups: ‘Group small’ (n = 16, f:8; small electrodes: 0.50 cm2; maximal current per electrode pair: 0.26 mA) and ‘Group Large’ (n = 16, f:8; 35 cm2; 0.35 mA). Anodal so-tDCS (0.75 Hz) was applied in five blocks of 5 min epochs with 1 min stimulation-free epochs between the blocks. A finger sequence tapping task (FSTT) was used to induce comparable cortical activity across sessions and subject groups. So-tDCS resulted in a suppression of alpha power over the parietal cortex. Interestingly, in Group Small alpha suppression occurred over the standard band (8–12 Hz), whereas for Group Large power of individual alpha frequency was suppressed. Group Small also revealed a decrease in FSTT performance at retest after stimulation. It is essential to include concordant measures of behavioral and brain activity to help understand variability and poor reproducibility in oscillatory-tDCS studies.
Collapse
|