1
|
Ajdari A, Liao Z, Mohan R, Wei X, Bortfeld T. Personalized mid-course FDG-PET based adaptive treatment planning for non-small cell lung cancer using machine learning and optimization. Phys Med Biol 2022; 67:10.1088/1361-6560/ac88b3. [PMID: 35947984 PMCID: PMC9579961 DOI: 10.1088/1361-6560/ac88b3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Objective. Traditional radiotherapy (RT) treatment planning of non-small cell lung cancer (NSCLC) relies on population-wide estimates of organ tolerance to minimize excess toxicity. The goal of this study is to develop a personalized treatment planning based on patient-specific lung radiosensitivity, by combining machine learning and optimization.Approach. Sixty-nine non-small cell lung cancer patients with baseline and mid-treatment [18]F-fluorodeoxyglucose (FDG)-PET images were retrospectively analyzed. A probabilistic Bayesian networks (BN) model was developed to predict the risk of radiation pneumonitis (RP) at three months post-RT using pre- and mid-treatment FDG information. A patient-specific dose modifying factor (DMF), as a surrogate for lung radiosensitivity, was estimated to personalize the normal tissue toxicity probability (NTCP) model. This personalized NTCP was then integrated into a NTCP-based optimization model for RT adaptation, ensuring tumor coverage and respecting patient-specific lung radiosensitivity. The methodology was employed to adapt the treatment planning of fifteen NSCLC patients.Main results. The magnitude of the BN predicted risks corresponded with the RP severity. Average predicted risk for grade 1-4 RP were 0.18, 0.42, 0.63, and 0.76, respectively (p< 0.001). The proposed model yielded an average area under the receiver-operating characteristic curve (AUROC) of 0.84, outperforming the AUROCs of LKB-NTCP (0.77), and pre-treatment BN (0.79). Average DMF for the radio-tolerant (RP grade = 1) and radiosensitive (RP grade ≥ 2) groups were 0.8 and 1.63,p< 0.01. RT personalization resulted in five dose escalation strategies (average mean tumor dose increase = 6.47 Gy, range = [2.67-17.5]), and ten dose de-escalation (average mean lung dose reduction = 2.98 Gy [0.8-5.4]), corresponding to average NTCP reduction of 15% [4-27].Significance. Personalized FDG-PET-based mid-treatment adaptation of NSCLC RT could significantly lower the RP risk without compromising tumor control. The proposed methodology could help the design of personalized clinical trials for NSCLC patients.
Collapse
Affiliation(s)
- Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation BioPhysics, Boston, MA
| | - Zhongxing Liao
- University of Texas’ MD Anderson Cancer Center, Department of Radiation Oncology, Division of Radiation Oncology, Houston, TX
| | - Radhe Mohan
- University of Texas’ MD Anderson Cancer Center, Department of Radiation Physics, Division of Radiation Oncology, Houston, TX
| | - Xiong Wei
- University of Texas’ MD Anderson Cancer Center, Department of Radiation Oncology, Division of Radiation Oncology, Houston, TX
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation BioPhysics, Boston, MA
| |
Collapse
|
2
|
Sardaro A, McDonald F, Bardoscia L, Lavrenkov K, Singh S, Ashley S, Traish D, Ferrari C, Meattini I, Asabella AN, Brada M. Dyspnea in Patients Receiving Radical Radiotherapy for Non-Small Cell Lung Cancer: A Prospective Study. Front Oncol 2020; 10:594590. [PMID: 33425746 PMCID: PMC7787051 DOI: 10.3389/fonc.2020.594590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Dyspnea is an important symptomatic endpoint for assessment of radiation-induced lung injury (RILI) following radical radiotherapy in locally advanced disease, which remains the mainstay of treatment at the time of significant advances in therapy including combination treatments with immunotherapy and chemotherapy and the use of local ablative radiotherapy techniques. We investigated the relationship between dose-volume parameters and subjective changes in dyspnea as a measure of RILI and the relationship to spirometry. Material and Methods Eighty patients receiving radical radiotherapy for non-small cell lung cancer were prospectively assessed for dyspnea using two patient-completed tools: EORTC QLQ-LC13 dyspnea quality of life assessment and dyspnea visual analogue scale (VAS). Global quality of life, spirometry and radiation pneumonitis grade were also assessed. Comparisons were made with lung dose-volume parameters. Results The median survival of the cohort was 26 months. In the evaluable group of 59 patients there were positive correlations between lung dose-volume parameters and a change in dyspnea quality of life scale at 3 months (V30 p=0.017; V40 p=0.026; V50 p=0.049; mean lung dose p=0.05), and a change in dyspnea VAS at 6 months (V30 p=0.05; V40 p=0.026; V50 p=0.028) after radiotherapy. Lung dose-volume parameters predicted a 10% increase in dyspnea quality of life score at 3 months (V40; p=0.041, V50; p=0.037) and dyspnea VAS score at 6 months (V40; p=0.027) post-treatment. Conclusions Worsening of dyspnea is an important symptom of RILI. We demonstrate a relationship between lung dose-volume parameters and a 10% worsening of subjective dyspnea scores. Our findings support the use of subjective dyspnea tools in future studies on radiation-induced lung toxicity, particularly at doses below conventional lung radiation tolerance limits.
