1
|
Moral-Rubio C, Suárez-Coalla P, Fernandez-Romero L, Pérez-Izquierdo C, Delgado-Alvarez A, Delgado-Alonso C, Gil-Moreno MJ, Matias-Guiu J, Pytel V, Ayala JL, Matias-Guiu JA. Effects of single-session repetitive transcranial magnetic stimulation to identify the optimal brain target in primary progressive aphasia. J Alzheimers Dis 2025:13872877251315182. [PMID: 39994984 DOI: 10.1177/13872877251315182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
BACKGROUND Non-invasive brain stimulation has shown positive results in maximizing the effects of language therapy in primary progressive aphasia (PPA). Due to the different patterns of brain damage in each aphasia variant, we hypothesized that patients with non-fluent and semantic variants would show a differential response to transcranial magnetic stimulation (TMS). OBJECTIVE We aimed to compare the clinical responses after a single session of repetitive TMS in the left inferior frontal gyrus (IFG) and the left dorsolateral prefrontal cortex (DLPC). METHODOLOGY Twenty patients with PPA (14 with non-fluent and 6 with semantic variants) were assessed before and after repetitive TMS over the IFG, DLPC, and vertex with several language tasks, connected speech, and a subjective impression of change scale. RESULTS IFG stimulation was associated with an improvement in words per minute and the subjective assessment in the non-fluent variant, but no effects were found in the semantic variant. DLPC stimulation was associated with an improvement in words per minute, repetition, and naming latency in the non-fluent variant, and in naming and subjective impression of change in the semantic variant. CONCLUSIONS Our study showed a differential effect of one session of brain stimulation over the IFG and DLPC in patients with non-fluent and semantic PPA variants. These findings suggest that the selection of the target of stimulation may be relevant for the success of brain stimulation and favor the use of DLPC over the IFG.
Collapse
Affiliation(s)
- Carlos Moral-Rubio
- Department of Computer Architecture and Automation, Faculty of Informatics, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Lucia Fernandez-Romero
- Department of Neurology, Hospital Clınico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Pérez-Izquierdo
- Department of Agricultural and Forestry Engineering, University Center of Plasencia, University of Extremadura, Plasencia, Spain
| | - Alfonso Delgado-Alvarez
- Department of Neurology, Hospital Clınico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology, Hospital Clınico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Jose Gil-Moreno
- Department of Neurology, Hospital Clınico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Clınico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Vanesa Pytel
- Department of Neurology, Hospital Clınico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - José L Ayala
- Department of Computer Architecture and Automation, Faculty of Informatics, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clınico San Carlos, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Atkinson-Clement C, Alkhawashki M, Ross J, Gatica M, Zhang C, Sallet J, Kaiser M. Dynamical and individualised approach of transcranial ultrasound neuromodulation effects in non-human primates. Sci Rep 2024; 14:11916. [PMID: 38789473 PMCID: PMC11126417 DOI: 10.1038/s41598-024-62562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Low-frequency transcranial ultrasound stimulation (TUS) allows to alter brain functioning with a high spatial resolution and to reach deep targets. However, the time-course of TUS effects remains largely unknown. We applied TUS on three brain targets for three different monkeys: the anterior medial prefrontal cortex, the supplementary motor area and the perigenual anterior cingulate cortex. For each, one resting-state fMRI was acquired between 30 and 150 min after TUS as well as one without stimulation (control). We captured seed-based brain connectivity changes dynamically and on an individual basis. We also assessed between individuals and between targets homogeneity and brain features that predicted TUS changes. We found that TUS prompts heterogenous functional connectivity alterations yet retain certain consistent changes; we identified 6 time-courses of changes including transient and long duration alterations; with a notable degree of accuracy we found that brain alterations could partially be predicted. Altogether, our results highlight that TUS induces heterogeneous functional connectivity alterations. On a more technical point, we also emphasize the need to consider brain changes over-time rather than just observed during a snapshot; to consider inter-individual variability since changes could be highly different from one individual to another.
