1
|
Xie T, van Rooij SJH, Inman CS, Wang S, Brunner P, Willie JT. The case for hemispheric lateralization of the human amygdala in fear processing. Mol Psychiatry 2025; 30:2252-2259. [PMID: 40016388 PMCID: PMC12014508 DOI: 10.1038/s41380-025-02940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Affiliation(s)
- Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Cory S Inman
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter Brunner
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA.
| | - Jon T Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA.
| |
Collapse
|
2
|
Kincses B, Forkmann K, Schlitt F, Jan Pawlik R, Schmidt K, Timmann D, Elsenbruch S, Wiech K, Bingel U, Spisak T. An externally validated resting-state brain connectivity signature of pain-related learning. Commun Biol 2024; 7:875. [PMID: 39020002 PMCID: PMC11255216 DOI: 10.1038/s42003-024-06574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Pain can be conceptualized as a precision signal for reinforcement learning in the brain and alterations in these processes are a hallmark of chronic pain conditions. Investigating individual differences in pain-related learning therefore holds important clinical and translational relevance. Here, we developed and externally validated a novel resting-state brain connectivity-based predictive model of pain-related learning. The pre-registered external validation indicates that the proposed model explains 8-12% of the inter-individual variance in pain-related learning. Model predictions are driven by connections of the amygdala, posterior insula, sensorimotor, frontoparietal, and cerebellar regions, outlining a network commonly described in aversive learning and pain. We propose the resulting model as a robust and highly accessible biomarker candidate for clinical and translational pain research, with promising implications for personalized treatment approaches and with a high potential to advance our understanding of the neural mechanisms of pain-related learning.
Collapse
Affiliation(s)
- Balint Kincses
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany.
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany.
| | - Katarina Forkmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Frederik Schlitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Robert Jan Pawlik
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Tamas Spisak
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
| |
Collapse
|
3
|
De la Peña-Arteaga V, Chavarría-Elizondo P, Juaneda-Seguí A, Martínez-Zalacaín I, Morgado P, Menchón JM, Picó-Pérez M, Fullana MA, Soriano-Mas C. Trait anxiety is associated with attentional brain networks. Eur Neuropsychopharmacol 2024; 83:19-26. [PMID: 38492550 DOI: 10.1016/j.euroneuro.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Trait anxiety is a well-established risk factor for anxiety and depressive disorders, yet its neural correlates are not clearly understood. In this study, we investigated the neural correlates of trait anxiety in a large sample (n = 179) of individuals who completed the trait and state versions of the State-Trait Anxiety Inventory and underwent resting-state functional magnetic resonance imaging. We used independent component analysis to characterize individual resting-state networks (RSNs), and multiple regression analyses to assess the relationship between trait anxiety and intrinsic connectivity. Trait anxiety was significantly associated with intrinsic connectivity in different regions of three RSNs (dorsal attention network, default mode network, and auditory network) when controlling for state anxiety. These RSNs primarily support attentional processes. Notably, when state anxiety was not controlled for, a different pattern of results emerged, highlighting the importance of considering this factor in assessing the neural correlates of trait anxiety. Our findings suggest that trait anxiety is uniquely associated with resting-state brain connectivity in networks mainly supporting attentional processes. Moreover, controlling for state anxiety is crucial when assessing the neural correlates of trait anxiety. These insights may help refine current neurobiological models of anxiety and identify potential targets for neurobiologically-based interventions.
Collapse
Affiliation(s)
- Víctor De la Peña-Arteaga
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Life and Health Sciences Research Institute (ICVS), School of Medicine, Universidade do Minho, Braga, Portugal
| | - Pamela Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Asier Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - Ignacio Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Universidade do Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; 2CA-Clinical Academic Center, Braga, Portugal
| | - José Manuel Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Universidade do Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Miquel A Fullana
- Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain; Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Department of Psychiatry, Hospital Clínic, Barcelona 140, 08036, Spain.
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, Universitat de Barcelona - UB, Barcelona, Spain.
