1
|
Nosrati R, Wronski M, Tseng CL, Chung H, Pejović-Milić A, Morton G, Stanisz GJ. Postimplant Dosimetry of Permanent Prostate Brachytherapy: Comparison of MRI-Only and CT-MRI Fusion-Based Workflows. Int J Radiat Oncol Biol Phys 2020; 106:206-215. [DOI: 10.1016/j.ijrobp.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022]
|
2
|
Gustafsson C, Korhonen J, Persson E, Gunnlaugsson A, Nyholm T, Olsson LE. Registration free automatic identification of gold fiducial markers in MRI target delineation images for prostate radiotherapy. Med Phys 2017; 44:5563-5574. [DOI: 10.1002/mp.12516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 08/06/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Christian Gustafsson
- Department of Hematology, Oncology and Radiation Physics; Skåne University Hospital; Lund 221 85 Sweden
- Department of Medical Radiation Physics; Lund University; Malmö 205 02 Sweden
| | - Juha Korhonen
- Department of Nuclear Medicine; Helsinki University Central Hospital; Helsinki 00290 Finland
- Department of Radiology; Helsinki University Central Hospital; Helsinki 00290 Finland
- Department of Radiation Therapy; Comprehensive Cancer Center; Helsinki University Central Hospital; Helsinki 00290 Finland
| | - Emilia Persson
- Department of Hematology, Oncology and Radiation Physics; Skåne University Hospital; Lund 221 85 Sweden
- Department of Medical Radiation Physics; Lund University; Malmö 205 02 Sweden
| | - Adalsteinn Gunnlaugsson
- Department of Hematology, Oncology and Radiation Physics; Skåne University Hospital; Lund 221 85 Sweden
| | - Tufve Nyholm
- Department of Radiation Sciences; Umeå University; Umeå 90187 Sweden
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala 95105 Sweden
| | - Lars E. Olsson
- Department of Medical Radiation Physics; Lund University; Malmö 205 02 Sweden
| |
Collapse
|
3
|
Martin GV, Pugh TJ, Mahmood U, Kudchadker RJ, Wang J, Bruno TL, Bathala T, Blanchard P, Frank SJ. Permanent prostate brachytherapy postimplant magnetic resonance imaging dosimetry using positive contrast magnetic resonance imaging markers. Brachytherapy 2017; 16:761-769. [PMID: 28501429 DOI: 10.1016/j.brachy.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Permanent prostate brachytherapy dosimetry using computed tomography-magnetic resonance imaging (CT-MRI) fusion combines the anatomic detail of MRI with seed localization on CT but requires multimodality imaging acquisition and fusion. The purpose of this study was to compare the utility of MRI only postimplant dosimetry to standard CT-MRI fusion-based dosimetry. METHODS AND MATERIALS Twenty-three patients undergoing permanent prostate brachytherapy with use of positive contrast MRI markers were included in this study. Dose calculation to the whole prostate, apex, mid-gland, and base was performed via standard CT-MRI fusion and MRI only dosimetry with prostate delineated on the same T2 MRI sequence. The 3-dimensional (3D) distances between seed positions of these two methods were also evaluated. Wilcoxon-matched-pair signed-rank test compared the D90 and V100 of the prostate and its sectors between methods. RESULTS The day 0 D90 and V100 for the prostate were 98% versus 94% and 88% versus 86% for CT-MRI fusion and MRI only dosimetry. There were no differences in the D90 or V100 of the whole prostate, mid-gland, or base between dosimetric methods (p > 0.19), but prostate apex D90 was high by 13% with MRI dosimetry (p = 0.034). The average distance between seeds on CT-MRI fusion and MRI alone was 5.5 mm. After additional automated rigid registration of 3D seed positions, the average distance between seeds was 0.3 mm, and the previously observed differences in apex dose between methods was eliminated (p > 0.11). CONCLUSIONS Permanent prostate brachytherapy dosimetry based only on MRI using positive contrast MRI markers is feasible, accurate, and reduces the uncertainties arising from CT-MRI fusion abating the need for postimplant multimodality imaging.
