1
|
Yordanova J, Nicolardi V, Malinowski P, Simione L, Aglioti SM, Raffone A, Kolev V. EEG oscillations reveal neuroplastic changes in pain processing associated with long-term meditation. Sci Rep 2025; 15:10604. [PMID: 40148498 PMCID: PMC11950376 DOI: 10.1038/s41598-025-94223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The experience of pain is a combined product of bottom-up and top-down influences mediated by attentional and emotional factors. Meditation states and traits are characterized by enhanced attention/emotion regulation and expanded self-awareness that can be expected to modify pain processing. The main objective of the present study was to explore the effects of long-term meditation on neural mechanisms of pain processing. EEG pain-related oscillations (PROs) were analysed in highly experienced practitioners and novices during a non-meditative resting state with respect to (a) local frequency-specific and temporal synchronizing characteristics to reflect mainly bottom-up mechanisms, (b) spatial synchronizing patterns to reflect the neural communication of noxious information, (c) pre-stimulus oscillations to reflect top-down mechanisms during pain expectancy, and (d) the P3b component of the pain-related potential to compare the emotional/cognitive reappraisal of pain events by expert and novice meditators. Main results demonstrated that in experienced (long-term) meditators as compared to non-experienced (short-term) meditators (1) the temporal and spatial synchronizations of multispectral (from theta-alpha to gamma) PROs were substantially suppressed at primary and secondary somatosensory regions contra-lateral to pain stimulation within 200 ms after noxious stimulus; (2) pre-stimulus alpha activity was significantly increased at the same regions, which predicted the suppressed synchronization of PROs in long-term meditators; (3) the decrease of the P3b component was non-significant. These novel observations provide evidence that even when subjected to pain outside of meditation, experienced meditators exhibit a pro-active top-down inhibition of somatosensory areas resulting in suppressed processing and communication of sensory information at early stages of painful input. The emotional/cognitive appraisal of pain is reduced but remains preserved revealing a capacity of experienced meditators to dissociate pro-active and reactive top-down processes during pain control.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | | | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Salvatore M Aglioti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroscience and Society Lab, Istituto Italiano Di Tecnologia, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
2
|
Wulff-Abramsson A, Zvornik A, Andersen KA, Yang Y, Novén M, Lundbye-Jensen J, Tomasevic L, Karabanov AN. Event-related theta synchronization over sensorimotor areas differs between younger and older adults and is related to bimanual motor control. Neuroimage 2025; 308:121032. [PMID: 39863003 DOI: 10.1016/j.neuroimage.2025.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task. Older (mean age = 68) and younger (mean age = 26) participants performed symmetric (SYM) and asymmetric (ASYM) bimanual pinch force adjustments. Trials began with a visually cued contraction from a baseline force to a novel target force (P1). Force had to be maintained at the target until a visually cued return to the familiar baseline (P2). Older adults reacted slower across task conditions, and their accuracy decreased more when shifting from the SYM to the ASYM condition. Older adults also displayed lower theta ERS across conditions. Additionally, older adults were not able to modulate theta expression based on whether a force change was initiated to a novel target or back to baseline. Younger adults showed significantly stronger theta ERS after P1-cues compared to P2-cues, while the theta response to P1 and P2 cues was not different in older adults. Older adults also showed stronger lateralization, displaying higher theta ERS over the dominant motor cortex. Finally, event-related theta synchronization appeared to be behaviorally relevant across groups and correlated with task performance. Together, the results show that theta ERS over sensorimotor areas is a strong, age-sensitive marker of dynamic pinch force adjustments showing an age-related reduction in specificity with reduced context-dependent modulations and more imbalanced bimanual activation.