| |
Collapse
|
4
|
Yuan J, Wang Q, Shang S, Lei Y, Lou L. Analysis of brain signal change response in amygdala evoked by skin pressure stimulus. Skin Res Technol 2023; 29:e13238. [PMID: 36397256 PMCID: PMC9838756 DOI: 10.1111/srt.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND It was well known that the human body would produce an uncomfortable sensation when the fabric exerted a certain amount of pressure irritation on the skin. The amygdala had long been thought to be the source of negative emotion perception. However, up to now, the brain signal changes in the amygdala evoked by skin exposure pressure had not been known. MATERIALS AND METHODS In this work, a series of gradually increasing contact pressure stimulus from boneless corsets was repeatedly applied to the body's waist and abdomen, and the technology of functional magnetic resonance imaging (fMRI) was adopted to detect the brain response synchronously. RESULTS The results shown that both subjective comfort score and percent signal changes (PSCs) of amygdala decreased with the increase of skin contact pressure. When the skin pressure applied to the waist and abdomen of the human body exceeded about 1 kPa, blood oxygen level dependent signal in the amygdala was negatively activated. Besides, the degree of response of PSCs was intense than subjective evaluation, and the standard deviations of PSCs between individuals were much smaller than subjective evaluations. CONCLUSION It was suggested that skin contact pressure stimulus caused the attention of the amygdala brain area. The greater the stimulus, the higher the attention, but such attention was caused by negative activation of the amygdala induced by skin discomfort. In addition, skin comfort representation based on brain perception was superior to subjective representation due to its higher response sensitivity and antipsychological interference ability.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Hangzhou, China.,Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qicai Wang
- College of Textile Science and Engineering (Intenational Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, China
| | - Shanshan Shang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Yutian Lei
- College of Education Science, Quanzhou Normal University, Fujian, China
| | - Lin Lou
- Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Hangzhou, China.,Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Pospelov N, Tetereva A, Martynova O, Anokhin K. The Laplacian eigenmaps dimensionality reduction of fMRI data for discovering stimulus-induced changes in the resting-state brain activity. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Lissek S, Tegenthoff M. Higher functional connectivity between prefrontal regions and the dorsal attention network predicts absence of renewal. Behav Brain Res 2021; 412:113413. [PMID: 34119509 DOI: 10.1016/j.bbr.2021.113413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Renewal describes the recovery of an extinguished response when extinction and recall contexts differ, demonstrating the context-dependency of extinction. The unexpected outcome change during extinction presumably directs attention to the context and promotes renewal. Accordingly, studies show that context processing for renewal is modulated by salience of and attention to context. Besides context-processing hippocampus, renewal involves ventromedial prefrontal cortex, orbitofrontal cortex and inferior frontal gyrus, which mediate response processing. Since showing renewal is a trait-like processing tendency, individuals with and without renewal may differ in resting-state functional connectivity of prefrontal regions with networks mediating attentional and salience processing. We analyzed resting-state functional MRI data from healthy participants (n = 70) of a non-fear-related contextual extinction task particularly suited for investigation of renewal. Participants without renewal exhibited significantly higher functional connectivity between prefrontal regions and bilateral intraparietal sulcus of the dorsal attention network. Functional connectivity between these regions correlated negatively with renewal level. Only in participants with renewal, the renewal level correlated positively with connectivity between left frontal eye field and several prefrontal regions. In contrast, functional connectivity of prefrontal regions with the salience network did not differ between groups. The results deliver first-time evidence for differences in resting-state functional connectivity between participants with and without renewal in non-fear-related extinction. Intraparietal-sulcus-guided top-down attentional control appears more strongly related to prefrontal activity in participants without renewal, and thus may have a role in their default processing mode of focusing on the stimulus and disregarding the context.
Collapse
Affiliation(s)
- Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany.
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| |
Collapse
|
7
|
Tetereva A, Kartashov S, Ivanitsky A, Martynova O. Variance and Scale-Free Properties of Resting-State Blood Oxygenation Level-Dependent Signal After Fear Memory Acquisition and Extinction. Front Hum Neurosci 2020; 14:509075. [PMID: 33192382 PMCID: PMC7581738 DOI: 10.3389/fnhum.2020.509075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
Recently, the dynamic properties of brain activity rather than its stationary values have attracted more interest in clinical applications. It has been shown that brain signals exhibit scale-free dynamics or long-range temporal correlations (LRTC) that differ between rest and cognitive tasks in healthy controls and clinical groups. Little is known about how fear-inducing tasks may influence dispersion and the LRTC of subsequent resting-state brain activity. In this study, we aimed to explore the changes in the variance and scale-free properties of the brain’s blood oxygenation level-dependent (BOLD) signal during the resting-state sessions before and after fear learning and fear memory extinction. During a 1-h break between magnetic resonance imaging (MRI) scanning, 23 healthy, right-handed volunteers experienced a fear extinction procedure, followed by Pavlovian fear conditioning that included partial reinforcement using mild electrical stimulation. We extracted the average time course of the BOLD signal from 245 regions of interest (ROIs) taken from the resting-state functional atlas. The variance of the BOLD signal and the Hurst exponent (H), which reflects the scale-free dynamic, were compared in the resting states before and after fear learning and fear memory extinction. After fear extinction, six ROIs showed a difference in H at the uncorrected level of significance, including areas associated with fear processing. H decreased during fear extinction but then became higher than before fear learning, specifically in areas related to the fear extinction network (FEN). However, activity in the other ROIs restored the H to its initial level. The variance of the BOLD signal in six ROIs demonstrated a significant increase from initial rest to the post-task rest. A limited number of ROIs showed changes in both H and variance. Our results imply that the variability and scale-free properties of the BOLD signal might serve as additional indicators of changes in spontaneous brain activity related to recent experience.
Collapse
Affiliation(s)
- Alina Tetereva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | - Alexey Ivanitsky
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia.,Centre for Cognition and Decision Making, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|