Collapse
Affiliation(s)
- Geoffrey V Martin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Thomas J Pugh
- Department of Radiation Oncology, University of Colorado, Aurora, CO
| | - Usama Mahmood
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rajat J Kudchadker
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Teresa L Bruno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tharakeswara Bathala
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pierre Blanchard
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
4
|
Dinis Fernandes C, Dinh CV, Steggerda MJ, ter Beek LC, Smolic M, van Buuren LD, Pos FJ, van der Heide UA. Prostate fiducial marker detection with the use of multi-parametric magnetic resonance imaging. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2017. [DOI: 10.1016/j.phro.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Vicens RA, Rodriguez J, Sheplan L, Mayo C, Mayo L, Jensen C. Brachytherapy in pelvic malignancies: a review for radiologists. ABDOMINAL IMAGING 2015; 40:2645-2659. [PMID: 25820802 DOI: 10.1007/s00261-015-0407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Brachytherapy, also known as sealed source or internal radiation therapy, involves placement of a radioactive source immediately adjacent to or within tumor, thus enabling delivery of a localized high dose of radiation. Compared with external beam radiation which must first pass through non-target tissues, brachytherapy results in less radiation dose to normal tissues. In the past decade, brachytherapy use has markedly increased, thus radiologists are encountering brachytherapy devices and their associated post-treatment changes to increasing degree. This review will present a variety of brachytherapy devices that radiologists may encounter during diagnostic pelvic imaging with a focus on prostate and gynecologic malignancies. The reader will become familiar with the function, correct position, and potential complications of brachytherapy devices in an effort to improve diagnostic reporting and communication with clinicians.
Collapse
Affiliation(s)
- Rafael A Vicens
- Department of Radiology, Hospital Auxilio Mutuo, Hato Rey, PR, 00919, USA.
| | - Joshua Rodriguez
- School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Lawrence Sheplan
- Department of Radiation Oncology, Hospital Auxilio Mutuo, Hato Rey, PR, USA
| | - Cody Mayo
- Department of Diagnostic Imaging, University of Virgina, Charlottesville, VA, USA
| | - Lauren Mayo
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Corey Jensen
- Department of Radiology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Multiparametric MRI of the prostate at 3 T: limited value of 3D 1H-MR spectroscopy as a fourth parameter. World J Urol 2015; 34:649-56. [DOI: 10.1007/s00345-015-1670-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022] Open
|
7
|
A new two-step accurate CT-MRI fusion technique for post-implant prostate cancer. J Contemp Brachytherapy 2015; 7:117-21. [PMID: 26034491 PMCID: PMC4444459 DOI: 10.5114/jcb.2015.51290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 01/18/2015] [Accepted: 02/24/2015] [Indexed: 01/14/2023] Open
Abstract
Purpose To develop an accurate method of fusing computed tomography (CT) with magnetic resonance imaging (MRI) for post-implant dosimetry after prostate seed implant brachytherapy. Material and methods Prostate cancer patients were scheduled to undergo CT and MRI after brachytherapy. We obtained the three MRI sequences on fat-suppressed T1-weighted imaging (FST1-WI), T2-weighted imaging (T2-WI), and T2*-weighted imaging (T2*-WI) in each patient. We compared the lengths and widths of 450 seed source images in the 10 study patients on CT, FST1-WI, T2-WI, and T2*-WI. After CT-MRI fusion using source positions by the least-squares method, we decided the center of each seed source and measured the distance of these centers between CT and MRI to estimate the fusion accuracy. Results The measured length and width of the seeds were 6.1 ± 0.5 mm (mean ± standard deviation) and 3.2 ± 0.2 mm on CT, 5.9 ± 0.4 mm, and 2.4 ± 0.2 mm on FST1-WI, 5.5 ± 0.5 mm and 1.8 ± 0.2 mm on T2-WI, and 7.8 ± 1.0 mm and 4.1 ± 0.7 mm on T2*-WI, respectively. The measured source location shifts on CT/FST1-WI and CT/T2-WI after image fusion in the 10 study patients were 0.9 ± 0.4 mm and 1.4 ± 0.2 mm, respectively. The shift on CT/FST1-WI was less than on CT/T2-WI (p = 0.005). Conclusions For post-implant dosimetry after prostate seed implant brachytherapy, more accurate fusion of CT and T2-WI is achieved if CT and FST1-WI are fused first using the least-squares method and the center position of each source, followed by fusion of the FST1-WI and T2-WI images. This method is more accurate than direct image fusion.