Collapse
Affiliation(s)
| | | | - James Ross
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marilyn Gatica
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Jerome Sallet
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon 1, Bron, France
| | - Marcus Kaiser
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Oberman LM, Francis SM, Lisanby SH. The use of noninvasive brain stimulation techniques in autism spectrum disorder. Autism Res 2024; 17:17-26. [PMID: 37873560 PMCID: PMC10841888 DOI: 10.1002/aur.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Noninvasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have recently emerged as alternative, nonpharmacological interventions for a variety of psychiatric, neurological, and neurodevelopmental conditions. NIBS is beginning to be applied in both research and clinical settings for the treatment of core and associated symptoms of autism spectrum disorder (ASD) including social communication deficits, restricted and repetitive behaviors, irritability, hyperactivity, depression and impairments in executive functioning and sensorimotor integration. Though there is much promise for these targeted device-based interventions, in other disorders (including adult major depressive disorder (MDD) and obsessive compulsive disorder (OCD) where rTMS is FDA cleared), data on the safety and efficacy of these interventions in individuals with ASD is limited especially in younger children when neurodevelopmental interventions typically begin. Most studies are open-label, small scale, and/or focused on a restricted subgroup of individuals with ASD. There is a need for larger, randomized controlled trials that incorporate neuroimaging in order to develop predictive biomarkers of treatment response and optimize treatment parameters. We contend that until such studies are conducted, we do not have adequate estimates of the safety and efficacy of NIBS interventions in children across the spectrum. Thus, broad off-label use of these techniques in this population is not supported by currently available evidence. Here we discuss the existing data on the use of NIBS to treat symptoms related to ASD and discuss future directions for the field.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Shi Y, Wu W. Multimodal non-invasive non-pharmacological therapies for chronic pain: mechanisms and progress. BMC Med 2023; 21:372. [PMID: 37775758 PMCID: PMC10542257 DOI: 10.1186/s12916-023-03076-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Chronic pain conditions impose significant burdens worldwide. Pharmacological treatments like opioids have limitations. Non-invasive non-pharmacological therapies (NINPT) encompass diverse interventions including physical, psychological, complementary and alternative approaches, and other innovative techniques that provide analgesic options for chronic pain without medications. MAIN BODY This review elucidates the mechanisms of major NINPT modalities and synthesizes evidence for their clinical potential across chronic pain populations. NINPT leverages peripheral, spinal, and supraspinal mechanisms to restore normal pain processing and limit central sensitization. However, heterogeneity in treatment protocols and individual responses warrants optimization through precision medicine approaches. CONCLUSION Future adoption of NINPT requires addressing limitations in standardization and accessibility as well as synergistic combination with emerging therapies. Overall, this review highlights the promise of NINPT as a valuable complementary option ready for integration into contemporary pain medicine paradigms to improve patient care and outcomes.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
5
|
Menardi A, Dotti L, Ambrosini E, Vallesi A. Transcranial magnetic stimulation treatment in Alzheimer's disease: a meta-analysis of its efficacy as a function of protocol characteristics and degree of personalization. J Neurol 2022; 269:5283-5301. [PMID: 35781536 PMCID: PMC9468063 DOI: 10.1007/s00415-022-11236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative disorder. Although our knowledge on the causes of AD remains limited and no curative treatments are available, several interventions have been proposed in trying to improve patients' symptomatology. Among those, transcranial magnetic stimulation (TMS) has been shown a promising, safe and noninvasive intervention to improve global cognitive functioning. Nevertheless, we currently lack agreement between research studies on the optimal stimulation protocol yielding the highest efficacy in these patients. To answer this query, we conducted a systematic literature search in PubMed, PsycINFO and Scopus databases and meta-analysis of studies published in the last 10 years (2010-2021) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Differently from prior published meta-analytic work, we investigated whether protocols that considered participants-specific neuroimaging scans for the selection of individualized stimulation targets held more successful outcomes compared to those relying on a generalized targeting selection criteria. We then compared the effect sizes of subsets of studies based on additional protocol characteristics (frequency, duration of intervention, number of stimulation sites, use of concomitant cognitive training and patients' educational level). Our results confirm TMS efficacy in improving global cognitive functioning in mild-to-moderate AD patients, but also highlight the flaws of current protocols characteristics, including a possible lack of sufficient personalization in stimulation protocols.