Collapse
Affiliation(s)
- Andreas Wulff-Abramsson
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Ana Zvornik
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Keenie Ayla Andersen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences
| | - Mikael Novén
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany; Department of Human Sciences, Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Anke Ninija Karabanov
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Long Z, Fu Q, Fu X. How mind wandering influences motor control: The modulating role of movement difficulty. Neuroimage 2024; 294:120638. [PMID: 38719153 DOI: 10.1016/j.neuroimage.2024.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
It has been found that mind wandering can impair motor control. However, it remains unclear whether the impact of mind wandering on motor control is modulated by movement difficulty and its associated neural mechanisms. To address this issue, we manipulated movement difficulty using handedness and finger dexterity separately in two signal-response tasks with identical experiment designs, in which right-handed participants performed key-pressing and key-releasing movements with the specified fingers, and they had to intermittently report whether their attention was "On task" or "Off task." Key-releasing with the right index finger (RI) had a faster reaction time and stronger contralateral delta-theta (1-7 Hz) functional connectivity than with the left index (LI) in Experiment 1, and mind wandering only reduced the contralateral delta-theta functional connectivity and midfrontal delta-theta activity for key-releasing with RI. Key-pressing with right index and middle fingers (RIR) had a faster reaction time and stronger midfrontal delta-theta activity than with right index and ring fingers (RIR) in Experiment 2, and mind wandering only reduced the midfrontal delta-theta activity for key-pressing with RIM. Theta oscillations are vital in motor control. These findings suggest that mind wandering only impairs the motor control of relatively simple movements without affecting the difficult ones. It supports the notion that mind wandering competes for executive resources with the primary task. Moreover, the quantity of executive resources recruited for a task and how these resources are allocated is contingent upon the task difficulty, which may determine whether mind wandering would interfere with motor control.
Collapse
Affiliation(s)
- Zhengkun Long
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiufang Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Huang Y, Cao C, Dai S, Deng H, Su L, Zheng JS. Magnetoencephalography-derived oscillatory microstate patterns across lifespan: the Cambridge centre for ageing and neuroscience cohort. Brain Commun 2024; 6:fcae150. [PMID: 38745970 PMCID: PMC11091929 DOI: 10.1093/braincomms/fcae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The aging brain represents the primary risk factor for many neurodegenerative disorders. Whole-brain oscillations may contribute novel early biomarkers of aging. Here, we investigated the dynamic oscillatory neural activities across lifespan (from 18 to 88 years) using resting Magnetoencephalography (MEG) in a large cohort of 624 individuals. Our aim was to examine the patterns of oscillation microstates during the aging process. By using a machine-learning algorithm, we identify four typical clusters of microstate patterns across different age groups and different frequency bands: left-to-right topographic MS1, right-to-left topographic MS2, anterior-posterior MS3 and fronto-central MS4. We observed a decreased alpha duration and an increased alpha occurrence for sensory-related microstate patterns (MS1 & MS2). Accordingly, theta and beta changes from MS1 & MS2 may be related to motor decline that increased with age. Furthermore, voluntary 'top-down' saliency/attention networks may be reflected by the increased MS3 & MS4 alpha occurrence and complementary beta activities. The findings of this study advance our knowledge of how the aging brain shows dysfunctions in neural state transitions. By leveraging the identified microstate patterns, this study provides new insights into predicting healthy aging and the potential neuropsychiatric cognitive decline.