Collapse
|
8
|
Improved dosimetry in prostate brachytherapy using high resolution contrast enhanced magnetic resonance imaging: a feasibility study. J Contemp Brachytherapy 2015; 6:337-43. [PMID: 25834576 PMCID: PMC4300354 DOI: 10.5114/jcb.2014.46555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/04/2014] [Accepted: 09/14/2014] [Indexed: 12/04/2022] Open
Abstract
Purpose To assess detailed dosimetry data for prostate and clinical relevant intra- and peri-prostatic structures including neurovascular bundles (NVB), urethra, and penile bulb (PB) from postbrachytherapy computed tomography (CT) versus high resolution contrast enhanced magnetic resonance imaging (HR-CEMRI). Material and methods Eleven postbrachytherapy prostate cancer patients underwent HR-CEMRI and CT imaging. Computed tomography and HR-CEMRI images were randomized and 2 independent expert readers created contours of prostate, intra- and peri-prostatic structures on each CT and HR-CEMRI scan for all 11 patients. Dosimetry data including V100, D90, and D100 was calculated from these contours. Results Mean V100 values from CT and HR-CEMRI contours were as follows: prostate (98.5% and 96.2%, p = 0.003), urethra (81.0% and 88.7%, p = 0.027), anterior rectal wall (ARW) (8.9% and 2.8%, p < 0.001), left NVB (77.9% and 51.5%, p = 0.002), right NVB (69.2% and 43.1%, p = 0.001), and PB (0.09% and 11.4%, p = 0.005). Mean D90 (Gy) derived from CT and HR-CEMRI contours were: prostate (167.6 and 150.3, p = 0.012), urethra (81.6 and 109.4, p = 0.041), ARW (2.5 and 0.11, p = 0.003), left NVB (98.2 and 58.6, p = 0.001), right NVB (87.5 and 55.5, p = 0.001), and PB (11.2 and 12.4, p = 0.554). Conclusions Findings of this study suggest that HR-CEMRI facilitates accurate and meaningful dosimetric assessment of prostate and clinically relevant structures, which is not possible with CT. Significant differences were seen between CT and HR-CEMRI, with volume overestimation of CT derived contours compared to HR-CEMRI.