Collapse
Affiliation(s)
- Arianna Menardi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| | - Lisa Dotti
- Department of General Psychology, University of Padova, Padua, Italy
| | - Ettore Ambrosini
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | - Antonino Vallesi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Kearney-Ramos T, Haney M. Repetitive transcranial magnetic stimulation as a potential treatment approach for cannabis use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110290. [PMID: 33677045 PMCID: PMC9165758 DOI: 10.1016/j.pnpbp.2021.110290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023]
Abstract
The expanding legalization of cannabis across the United States is associated with increases in cannabis use, and accordingly, an increase in the number and severity of individuals with cannabis use disorder (CUD). The lack of FDA-approved pharmacotherapies and modest efficacy of psychotherapeutic interventions means that many of those who seek treatment for CUD relapse within the first few months. Consequently, there is a pressing need for innovative, evidence-based treatment development for CUD. Preliminary evidence suggests that repetitive transcranial magnetic stimulation (rTMS) may be a novel, non-invasive therapeutic neuromodulation tool for the treatment of a variety of substance use disorders (SUDs), including recently receiving FDA clearance (August 2020) for use as a smoking cessation aid in tobacco cigarette smokers. However, the potential of rTMS for CUD has not yet been reviewed. This paper provides a primer on therapeutic neuromodulation techniques for SUDs, with a particular focus on reviewing the current status of rTMS research in people who use cannabis. Lastly, future directions are proposed for rTMS treatment development in CUD, with suggestions for study design parameters and clinical endpoints based on current gold-standard practices for therapeutic neuromodulation research.
Collapse
Affiliation(s)
- Tonisha Kearney-Ramos
- New York State Psychiatric Institute, New York, NY, USA; Columbia University Irving Medical Center, New York, NY, USA.
| | - Margaret Haney
- New York State Psychiatric Institute, New York, New York, USA,Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Lynch CJ, Power JD, Scult MA, Dubin M, Gunning FM, Liston C. Rapid Precision Functional Mapping of Individuals Using Multi-Echo fMRI. Cell Rep 2020; 33:108540. [PMID: 33357444 PMCID: PMC7792478 DOI: 10.1016/j.celrep.2020.108540] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) is widely used in cognitive and clinical neuroscience, but long-duration scans are currently needed to reliably characterize individual differences in functional connectivity (FC) and brain network topology. In this report, we demonstrate that multi-echo fMRI can improve the reliability of FC-based measurements. In four densely sampled individual humans, just 10 min of multi-echo data yielded better test-retest reliability than 30 min of single-echo data in independent datasets. This effect is pronounced in clinically important brain regions, including the subgenual cingulate, basal ganglia, and cerebellum, and is linked to three biophysical signal mechanisms (thermal noise, regional variability in the rate of T2∗ decay, and S0-dependent artifacts) with spatially distinct influences. Together, these findings establish the potential utility of multi-echo fMRI for rapid precision mapping using experimentally and clinically tractable scan times and will facilitate longitudinal neuroimaging of clinical populations.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Matthew A Scult
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marc Dubin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
8
|
Min BK, Hämäläinen MS, Pantazis D. New Cognitive Neurotechnology Facilitates Studies of Cortical-Subcortical Interactions. Trends Biotechnol 2020; 38:952-962. [PMID: 32278504 PMCID: PMC7442676 DOI: 10.1016/j.tibtech.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 11/26/2022]
Abstract
Most of the studies employing neuroimaging have focused on cortical and subcortical signals individually to obtain neurophysiological signatures of cognitive functions. However, understanding the dynamic communication between the cortex and subcortical structures is essential for unraveling the neural correlates of cognition. In this quest, magnetoencephalography (MEG) and electroencephalography (EEG) are the methods of choice because they are noninvasive electrophysiological recording techniques with high temporal resolution. Sophisticated MEG/EEG source estimation techniques and network analysis methods, developed recently, can provide a more comprehensive understanding of the neurophysiological mechanisms of fundamental cognitive processes. Used together with noninvasive modulation of cortical-subcortical communication, these approaches may open up new possibilities for expanding the repertoire of noninvasive cognitive neurotechnology.
Collapse
Affiliation(s)
- Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|