Collapse
Affiliation(s)
- Angela Sardaro
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Interdisciplinary Department of Medicine, Nuclear Medicine Unit and Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Fiona McDonald
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Academic Radiotherapy Unit, The Institute of Cancer Research, Sutton, United Kingdom
| | - Lilia Bardoscia
- Radiation Therapy Unit, Department of Oncology and Advanced Technology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Konstantin Lavrenkov
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Department of Oncology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shalini Singh
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Department of Radiotherapy, Lucknow, India
| | - Sue Ashley
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Daphne Traish
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Cristina Ferrari
- Interdisciplinary Department of Medicine, Nuclear Medicine Unit and Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Icro Meattini
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Department of Biomedical, Experimental, and Clinical Sciences, University of Florence, Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Artor Niccoli Asabella
- Interdisciplinary Department of Medicine, Nuclear Medicine Unit and Section of Radiology and Radiation Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Michael Brada
- Lung Research Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Academic Radiotherapy Unit, The Institute of Cancer Research, Sutton, United Kingdom.,Department of Radiation Oncology, University of Liverpool and Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
| |
Collapse
|
3
|
Isotoxic Intensity Modulated Radiation Therapy in Stage III Non-Small Cell Lung Cancer: A Feasibility Study. Int J Radiat Oncol Biol Phys 2020; 109:1341-1348. [PMID: 33232772 PMCID: PMC7955281 DOI: 10.1016/j.ijrobp.2020.11.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Not all patients with stage III non-small cell lung cancer (NSCLC) are suitable for concurrent chemoradiation therapy (CRT). Local failure rate is high for sequential concurrent CRT. As such, there is a rationale for treatment intensification. METHODS AND MATERIALS Isotoxic intensity modulated radiation therapy (IMRT) is a multicenter feasibility study that combines different intensification strategies including hyperfractionation, acceleration, and dose escalation facilitated by IMRT. Patients with unresectable stage III NSCLC, Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0 to 2, and unsuitable for concurrent CRT were recruited. A minimum of 2 cycles of platinum-based chemotherapy was compulsory before starting radiation therapy (RT). Radiation dose was increased until a maximum dose of 79.2 Gy was reached or 1 or more of the organs at risk met predefined constraints. RT was delivered in 1.8-Gy fractions twice daily, and an RT quality assurance program was implemented. The primary objective was the delivery of isotoxic IMRT to a dose >60 Gy equivalent dose in 2-Gy fractions (EQD2 assuming an α/β ratio of 10 Gy for acute reacting tissues). RESULTS Thirty-seven patients were recruited from 7 UK centers. Median age was 69.9 years (range, 46-86 years). The male-to-female ratio was 17:18. ECOG PS was 0 to 5 in 14.2% of patients; PS was 1 to 27 in 77.1% of patients; PS was 2 to 3 in 8.6% of patients. Stage IIIA:IIIB ratio was 22:13 (62.9%:37.1%). Of 37 patients, 2 (5.4%) failed to achieve EQD2 > 60 Gy. Median prescribed tumor dose was 77.4 Gy (range, 61.2-79.2 Gy). A maximum dose of 79.2Gy was achieved in 14 patients (37.8%). Grade 3 esophagitis was reported in 2 patients, and no patients developed grade 3 to 4 pneumonitis. There were 3 grade 5 events: acute radiation pneumonitis, bronchopulmonary hemorrhage, and acute lung infection. Median follow-up at time of analysis was 25.4 months (range, 8.0-44.2) months for 11 of 35 survivors. The median survival was 18.1 months (95% confidence interval [CI], 13.9-30.6), 2-year overall survival was 33.6% (95% CI, 17.9-50.1), and progression-free survival was 23.9% (95% CI, 11.3-39.1). CONCLUSIONS Isotoxic IMRT is a well-tolerated and feasible approach to treatment intensification.