Collapse
|
9
|
Schieda N, Avruch L, Shabana WM, Malone SC. Multi-echo gradient recalled echo imaging of the pelvis for improved depiction of brachytherapy seeds and fiducial markers facilitating radiotherapy planning and treatment of prostatic carcinoma. J Magn Reson Imaging 2014; 41:715-20. [DOI: 10.1002/jmri.24590] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
- Nicola Schieda
- The Ottawa Hospital, The University of Ottawa; Department of Radiology; Civic Campus C1 Ottawa Ontario Canada
| | - Leonard Avruch
- The Ottawa Hospital, The University of Ottawa; Department of Radiology; Civic Campus C1 Ottawa Ontario Canada
| | - Wael M. Shabana
- The Ottawa Hospital, The University of Ottawa; Department of Radiology; Civic Campus C1 Ottawa Ontario Canada
| | - Shawn Christopher Malone
- The Ottawa Hospital, The University of Ottawa; Department of Radiation Oncology; Ottawa Ontario Canada
| |
Collapse
|
10
|
Melhus CS, Mikell JK, Frank SJ, Mourtada F, Rivard MJ. Dosimetric influence of seed spacers and end-weld thickness for permanent prostate brachytherapy. Brachytherapy 2013; 13:304-10. [PMID: 24139289 DOI: 10.1016/j.brachy.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE The aim of this study was to analyze the dosimetric influence of conventional spacers and a cobalt chloride complex contrast (C4) agent, a novel marker for MRI that can also serve as a seed spacer, adjacent to (103)Pd, (125)I, and (131)Cs sources for permanent prostate brachytherapy. METHODS AND MATERIALS Monte Carlo methods for radiation transport were used to estimate the dosimetric influence of brachytherapy end-weld thicknesses and spacers near the three sources. Single-source assessments and volumetric conditions simulating prior patient treatments were computed. Volume-dose distributions were imported to a treatment planning system for dose-volume histogram analyses. RESULTS Single-source assessment revealed that brachytherapy spacers primarily attenuated the dose distribution along the source long axis. The magnitude of the attenuation at 1 cm on the long axis ranged from -10% to -5% for conventional spacers and approximately -2% for C4 spacers, with the largest attenuation for (103)Pd. Spacer perturbation of dose distributions was less than manufacturing tolerances for brachytherapy sources as gleaned by an analysis of end-weld thicknesses. Volumetric Monte Carlo assessment demonstrated that TG-43 techniques overestimated calculated doses by approximately 2%. Specific dose-volume histogram metrics for prostate implants were not perturbed by inclusion of conventional or C4 spacers in clinical models. CONCLUSIONS Dosimetric perturbations of single-seed dose distributions by brachytherapy spacers exceeded 10% along the source long axes adjacent to the spacers. However, no dosimetric impact on volumetric parameters was noted for brachytherapy spacers adjacent to (103)Pd, (125)I, or (131)Cs sources in the context of permanent prostate brachytherapy implants.
Collapse
Affiliation(s)
- Christopher S Melhus
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, MA
| | - Justin K Mikell
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Firas Mourtada
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, Christiana Care Hospital, Newark, DE
| | - Mark J Rivard
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, MA.
| |
Collapse
|
11
|
Accuracy of Endorectal Magnetic Resonance/Transrectal Ultrasound Fusion for Detection of Prostate Cancer During Brachytherapy. Urology 2013; 81:1284-9. [DOI: 10.1016/j.urology.2012.12.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/07/2012] [Accepted: 12/16/2012] [Indexed: 11/20/2022]
|
12
|
Ohashi T, Momma T, Yamashita S, Nagatsuma K, Kanai K, Kitagawa K, Takahashi S, Hanada T, Yorozu A, Shigematsu N. Impact of MRI-based postimplant dosimetric assessment in prostate brachytherapy using contrast-enhanced T1-weighted images. Brachytherapy 2012; 11:468-75. [DOI: 10.1016/j.brachy.2011.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/19/2011] [Accepted: 12/27/2011] [Indexed: 11/28/2022]
|
13
|
Kawata H, Arimura H, Suefuji H, Ohkura S, Saida Y, Nashiki K, Hayashida K, Kawahara T, Ohishi A, Hayabuchi N. Automated estimation of number of implanted iodine-125 seeds for prostate brachytherapy based on two-view analysis of pelvic radiographs. JOURNAL OF RADIATION RESEARCH 2012; 53:742-752. [PMID: 22843357 PMCID: PMC3430425 DOI: 10.1093/jrr/rrs018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 03/31/2012] [Accepted: 04/03/2012] [Indexed: 06/01/2023]
Abstract
Digital pelvic radiographs are used to identify the locations of implanted iodine-125 seeds and their numbers after insertion. However, it is difficult and laborious to visually identify and count all implanted seeds on the pelvic radiographs within a short time. Therefore, our purpose in this research was to develop an automated method for estimation of the number of implanted seeds based on two-view analysis of pelvic radiographs. First, the images of the seed candidates on the pelvic image were enhanced using a difference of Gaussian filter, and were identified by binarizing the enhanced image with a threshold value determined by multiple-gray level thresholding. Second, a simple rule-base method using ten image features was applied for false positive removal. Third, the candidates for the likely number of a multiply overlapping seed region, which may include one or more seeds, were estimated by a seed area histogram analysis and calculation of the probability of the likely number of overlapping seeds. As a result, the proposed method detected 99.9% of implanted seeds with 0.71 false positives per image on average in a test for training cases, and 99.2% with 0.32 false positives in a validation test. Moreover, the number of implanted seeds was estimated correctly at an overall recognition rate of 100% in the validation test using the proposed method. Therefore, the verification time for the number of implanted seeds could be reduced by the provision of several candidates for the likely number of seeds.