Collapse
Affiliation(s)
- Yujing Huang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Chenglong Cao
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Shenyi Dai
- Department of Economics and Management, China Jiliang University, Hangzhou 310024, Zhejiang Province, China
- Hangzhou iNeuro Technology Co., LTD, Hangzhou 310024, Zhejiang Province, China
| | - Hu Deng
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge CB20SZ, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire S102HQ, United Kingdom
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
5
|
Kolev V, Falkenstein M, Yordanova J. A distributed theta network of error generation and processing in aging. Cogn Neurodyn 2024; 18:447-459. [PMID: 38699606 PMCID: PMC11061062 DOI: 10.1007/s11571-023-10018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 05/05/2024] Open
Abstract
Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task. RRPs were decomposed in the time-frequency domain to extract oscillatory theta activity. Motor theta oscillations at extended motor regions were analyzed with respect to power, temporal synchronization, and functional connectivity. Major results demonstrated that errors had pronounced effects on motor theta oscillations at cortical regions beyond the medial frontal cortex by being associated with (1) theta power increase in the hemisphere contra-lateral to the movement, (2) suppressed spatial and temporal synchronization at pre-motor areas contra-lateral to the responding hand, (2) inhibited connections between the medial frontal cortex and sensorimotor areas, and (3) suppressed connectivity and temporal phase-synchronization of motor theta networks in the posterior left hemisphere, irrespective of the hand, left, or right, with which the error was made. The distributed effects of errors on motor theta oscillations demonstrate that theta networks support performance monitoring. The reorganization of these networks with aging implies that in older individuals, performance monitoring is associated with a disengagement of the medial frontal region and difficulties in controlling the focus of motor attention and response selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10018-4.
Collapse
Affiliation(s)
- Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| | | | - Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| |
Collapse
|
6
|
You Y, Li Y, Yu B, Ying A, Zhou H, Zuo G, Xu J. A study on EEG differences between active counting and focused breathing tasks for more sensitive detection of consciousness. Front Neurosci 2024; 18:1341986. [PMID: 38533445 PMCID: PMC10963484 DOI: 10.3389/fnins.2024.1341986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction In studies on consciousness detection for patients with disorders of consciousness, difference comparison of EEG responses based on active and passive task modes is difficult to sensitively detect patients' consciousness, while a single potential analysis of EEG responses cannot comprehensively and accurately determine patients' consciousness status. Therefore, in this paper, we designed a new consciousness detection paradigm based on a multi-stage cognitive task that could induce a series of event-related potentials and ERD/ERS phenomena reflecting different consciousness contents. A simple and direct task of paying attention to breathing was designed, and a comprehensive evaluation of consciousness level was conducted using multi-feature joint analysis. Methods We recorded the EEG responses of 20 healthy subjects in three modes and reported the consciousness-related mean event-related potential amplitude, ERD/ERS phenomena, and the classification accuracy, sensitivity, and specificity of the EEG responses under different conditions. Results The results showed that the EEG responses of the subjects under different conditions were significantly different in the time domain and time-frequency domain. Compared with the passive mode, the amplitudes of the event-related potentials in the breathing mode were further reduced, and the theta-ERS and alpha-ERD phenomena in the frontal region were further weakened. The breathing mode showed greater distinguishability from the active mode in machine learning-based classification. Discussion By analyzing multiple features of EEG responses in different modes and stimuli, it is expected to achieve more sensitive and accurate consciousness detection. This study can provide a new idea for the design of consciousness detection methods.
Collapse
Affiliation(s)
- Yimeng You
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Yahui Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Baobao Yu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Ankai Ying
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Huilin Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Yordanova J, Falkenstein M, Kolev V. Motor oscillations reveal new correlates of error processing in the human brain. Sci Rep 2024; 14:5624. [PMID: 38454108 PMCID: PMC10920772 DOI: 10.1038/s41598-024-56223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
It has been demonstrated that during motor responses, the activation of the motor cortical regions emerges in close association with the activation of the medial frontal cortex implicated with performance monitoring and cognitive control. The present study explored the oscillatory neurodynamics of response-related potentials during correct and error responses to test the hypothesis that such continuous communication would modify the characteristics of motor potentials during performance errors. Electroencephalogram (EEG) was recorded at 64 electrodes in a four-choice reaction task and response-related potentials (RRPs) of correct and error responses were analysed. Oscillatory RRP components at extended motor areas were analysed in the theta (3.5-7 Hz) and delta (1-3 Hz) frequency bands with respect to power, temporal synchronization (phase-locking factor, PLF), and spatial synchronization (phase-locking value, PLV). Major results demonstrated that motor oscillations differed between correct and error responses. Error-related changes (1) were frequency-specific, engaging delta and theta frequency bands, (2) emerged already before response production, and (3) had specific regional topographies at posterior sensorimotor and anterior (premotor and medial frontal) areas. Specifically, the connectedness of motor and sensorimotor areas contra-lateral to the response supported by delta networks was substantially reduced during errors. Also, there was an error-related suppression of the phase stability of delta and theta oscillations at these areas. This synchronization reduction was accompanied by increased temporal synchronization of motor theta oscillations at bi-lateral premotor regions and by two distinctive error-related effects at medial frontal regions: (1) a focused fronto-central enhancement of theta power and (2) a separable enhancement of the temporal synchronization of delta oscillations with a localized medial frontal focus. Together, these observations indicate that the electrophysiological signatures of performance errors are not limited to the medial frontal signals, but they also involve the dynamics of oscillatory motor networks at extended cortical regions generating the movement. Also, they provide a more detailed picture of the medial frontal processes activated in relation to error processing.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria.
| | | | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
8
|
Yordanova J, Falkenstein M, Kolev V. Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clin Neurophysiol 2024; 158:137-148. [PMID: 38219403 DOI: 10.1016/j.clinph.2023.12.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Both cognitive and primary motor networks alter with advancing age in humans. The networks activated in response to external environmental stimuli supported by theta oscillations remain less well explored. The present study aimed to characterize the effects of aging on the functional connectivity of response-related theta networks during sensorimotor tasks. METHODS Electroencephalographic signals were recorded in young and middle-to-older age adults during three tasks performed in two modalities, auditory and visual: a simple reaction task, a Go-NoGo task, and a choice-reaction task. Response-related theta oscillations were computed. The phase-locking value (PLV) was used to analyze the spatial synchronization of primary motor and motor control theta networks. RESULTS Performance was overall preserved in older adults. Independently of the task, aging was associated with reorganized connectivity of the contra-lateral primary motor cortex. In younger adults, it was synchronized with motor control regions (intra-hemispheric premotor/frontal and medial frontal). In older adults, it was only synchronized with intra-hemispheric sensorimotor regions. CONCLUSIONS Motor theta networks of older adults manifest a functional decoupling between the response-generating motor cortex and motor control regions, which was not modulated by task variables. The overall preserved performance in older adults suggests that the increased connectivity within the sensorimotor network is associated with an excessive reliance on sensorimotor feedback during movement execution compensating for a deficient cognitive regulation of motor regions during sensorimotor reactions. SIGNIFICANCE New evidence is provided for the reorganization of motor networks during sensorimotor reactions already at the transition from middle to old age.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Gyulai A, Körmendi J, Issa MF, Juhasz Z, Nagy Z. Event-Related Spectral Perturbation, Inter Trial Coherence, and Functional Connectivity in motor execution: A comparative EEG study of old and young subjects. Brain Behav 2023; 13:e3176. [PMID: 37624638 PMCID: PMC10454281 DOI: 10.1002/brb3.3176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION The motor-related bioelectric brain activity of healthy young and old subjects was studied to understand the effect of aging on motor execution. A visually cued finger tapping movement paradigm and high-density EEG were used to examine the time and frequency characteristics. METHODS Twenty-two young and 22 healthy elderly adults participated in the study. Repeated trials of left and right index finger movements were recorded with a 128-channel EEG. Event-Related Spectral Perturbation (ERSP), Inter Trial Coherence (ITC), and Functional Connectivity were computed and compared between the age groups. RESULTS An age-dependent theta and alpha band ERSP decrease was observed over the frontal-midline area. Decrease of beta band ERSP was found over the ipsilateral central-parietal regions. Significant ITC differences were found in the delta and theta bands between old and young subjects over the contralateral parietal-occipital areas. The spatial extent of increased ITC values was larger in old subjects. The movement execution of older subjects showed higher global efficiency in the delta and theta bands, and higher local efficiency and node strengths in the delta, theta, alpha, and beta bands. CONCLUSION As functional compensation of aging, elderly motor networks involve more nonmotor, parietal-occipital, and frontal areas, with higher global and local efficiency, node strength. ERSP and ITC changes seem to be sensitive and complementary biomarkers of age-related motor execution.