Collapse
|
4
|
Liu YE, Xue XY, Zhang R, Chen XJ, Ding YX, Liu CX, Qin YL, Li WQ, Ren XC, Lin Q. Study protocol: a multicentre, prospective, phase II trial of isotoxic hypofractionated concurrent chemoradiotherapy for non-small cell lung cancer. BMJ Open 2020; 10:e036295. [PMID: 33099491 PMCID: PMC7590348 DOI: 10.1136/bmjopen-2019-036295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Concurrent chemoradiotherapy with conventional fractionation has been acknowledged as one of the standard treatments for locally advanced non-small cell lung cancer (NSCLC). The radiotherapy dose of 60 Gy is far from enough for local tumour control. Due to this fact, hypofractionated radiotherapy can shorten the total treatment duration, partially counteract the accelerated repopulation of tumour cells and deliver a higher biological effective dose, it has been increasingly used for NSCLC. In theory, concurrent hypofractionated chemoradiotherapy can result in an enhanced curative effect. To date, the vast majority of radiotherapy prescriptions assign a uniform radiotherapy dose to all patients. However this kind of uniform radiotherapy prescription may lead to two consequences: excess damage to normal tissues for large tumours and insufficient dose for small tumours. Our study aims to evaluate whether delivering individualised radiotherapy dose is feasible using intensity-modulated radiotherapy. METHODS AND ANALYSIS Our study of individualised radiotherapy is a multicenter phase II trial. From April 2019, a total of 30 patients from three Chinese centres, with a proven histological or cytological diagnosis of inoperable NSCLC, will be recruited. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 69 Gy is reached. The primary end point is feasibility, with response rates, progression-free survival and overall survival as secondary end points. The concurrent chemotherapy regimen will be docetaxel plus lobaplatin. ETHICS AND DISSEMINATION The study has been approved by medical ethics committees from three research centres. The trial is conducted in accordance with the Declaration of Helsinki.The trial results will be disseminated through academic conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT03606239.
Collapse
Affiliation(s)
- Yue-E Liu
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
| | - Xiao-Ying Xue
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rui Zhang
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
| | - Xue-Ji Chen
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
| | - Yu-Xia Ding
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
| | - Chao-Xing Liu
- Department of Oncology, No.1 Hospital of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Yue-Liang Qin
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
| | - Wei-Qian Li
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
| | - Xiao-Cang Ren
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, Hebei, China
- Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Tsang Y, Hoskin P, Spezi E, Landau D, Lester J, Miles E, Conibear J. Assessment of contour variability in target volumes and organs at risk in lung cancer radiotherapy. Tech Innov Patient Support Radiat Oncol 2019; 10:8-12. [PMID: 32095541 PMCID: PMC7033767 DOI: 10.1016/j.tipsro.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
It aimed to examine if there’s any significant differences in TV & OAR contouring in lung trials QA. Statistically significant difference in trial protocol compliances of TV & OAR contouring existed. Trial protocol compliances of TV & OARs delineation can be identified through trial QA.
Aims This study aimed to examine whether any significant differences existed in trial protocol compliance in target volumes (TV) and organs at risk (OARs) contouring amongst clinical oncologists specialised in lung cancer radiotherapy. Materials/methods Two lung radiotherapy trials that require all prospective investigators to submit pre-trial outlining quality assurance (QA) benchmark cases were selected. The contours from the benchmark cases were compared against a set of reference contours which were defined by the trial management group (TMG). In order to quantify the degree of variation in TV and OARs contouring, the matching index (MI), Dice coefficient (DICE), Jaccard index (JI), Van‘t Riet Index and geographical miss index (GMI) were calculated. Results A total of 198 structures contoured by 21 clinicians were collected from the outlining benchmark cases. There were 40 clinical target volumes (CTV), 32 spinal cord, 36 oesophagus, 36 heart and 54 lungs volumes included in the study. Analysis of the pre-trial benchmark cases revealed statistically significant differences (p ≤ 0.05) in trial protocol compliances between clinical oncologists’ target volume and organs at risk contours. Our results demonstrated that the lung contours had the highest level of conformity, followed by heart, CTV, spinal cord and oesophagus respectively. Conclusions This study showed that there was a statistically significant difference in trial protocol compliance for lung clinical oncologists’ TV and OARs contouring within the pre-trial QA benchmark cases. Trial protocol compliances of TV and OARs delineation can be identified through assessing outlining QA benchmark cases.