Collapse
Affiliation(s)
- Hidemichi Kawata
- Radiation Therapy Center, Kurume University Hospital, 67, Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Weidner AM, Dinter DJ, Bohrer M, Sertdemir M, Hausmann D, Wenz F, Schoenberg SO. [Multiparametric prostate MRI for follow-up monitoring after radiation therapy]. Radiologe 2012; 52:235-42. [PMID: 22349898 DOI: 10.1007/s00117-011-2196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
CLINICAL/METHODICAL ISSUE Radiation therapy is a therapeutic option with curative intent for patients with prostate cancer. Monitoring of prostate-specific antigen (PSA) values is the current standard of care in the follow-up. Imaging is recommended only for symptomatic patients and/or for further therapeutic options. STANDARD RADIOLOGICAL METHODS For detection of local recurrence magnetic resonance imaging (MRI) of the prostate is acknowledged as the method of choice. PERFORMANCE Good results for primary diagnosis were found especially in combination with functional techniques, whereas in recurrent prostate cancer only few studies with heterogeneous study design are available for prostate MRI. Furthermore, changes in different MRI modalities due to radiation therapy have been insufficiently investigated to date. PRACTICAL RECOMMENDATIONS As the initial results were promising prostate MRI and available therapeutic options for detection of local recurrence should be considered in patients with increased PSA.
Collapse
Affiliation(s)
- A M Weidner
- Institut für Klinische Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim.
| | | | | | | | | | | | | |
Collapse
|
15
|
Comparison of CT and MR–CT Fusion for Prostate Post-Implant Dosimetry. Int J Radiat Oncol Biol Phys 2012; 82:1912-7. [DOI: 10.1016/j.ijrobp.2011.01.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 11/20/2022]
|
16
|
Fueger BJ, Helbich TH, Schernthaner M, Zbýn S, Linhart HG, Stiglbauer A, Doan A, Pinker K, Heinz G, Padhani AR, Brader P. [Diagnose importance of multiparametric magnetic resonance tomography for prostate cancer]. Radiologe 2011; 51:947-54. [PMID: 21976041 DOI: 10.1007/s00117-011-2179-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostate cancer is biologically and clinically a heterogeneous disease which makes imaging evaluation challenging. Magnetic resonance imaging (MRI) has considerable potential to improve prostate cancer detection and characterization. Until recently morphologic MRI has not been routinely incorporated into clinical care because of its limitation to detect, localize and characterize prostate cancer. Performing prostate gland MRI using functional techniques has the potential to provide unique information regarding tumor behavior, including treatment response. In order for multiparametric MRI data to have an impact on patient management, the collected data need to be relayed to clinicians in a standardized way for image construction, analysis and interpretation. This will ensure that patients are treated effectively and in the most appropriate way. Scoring systems similar to those employed successfully for breast imaging need to be developed.