Collapse
Affiliation(s)
- Adam Gyulai
- Szentagothai Doctoral SchoolSemmelweis UniversityBudapestHungary
- Department of NeurologyUzsoki HospitalBudapestHungary
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
| | - Janos Körmendi
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Faculty of Education and Psychology, Institute of Health Promotion and Sport SciencesEötvös Loránd UniversityBudapestHungary
| | - Mohamed F. Issa
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Faculty of Computers and Artificial Intelligence, Department of Scientific ComputingBenha UniversityBenhaEgypt
| | - Zoltan Juhasz
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
| | - Zoltan Nagy
- Laboratory of Bioelectric Brain ImagingNational Mental, Neurological and Neurosurgical InstituteBudapestHungary
- Department of Electrical Engineering and Information SystemsUniversity of PannoniaVeszpremHungary
- Department of Vascular NeurologySemmelweis UniversityBudapestHungary
| |
Collapse
|
10
|
Chaves-Coira I, García-Magro N, Zegarra-Valdivia J, Torres-Alemán I, Núñez Á. Cognitive Deficits in Aging Related to Changes in Basal Forebrain Neuronal Activity. Cells 2023; 12:1477. [PMID: 37296598 PMCID: PMC10252596 DOI: 10.3390/cells12111477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Aging is a physiological process accompanied by a decline in cognitive performance. The cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this review is to provide an overview of recent advances grouped around the changes in basal forebrain activity during healthy aging. Elucidating the underlying mechanisms of brain function and their decline is especially relevant in today's society as an increasingly aged population faces higher risks of developing neurodegenerative diseases such as Alzheimer's disease. The profound age-related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction highlight the importance of investigating the aging of this brain region.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Facultad de Ciencias de la Salud, Universidad Señor de Sipán, Chiclayo 02001, Peru
| | - Ignacio Torres-Alemán
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Ikerbasque Science Foundation, 48009 Bilbao, Spain
| | - Ángel Núñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| |
Collapse
|
11
|
Guo J, Li L, Zheng Y, Quratul A, Liu T, Wang J. Effect of Visual Feedback on Behavioral Control and Functional Activity During Bilateral Hand Movement. Brain Topogr 2023:10.1007/s10548-023-00969-6. [PMID: 37198376 DOI: 10.1007/s10548-023-00969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Previous researches state vision as a vital source of information for movement control and more precisely for accurate hand movement. Further, fine bimanual motor activity may be associated with various oscillatory activities within distinct brain areas and inter-hemispheric interactions. However, neural coordination among the distinct brain areas responsible to enhance motor accuracy is still not adequate. In the current study, we investigated task-dependent modulation by simultaneously measuring high time resolution electroencephalogram (EEG), electromyogram (EMG) and force along with bi-manual and unimanual motor tasks. The errors were controlled using visual feedback. To complete the unimanual tasks, the participant was asked to grip the strain gauge using the index finger and thumb of the right hand thereby exerting force on the connected visual feedback system. Whereas the bi-manual task involved finger abduction of the left index finger in two contractions along with visual feedback system and at the same time the right hand gripped using definite force on two conditions that whether visual feedback existed or not for the right hand. Primarily, the existence of visual feedback for the right hand significantly decreased brain network global and local efficiency in theta and alpha bands when compared with the elimination of visual feedback using twenty participants. Brain network activity in theta and alpha bands coordinates to facilitate fine hand movement. The findings may provide new neurological insight on virtual reality auxiliary equipment and participants with neurological disorders that cause movement errors requiring accurate motor training. The current study investigates task-dependent modulation by simultaneously measuring high time resolution electroencephalogram, electromyogram and force along with bi-manual and unimanual motor tasks. The findings show that visual feedback for right hand decreases the force root mean square error of right hand. Visual feedback for right hand decreases local and global efficiency of brain network in theta and alpha bands.