Collapse
Affiliation(s)
- Yatman Tsang
- NIHR Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood HA6 2RN, UK
- Corresponding author at: Radiotherapy Department, Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, UK.
| | - Peter Hoskin
- NIHR Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood HA6 2RN, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Emiliano Spezi
- Dept. of Medical Physics, Velindre Cancer Centre, Cardiff, UK
- School of Engineering, Cardiff University, UK
| | - David Landau
- Dept. of Clinical Oncology, Guy’s and St. Thomas’ Hospital, London SE1 7EH, UK
| | - Jason Lester
- Dept. of Clinical Oncology, Velindre Cancer Centre, Velindre Road, Cardiff CF14 2TL, UK
| | - Elizabeth Miles
- NIHR Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood HA6 2RN, UK
| | - John Conibear
- Dept. of Clinical Oncology, St. Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|
6
|
van Diessen J, De Ruysscher D, Sonke JJ, Damen E, Sikorska K, Reymen B, van Elmpt W, Westman G, Fredberg Persson G, Dieleman E, Bjorkestrand H, Faivre-Finn C, Belderbos J. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PET-boost trial). Radiother Oncol 2018; 131:166-173. [PMID: 30327236 DOI: 10.1016/j.radonc.2018.09.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The PET-boost randomized phase II trial (NCT01024829) investigated dose-escalation to the entire primary tumour or redistributed to regions of high pre-treatment FDG-uptake in inoperable non-small cell lung cancer (NSCLC) patients. We present a toxicity analysis of the 107 patients randomized in the study. MATERIALS AND METHODS Patients with stage II-III NSCLC were treated with an isotoxic integrated boost of ≥72 Gy in 24 fractions, with/without chemotherapy and strict dose limits. Toxicity was scored until death according to the CTCAEv3.0. RESULTS 77 (72%) patients were treated with concurrent chemoradiotherapy. Acute and late ≥G3 occurred in 41% and 25%. For concurrent (C) and sequential or radiotherapy alone (S), the most common acute ≥G3 toxicities were: dysphagia in 14.3% (C) and 3.3% (S), dyspnoea in 2.6% (C) and 6.7% (S), pneumonitis in 0% (C) and 6.7% (S), cardiac toxicity in 6.5% (C) and 3.3% (S). Seventeen patients died of which in 13 patients a possible relation to treatment could not be excluded. In 10 of these 13 patients progressive disease was scored. Fatal pulmonary haemorrhages and oesophageal fistulae were observed in 9 patients. CONCLUSION Personalized dose-escalation in inoperable NSCLC patients results in higher acute and late toxicity compared to conventional chemoradiotherapy. The toxicity, however, was within the boundaries of the pre-defined stopping rules.
Collapse
Affiliation(s)
- Judi van Diessen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eugène Damen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karolina Sikorska
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bart Reymen
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Gunnar Westman
- Department of Oncology, Rigshospitalet Copenhagen University Hospital, Denmark
| | | | - Edith Dieleman
- Department of Radiation Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Corinne Faivre-Finn
- The University of Manchester, Division of Cancer Sciences, The Christie NHS Foundation Trust, United Kingdom
| | - José Belderbos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Mapping Bone Marrow Response in the Vertebral Column by Positron Emission Tomography Following Radiotherapy and Erlotinib Therapy of Lung Cancer. Mol Imaging Biol 2018; 21:391-398. [DOI: 10.1007/s11307-018-1226-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Hudson A, Chan C, Woolf D, McWilliam A, Hiley C, O'Connor J, Bayman N, Blackhall F, Faivre-Finn C. Is heterogeneity in stage 3 non-small cell lung cancer obscuring the potential benefits of dose-escalated concurrent chemo-radiotherapy in clinical trials? Lung Cancer 2018; 118:139-147. [PMID: 29571993 DOI: 10.1016/j.lungcan.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
The current standard of care for the management of inoperable stage 3 non-small cell lung cancer (NSCLC) is concurrent chemoradiotherapy (cCRT) using radiotherapy dose-fractionation and chemotherapy regimens that were established 3 decades ago. In an attempt to improve the chances of long-term control from cCRT, dose-escalation of the radiotherapy dose was assessed in the RTOG 0617 randomised control study comparing the standard 60 Gy in 30 fractions with a high-dose arm receiving 74 Gy in 37 fractions. Following the publication of this trial the thoracic oncology community were surprised to learn that there was worse survival in the dose-escalated arm and that for now the standard of care must remain with the lower dose. In this article we review the RTOG 0617 paper with subsequent analyses and studies to explore why the use of dose-escalated cCRT in stage 3 NSCLC has not shown the benefits that were expected. The overarching theme of this opinion piece is how heterogeneity between stage 3 NSCLC cases in terms of patient, tumour, and clinical factors may obscure the potential benefits of dose-escalation by causing imbalances in the arms of studies such as RTOG 0617. We also examine recent advances in the staging, management, and technological delivery of radiotherapy in NSCLC and how these may be employed to optimise cCRT trials in the future and ensure that any potential benefits of dose-escalation can be detected.