Collapse
Affiliation(s)
- B J Fueger
- Univ.-Klinik für Radiodiagnostik, Division für Molekulare und Gender-Bildgebung, Medizinische Universität Wien, Österreich
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vassiliev ON, Kudchadker RJ, Swanson DA, Bruno TL, van Vulpen M, Frank SJ. Displacement of periurethral stranded seeds and its dosimetric consequences in prostate brachytherapy. Brachytherapy 2011; 10:401-8. [PMID: 21306959 DOI: 10.1016/j.brachy.2011.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/19/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The use of stranded seeds for prostate brachytherapy has raised concern that displacement of strands, particularly in the periurethral region, may result in inadequate coverage of the prostate. We sought here to evaluate the displacement of periurethral stranded seeds after a prostate brachytherapy implant (Day 0) and its dosimetric consequences 1 month later (Day 30). METHODS AND MATERIALS Subjects were 10 consecutive patients who underwent implantation with (125)I stranded seeds via a peripheral-loading technique. Computed tomography scanning was done on Days 0 and 30. Seeds were located and dose distributions calculated with a Variseed 7.2 treatment planning system (Varian Medical Systems). Images were registered by two methods, one using the penile bulb as reference and the other using the pubic bones for verification. Only seeds within the periurethral strands were analyzed. RESULTS The mean displacement of periurethral stranded seeds relative to the prostate did not exceed 1mm in any direction. Calculated displacements were not affected by the registration method used. The mean dose covering 90% of the prostate volume (D(90)) and prostate volume receiving 100% of the prescribed dose (V(100)) were 169Gy and 97% on Day 0 and 186.5Gy and 98.7% on Day 30 (p<0.001 for D(90)). CONCLUSIONS Displacement of periurethral stranded seeds 30 days after implantation was minimal and did not compromise dosimetric coverage of the prostate.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
18
|
Anisotropy characterization of I-125 seed with attached encapsulated cobalt chloride complex contrast agent markers for MRI-based prostate brachytherapy. Med Dosim 2010; 36:200-5. [PMID: 20537886 DOI: 10.1016/j.meddos.2010.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/23/2022]
Abstract
We have developed a novel MRI marker for prostate brachytherapy. The purpose of this study was to evaluate the changes in anisotropy when cobalt chloride complex contrast agent encapsulated contrast agent markers (C4-ECAM) were placed adjacent to an iodine-125 (I-125) titanium seed, and to verify that the C4-ECAMs were visible on magnetic resonance imaging (MRI) after radiation exposure. Two C4-ECAMs were verified to be MRI visible in a phantom before radiation exposure. The C4-ECAMs were then attached to each end of a 12.7-U (10-mCi) I-125 titanium seed in a polymer tube. Anisotropy was measured and analyzed with the seed alone and with attached C4-ECAMs by suspending thermoluminescent dosimeters in a water phantom in 2 circles surrounding the radioactive source with radius of 1 or 2 cm. A T1-weighted MRI evaluation of C4-ECAMs was then performed after exposure to the amount of radiation typically delivered during 1 month of prostate brachytherapy. Measured values of the anisotropy function F(r, θ) for the I-125 seed with and without the C4-ECAMs were mutually statistically indistinguishable (standard error of the mean <4.2%) and agreed well with published TG-43 values for the bare seed. As expected, the anisotropy function ϕ(an)(r) for the 2 datasets (with and without C4-ECAMs) derived from the measured F(r, θ) did not exhibit statistically measurable difference. Both datasets showed agreement with the published TG-43 ϕ(an)(r) for the bare seed. The C4-ECAMs were well visualized by MRI after 1 month of radiation exposure. There were no changes in anisotropy when the C4-ECAMs were placed next to an I-125 radioactive seed, and the C4-ECAMs were visualized after radiation exposure.