Collapse
Affiliation(s)
- Jing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Long Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Yang Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ain Quratul
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
12
|
Zhou H, Yan W, Xu J, Ma Y, Zuo G, Shi C. Allocation of cognitive resources in cognitive processing of rhythmic visual stimuli before gait-related motor initiation. Front Neurosci 2023; 17:1145051. [PMID: 37250401 PMCID: PMC10213455 DOI: 10.3389/fnins.2023.1145051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Rhythmic visual cues can affect the allocation of cognitive resources during gait initiation (GI) and motor preparation. However, it is unclear how the input of rhythmic visual information modulates the allocation of cognitive resources and affects GI. The purpose of this study was to explore the effect of rhythmic visual cues on the dynamic allocation of cognitive resources by recording electroencephalographic (EEG) activity during exposure to visual stimuli. This study assessed event-related potentials (ERPs), event-related synchronization/desynchronization (ERS/ERD), and EEG microstates at 32 electrodes during presentation of non-rhythmic and rhythmic visual stimuli in 20 healthy participants. The ERP results showed that the amplitude of the C1 component was positive under exposure to rhythmic visual stimuli, while the amplitude of the N1 component was higher under exposure to rhythmic visual stimuli compared to their non-rhythmic counterparts. Within the first 200 ms of the onset of rhythmic visual stimuli, ERS in the theta band was highly pronounced in all brain regions analyzed. The results of microstate analysis showed that rhythmic visual stimuli were associated with an increase in cognitive processing over time, while non-rhythmic visual stimuli were associated with a decrease. Overall, these findings indicated that, under exposure to rhythmic visual stimuli, consumption of cognitive resources is lower during the first 200 ms of visual cognitive processing, but the consumption of cognitive resources gradually increases over time. After approximately 300 ms, cognitive processing of rhythmic visual stimuli consumes more cognitive resources than processing of stimuli in the non-rhythmic condition. This indicates that the former is more conducive to the completion of gait-related motor preparation activities, based on processing of rhythmic visual information during the later stages. This finding indicates that the dynamic allocation of cognitive resources is the key to improving gait-related movement based on rhythmic visual cues.
Collapse
Affiliation(s)
- Huilin Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Wenfeng Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jialin Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yehao Ma
- Robotics Institute, Ningbo University of Technology, Ningbo, Zhejiang, China
| | - Guokun Zuo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Changcheng Shi
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Depestele S, van Dun K, Verstraelen S, Ross V, Van Hoornweder S, Brijs K, Brijs T, Getzmann S, Meesen R. Age-related changes in midfrontal theta activity during steering control: A driving simulator study. Neurobiol Aging 2023; 123:145-153. [PMID: 36572595 DOI: 10.1016/j.neurobiolaging.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Motor control, a ubiquitous part of driving, requires increased cognitive controlled processing in older adults relative to younger adults. However, the influence of aging on motor-related neural mechanisms in the context of driving has rarely been studied. The present study aimed to identify age-related changes in cognitive control and attention allocation during a simulated steering task, using electroencephalography. Midfrontal theta, a marker for cognitive control, and posterior alpha power, a marker for attention allocation, were measured in a total of 26 young, 25 middle-aged, and 28 older adults. By adapting driving speed, the difficulty level of this steering task was individualized for each participant. Results show age-related changes in midfrontal theta power, but not in posterior alpha power, despite similar steering accuracy across age groups. Specifically, only younger and, to a lesser extent, middle-aged adults exhibited increased theta power while driving through more demanding curved segments relative to straight segments. In contrast, theta power upregulation was absent in older adults, suggesting a saturation of cognitive resources while driving, possibly due to a limitation in resource capacity, or less automatic motor-related neural processing.