Collapse
Affiliation(s)
- Andrew Hudson
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Clara Chan
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - David Woolf
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Alan McWilliam
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Crispin Hiley
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK; Division of Cancer Studies, King's College London, London, UK
| | - James O'Connor
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Neil Bayman
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Fiona Blackhall
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Corinne Faivre-Finn
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
9
|
Bissonnette JP, Yap ML, Clarke K, Shessel A, Higgins J, Vines D, Atenafu EG, Becker N, Leavens C, Bezjak A, Jaffray DA, Sun A. Serial 4DCT/4DPET imaging to predict and monitor response for locally-advanced non-small cell lung cancer chemo-radiotherapy. Radiother Oncol 2018; 126:347-354. [DOI: 10.1016/j.radonc.2017.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
|
10
|
Jochems A, Deist TM, El Naqa I, Kessler M, Mayo C, Reeves J, Jolly S, Matuszak M, Ten Haken R, van Soest J, Oberije C, Faivre-Finn C, Price G, de Ruysscher D, Lambin P, Dekker A. Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries. Int J Radiat Oncol Biol Phys 2017; 99:344-352. [PMID: 28871984 PMCID: PMC5575360 DOI: 10.1016/j.ijrobp.2017.04.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/13/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE Tools for survival prediction for non-small cell lung cancer (NSCLC) patients treated with chemoradiation or radiation therapy are of limited quality. In this work, we developed a predictive model of survival at 2 years. The model is based on a large volume of historical patient data and serves as a proof of concept to demonstrate the distributed learning approach. METHODS AND MATERIALS Clinical data from 698 lung cancer patients, treated with curative intent with chemoradiation or radiation therapy alone, were collected and stored at 2 different cancer institutes (559 patients at Maastro clinic (Netherlands) and 139 at Michigan university [United States]). The model was further validated on 196 patients originating from The Christie (United Kingdon). A Bayesian network model was adapted for distributed learning (the animation can be viewed at https://www.youtube.com/watch?v=ZDJFOxpwqEA). Two-year posttreatment survival was chosen as the endpoint. The Maastro clinic cohort data are publicly available at https://www.cancerdata.org/publication/developing-and-validating-survival-prediction-model-nsclc-patients-through-distributed, and the developed models can be found at www.predictcancer.org. RESULTS Variables included in the final model were T and N category, age, performance status, and total tumor dose. The model has an area under the curve (AUC) of 0.66 on the external validation set and an AUC of 0.62 on a 5-fold cross validation. A model based on the T and N category performed with an AUC of 0.47 on the validation set, significantly worse than our model (P<.001). Learning the model in a centralized or distributed fashion yields a minor difference on the probabilities of the conditional probability tables (0.6%); the discriminative performance of the models on the validation set is similar (P=.26). CONCLUSIONS Distributed learning from federated databases allows learning of predictive models on data originating from multiple institutions while avoiding many of the data-sharing barriers. We believe that distributed learning is the future of sharing data in health care.
Collapse
Affiliation(s)
- Arthur Jochems
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Timo M Deist
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Marc Kessler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Chuck Mayo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jackson Reeves
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Martha Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Randall Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Johan van Soest
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cary Oberije
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Corinne Faivre-Finn
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Gareth Price
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
11
|
Lei W, Jia J, Cao R, Song J, Hu L. Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer. J Appl Clin Med Phys 2017; 18:22-28. [PMID: 28656685 PMCID: PMC5874952 DOI: 10.1002/acm2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 11/11/2022] Open
Abstract
The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD.