Collapse
|
19
|
Rouvière O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol 2009; 20:1254-66. [DOI: 10.1007/s00330-009-1647-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 09/07/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
20
|
McMahon CJ, Bloch BN, Lenkinski RE, Rofsky NM. Dynamic contrast-enhanced MR imaging in the evaluation of patients with prostate cancer. Magn Reson Imaging Clin N Am 2009; 17:363-83. [PMID: 19406364 DOI: 10.1016/j.mric.2009.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prostate cancer is a common tumor among men, with increasing diagnosis at an earlier stage and a lower volume of disease because of screening with prostate-specific antigen (PSA). The need for imaging of the prostate stems from a desire to optimize treatment strategy on a patient and tumor-specific level. The major goals of prostate imaging are (1) staging of known cancer, (2) determination of tumor aggressiveness, (3) diagnosis of cancer in patients who have elevated PSA but a negative biopsy, (4) treatment planning, and (5) the evaluation of therapy response. This article concentrates on the role of dynamic contrast-enhanced MR imaging in the evaluation of patients who have prostate cancer and how it might be used to help achieve the above goals. Various dynamic contrast enhancement approaches (quantitative/semiquantitative/qualitative, high temporal versus high spatial resolution) are summarized with reference to the relevant strengths and compromises of each approach.
Collapse
Affiliation(s)
- Colm J McMahon
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
21
|
Prostate postbrachytherapy seed distribution: comparison of high-resolution, contrast-enhanced, T1- and T2-weighted endorectal magnetic resonance imaging versus computed tomography: initial experience: in regard to BLOCH et al. (Int J Radiat Oncol Biol Phys 2007;69:70-78). Int J Radiat Oncol Biol Phys 2008; 71:1289; author reply 1289-90. [PMID: 18572093 DOI: 10.1016/j.ijrobp.2008.02.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/14/2008] [Indexed: 11/20/2022]
|
22
|
Nobes JP, Khaksar SJ, Hawkins MA, Cunningham MJ, Langley SE, Laing RW. Novel prostate brachytherapy technique: Improved dosimetric and clinical outcome. Radiother Oncol 2008; 88:121-6. [DOI: 10.1016/j.radonc.2008.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 02/20/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
|
23
|
Mamou J, Ramachandran S, Feleppa EJ. Angle-dependent ultrasonic detection and imaging of brachytherapy seeds using singular spectrum analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:2148-59. [PMID: 18397022 PMCID: PMC2677315 DOI: 10.1121/1.2875740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/21/2008] [Accepted: 01/27/2008] [Indexed: 05/26/2023]
Abstract
Transrectal-ultrasound-guided brachytherapy uses small titanium-shelled radioactive seeds to locally treat prostate cancer. During the implantation procedure, needles inserted transperitoneally cause gland movement resulting in seed misplacement and suboptimal dosimetry. In a previous study, an algorithm based on singular spectrum analysis (SSA) applied to envelope-detected ultrasound signals was proposed to determine seed locations [J. Mamou and E. J. Feleppa, J. Acoust. Soc. Am. 121, 1790-1801 (2007)]. Successful implementation of the SSA algorithm could allow correcting dosimetry errors during the implantation procedure. The algorithm demonstrated promise when the seed orientation was parallel to the needle and normal to the ultrasound beam. In this present study, the algorithm was tested when the seed orientation deviated up to 22 degrees from normality. Experimental data from a seed in an ideal environment and in beef were collected with a single-element, spherically focused, 5 MHz transducer. Simulations were designed and evaluated with the algorithm. Finally, objective quantitative scoring metrics were developed to evaluate the algorithm performance and for comparison with B-mode images. The results quantitatively established that the SSA algorithm always outperformed B-mode images and that seeds could be detected accurately up to a deviation of approximately 10 degrees .
Collapse
Affiliation(s)
- Jonathan Mamou
- Frederic L. Lizzi Center for Biomedical Engineering, Riverside Research Institute, 156 William Street, 9th Floor, New York, New York 10038, USA.
| | | | | |
Collapse
|