Collapse
Affiliation(s)
- Siel Depestele
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.
| | - Kim van Dun
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Veerle Ross
- UHasselt-Hasselt University, School of Transportation Sciences, Transportation Research Institute (IMOB), Hasselt, Belgium
| | - Sybren Van Hoornweder
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Kris Brijs
- UHasselt-Hasselt University, School of Transportation Sciences, Transportation Research Institute (IMOB), Hasselt, Belgium
| | - Tom Brijs
- UHasselt-Hasselt University, School of Transportation Sciences, Transportation Research Institute (IMOB), Hasselt, Belgium
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Raf Meesen
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| |
Collapse
|
14
|
Van Hoornweder S, Mora DAB, Depestele S, Frieske J, van Dun K, Cuypers K, Verstraelen S, Meesen R. Age and Interlimb Coordination Complexity Modulate Oscillatory Spectral Dynamics and Large-scale Functional Connectivity. Neuroscience 2022; 496:1-15. [PMID: 35691515 DOI: 10.1016/j.neuroscience.2022.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 12/12/2022]
Abstract
Interlimb coordination deteriorates as a result of aging. Due to its ubiquity in daily life, a greater understanding of the underlying neurophysiological changes is required. Here, we combined electroencephalography time-frequency spectral power and functional connectivity analyses to provide a comprehensive overview of the neural dynamics underlying the age-related deterioration of interlimb coordination involving all four limbs. Theta, alpha and beta oscillations in the frontal, central and parietal regions were analyzed in twenty younger (18-30 years) and nineteen older adults (65-78 years) during a complex interlimb reaction time task. Reaction time was significantly higher in older adults across all conditions, and the discrepancy between both age groups was largest in the most complex movement condition. Older adults demonstrated enhanced beta event-related desynchronization (i.e., the attenuation of beta power), which further increased along with task complexity and was positively linked to behavioral performance. Theta functional connectivity between frontal, central and parietal regions generally increased with movement complexity, irrespective of age group. In general, frontoparietal alpha band functional connectivity tended to be reduced in older versus younger adults, although these contrasts did not survive multiple comparison corrections. Overall, spectral results suggest that enhanced beta desynchronization in older adults reflects a successful compensatory mechanism to cope with increased difficulty during complex interlimb coordination. Functional connectivity results suggest that theta and alpha band connectivity are prone to respectively task- and age-related modulations. Future work could target these spectral and functional connectivity dynamics through noninvasive brain stimulation to potentially improve interlimb coordination in older adults.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium.
| | | | - Siel Depestele
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kim van Dun
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Koen Cuypers
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Classification of visuomotor tasks based on electroencephalographic data depends on age-related differences in brain activity patterns. Neural Netw 2021; 142:363-374. [PMID: 34116449 DOI: 10.1016/j.neunet.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022]
Abstract
Classification of physiological data provides a data driven approach to study central aspects of motor control, which changes with age. To implement such results in real-life applications for elderly it is important to identify age-specific characteristics of movement classification. We compared task-classification based on EEG derived activity patterns related to brain network characteristics between older and younger adults performing force tracking with two task characteristics (sinusoidal; constant) with the right or left hand. We extracted brain network patterns with dynamic mode decomposition (DMD) and classified the tasks on an individual level using linear discriminant analysis (LDA). Next, we compared the models' performance between the groups. Studying brain activity patterns, we identified signatures of altered motor network function reflecting dedifferentiated and compensational brain activation in older adults. We found that the classification performance of the body side was lower in older adults. However, classification performance with respect to task characteristics was better in older adults. This may indicate a higher susceptibility of brain network mechanisms to task difficulty in elderly. Signatures of dedifferentiation and compensation refer to an age-related reorganization of functional brain networks, which suggests that classification of visuomotor tracking tasks is influenced by age-specific characteristics of brain activity patterns. In addition to insights into central aspects of fine motor control, the results presented here are relevant in application-oriented areas such as brain computer interfaces.
Collapse
|
16
|
|