Collapse
Affiliation(s)
- Weijie Lei
- University of Science and Technology of China, Hefei, China.,Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, China.,Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei, China.,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Jia
- Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, China.,Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei, China
| | - Ruifen Cao
- Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, China.,Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei, China
| | - Jing Song
- Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, China.,Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei, China
| | - Liqin Hu
- University of Science and Technology of China, Hefei, China.,Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, China.,Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei, China
| |
Collapse
|
12
|
Ren XC, Wang QY, Zhang R, Chen XJ, Wang N, Liu YE, Zong J, Guo ZJ, Wang DY, Lin Q. Accelerated hypofractionated three-dimensional conformal radiation therapy (3 Gy/fraction) combined with concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer: preliminary results of an early terminated phase II trial. BMC Cancer 2016; 16:288. [PMID: 27108080 PMCID: PMC4842268 DOI: 10.1186/s12885-016-2314-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Increasing the biological effective dose (BED) of radiotherapy for non-small cell lung cancer (NSCLC) can increase local control rates and improve overall survival. Compared with conventional fractionated radiotherapy, accelerated hypofractionated radiotherapy can yield higher BED, shorten the total treatment time, and theoretically obtain better efficacy. However, currently, there is no optimal hypofractionated radiotherapy regimen. Based on phase I trial results, we performed this phase II trial to further evaluate the safety and preliminary efficacy of accelerated hypofractionated three-dimensional conformal radiation therapy(3-DCRT) combined with concurrent chemotherapy for patients with unresectable stage III NSCLC. METHODS Patients with previously untreated unresectable stage III NSCLC received 3-DCRT with a total dose of 69 Gy, delivered at 3 Gy per fraction, once daily, five fractions per week, completed within 4.6 weeks. At the same time, platinum doublet chemotherapy was applied. RESULTS After 12 patients were enrolled in the group, the trial was terminated early. There were five cases of grade III radiation esophagitis, of which four cases completed the radiation doses of 51 Gy, 51 Gy, 54 Gy, and 66 Gy, and one case had 16 days of radiation interruption. The incidence of grade III acute esophagitis in patients receiving an irradiation dose per fraction ≥2.7 Gy on the esophagus was 83.3% (5/6). The incidence of symptomatic grade III radiation pneumonitis among the seven patients who completed 69 Gy according to the plan was 28.6% (2/7). The median local control (LC) and overall survival (OS) were not achieved; the 1-year LC rate was 59.3%, and the 1-year OS rate was 78.6%. CONCLUSION For unresectable stage III NSCLC, the accelerated hypofractionated radiotherapy with a total dose of 69 Gy (3 Gy/f) combined with concurrent chemotherapy might result in severe radiation esophagitis and pneumonitis to severely affect the completion of the radiotherapy. Therefore, we considered that this regimen was infeasible. During the hypofractionated radiotherapy with concurrent chemotherapy, the irradiation dose per fraction to esophagus should be lower than 2.7 Gy. Further studies should be performed using esophageal tolerance as a metric in dose escalation protocols. TRIAL REGISTRATION NCT02720614, the date of registration: March 23, 2016.
Collapse
Affiliation(s)
- Xiao-Cang Ren
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| | - Quan-Yu Wang
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| | - Rui Zhang
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| | - Xue-Ji Chen
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| | - Na Wang
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| | - Yue-E Liu
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| | - Jie Zong
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| | - Zhi-Jun Guo
- />Department of Radiology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552 P.R. China
| | - Dong-Ying Wang
- />Department of Cardiovascular Medicine, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552 P.R. China
| | - Qiang Lin
- />Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu City, Hebei Province 062552 P.R. China
| |
Collapse
|
13
|
Haslett K, Franks K, Hanna GG, Harden S, Hatton M, Harrow S, McDonald F, Ashcroft L, Falk S, Groom N, Harris C, McCloskey P, Whitehurst P, Bayman N, Faivre-Finn C. Protocol for the isotoxic intensity modulated radiotherapy (IMRT) in stage III non-small cell lung cancer (NSCLC): a feasibility study. BMJ Open 2016; 6:e010457. [PMID: 27084277 PMCID: PMC4838675 DOI: 10.1136/bmjopen-2015-010457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/14/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of 'isotoxic' radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable. METHODS AND ANALYSIS Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years. ETHICS AND DISSEMINATION The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West-Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally. TRIAL REGISTRATION NUMBER NCT01836692; Pre-results.
Collapse
Affiliation(s)
- Kate Haslett
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
| | - Kevin Franks
- Leeds Cancer Centre, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gerard G Hanna
- Department of Clinical Oncology, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Susan Harden
- Department of Clinical Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Cambridge, UK
| | - Matthew Hatton
- Department of Clinical Oncology, Weston Park Hospital, Sheffield, UK
| | - Stephen Harrow
- Department of Clinical Oncology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Fiona McDonald
- Department of Radiotherapy, The Royal Marsden, NHS Foundation Trust, London, UK
| | - Linda Ashcroft
- Manchester Academic Health Science Centre Trials Co-ordination Unit (MAHSC-CTU), The Christie NHS Foundation Trust, Manchester, UK
| | - Sally Falk
- Manchester Academic Health Science Centre Trials Co-ordination Unit (MAHSC-CTU), The Christie NHS Foundation Trust, Manchester, UK
| | - Nicki Groom
- Radiotherapy Trials Quality Assurance Team, Mount Vernon Hospital, Northwood, UK
| | - Catherine Harris
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Paula McCloskey
- Department of Clinical Oncology, Northern Ireland Cancer Centre, Belfast, UK
| | - Philip Whitehurst
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Neil Bayman
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
- The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester Cancer Research Centre (MCRC), Manchester, UK
| |
Collapse
|
14
|
Giaj-Levra N, Ricchetti F, Alongi F. What is changing in radiotherapy for the treatment of locally advanced nonsmall cell lung cancer patients? A review. Cancer Invest 2016; 34:80-93. [PMID: 26810755 DOI: 10.3109/07357907.2015.1114121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy treatment continues to have a relevant impact in the treatment of nonsmall cell cancer (NSCLC). Use of concurrent chemotherapy and radiotherapy is considered the gold standard in the treatment of locally advanced NSCLC but clinical outcomes are not satisfactory. Introduction of new radiotherapy technology and chemotherapy regimens are under investigation in this setting with the goal to improve unsatisfactory results. We report how radiotherapy is changing in the treatment of locally advanced NSCLC.
Collapse
Affiliation(s)
- Niccoló Giaj-Levra
- a Radiation Oncology Department , Sacro Cuore-Don Calabria Hospital , Negrar-Verona , Italy
| | - Francesco Ricchetti
- a Radiation Oncology Department , Sacro Cuore-Don Calabria Hospital , Negrar-Verona , Italy
| | - Filippo Alongi
- a Radiation Oncology Department , Sacro Cuore-Don Calabria Hospital , Negrar-Verona , Italy
| |
Collapse
|
15
|
De Tollenaere C, Lievens Y, Vandecasteele K, Vermaelen K, Surmont V. Unresectable stage III non-small-cell lung cancer: Have we made any progress? World J Respirol 2015; 5:140-151. [DOI: 10.5320/wjr.v5.i2.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is responsible for the most cancer deaths worldwide with an incidence that is still rising. One third of patients have unresectable stage IIIA or stage IIIB disease. The standard of care for locally advanced disease in patients with good performance status consists of combined modality therapy in particular concurrent chemoradiotherapy. But despite a lot of efforts done in the past, local control and survival of patients with unresectable stage III non-small-cell lung cancer (NSCLC) remains poor. Improving outcomes for patients with unresectable stage III NSCLC has therefore been an area of ongoing research. Research has focused on improving systemic therapy, improving radiation therapy or adding a maintenance therapy to consolidate the initial therapy. Also implementation of newer targeted therapies and immunotherapy has been investigated as well as the option of prophylactic cranial irradiation. This article reviews the latest literature on improving local control and preventing distant metastases. It seems that we have reached a plateau with conventional chemotherapy. Radiotherapy dose escalation did not improve outcome although increasing radiation dose-intensity with new radiotherapy techniques and the use of newer agents, e.g., immunotherapy might be promising. In the future well-designed clinical trials are necessary to prove those promising results.
Collapse
|
16
|
Nkhali L, Thureau S, Edet-Sanson A, Doyeux K, Benyoucef A, Gardin I, Michel P, Vera P, Dubray B. FDG-PET/CT during concomitant chemo radiotherapy for esophageal cancer: Reducing target volumes to deliver higher radiotherapy doses. Acta Oncol 2015; 54:909-15. [PMID: 25417733 DOI: 10.3109/0284186x.2014.973062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A planning study investigated whether reduced target volumes defined on FDG-PET/CT during radiotherapy allow total dose escalation without compromising normal tissue tolerance in patients with esophageal cancer. MATERIAL AND METHODS Ten patients with esophageal squamous cell carcinoma (SCC), candidate to curative-intent concomitant chemo-radiotherapy (CRT), had FDG-PET/CT performed in treatment position, before and during (Day 21) radiotherapy (RT). Four planning scenarios were investigated: 1) 50 Gy total dose with target volumes defined on pre-RT FDG-PET/CT; 2) 50 Gy with boost target volume defined on FDG-PET/CT during RT; 3) 66 Gy with target volumes from pre-RT FDG-PET/CT; and 4) 66 Gy with boost target volume from during-RT FDG-PET/CT. RESULTS The median metabolic target volume decreased from 12.9 cm3 (minimum 3.7-maximum 44.8) to 5.0 cm3 (1.7-13.5) (p=0.01) between pre- and during-RCT FDG-PET/CT. The median PTV66 was smaller on during-RT than on baseline FDG-PET/CT [108 cm3 (62.5-194) vs. 156 cm3 (68.8-251), p=0.02]. When total dose was set to 50 Gy, planning on during-RT FDG-PET/CT was associated with a marginal reduction in normal tissues irradiation. When total dose was increased to 66 Gy, planning on during-RT PET yielded significantly lower doses to the spinal cord [Dmax=44.1Gy (40.8-44.9) vs. 44.7Gy (41.5-45.0), p=0.007] and reduced lung exposure [V20Gy=23.2% (17.3-27) vs. 26.8% (19.7-30.2), p=0.006]. CONCLUSION This planning study suggests that adaptive RT based on target volume reduction assessed on FDG-PET/CT during treatment could facilitate dose escalation up to 66 Gy in patients with esophageal SCC.
Collapse
Affiliation(s)
- Lamyaa Nkhali
- Radiation Oncology and Medical Physics, QuantIF-LITIS (EA4108), Henri Becquerel Center and Rouen University Hospital, University of Rouen , France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McDonald F, Popat S. Combining targeted agents and hypo- and hyper-fractionated radiotherapy in NSCLC. J Thorac Dis 2014; 6:356-68. [PMID: 24688780 DOI: 10.3978/j.issn.2072-1439.2013.12.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Radical radiotherapy remains the cornerstone of treatment for patients with unresectable locally advanced non small cell lung cancer (NSCLC) either as single modality treatment for poor performance status patients or with sequential or concomitant chemotherapy for good performance status patients. Advances in understanding of tumour molecular biology, targeted drug development and experiences of novel agents in the advanced disease setting have brought targeted agents into the NSCLC clinic. In parallel experience using modified accelerated fractionation schedules in locally advanced disease have demonstrated improved outcomes compared to conventional fractionation in the single modality and sequential chemo-radiotherapy settings. Early studies of targeted agents combined with (chemo-) radiotherapy in locally advanced disease in different clinical settings are discussed below and important areas for future studies are high-lighted.
Collapse
|
18
|
Agrawal S. Challenges in optimizing chemoradiation in locally advanced non small-cell lung cancers in India. South Asian J Cancer 2014; 2:265-71. [PMID: 24455655 PMCID: PMC3889058 DOI: 10.4103/2278-330x.119893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Data supporting use of concurrent chemoradiation in locally advanced lung cancers comes from clinical trials from developed countries. Applicability and outcomes of such schedules in developing countries is not widely reported. There are various challenges in delivering chemoradiation in locally advanced non small cell lung cancer in developing countries which is highlighted by an audit of patients treated with chemoradiation in our center. This article deals with the challenges in the context of a developing country. We conclude that sequential chemoradiotherapy is better tolerated than concurrent chemoradiation in Indian patients with locally advanced non-small cell lung cancers. Patients with stage IIIa, normal weight or overweight, and adequate baseline pulmonary function should be offered concurrent chemoradiation.
Collapse
Affiliation(s)
- Sushma Agrawal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
19
|
Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 2013; 3:3529. [PMID: 24346241 PMCID: PMC3866632 DOI: 10.1038/srep03529] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/25/2013] [Indexed: 01/10/2023] Open
Abstract
Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the "gold standard". The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81-0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck.
Collapse
|
20
|
Christodoulou M, Bayman N, McCloskey P, Rowbottom C, Faivre-Finn C. New radiotherapy approaches in locally advanced non-small cell lung cancer. Eur J Cancer 2013; 50:525-34. [PMID: 24333095 DOI: 10.1016/j.ejca.2013.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/25/2013] [Accepted: 11/24/2013] [Indexed: 12/25/2022]
Abstract
Radiotherapy plays a major role in the treatment of patients with locally advanced non-small cell lung cancer (NSCLC), particularly since most patients are not suitable for surgery due to the extent of their disease, advanced age and multiple co-morbidities. Despite advances in local and systemic therapies local control and survival remain poor and there is a sense that a therapeutic plateau has been reached with conventional approaches. Strategies for the intensification of radiotherapy such as dose escalation have shown encouraging results in phase I-II trials, but the outcome of the phase III Radiation Therapy Oncology Group 0617 trial was surprisingly disappointing. Hyperfractionated and/or accelerated fractionating schedules have demonstrated superior survival compared to conventional fractionation at the expense of greater oesophageal toxicity. Modern radiotherapy techniques such as the integration of 4-dimensional computed tomography for planning, intensity modulated radiotherapy and image-guided radiotherapy have substantially enhanced the accuracy of the radiotherapy delivery through improved target conformality and incorporation of tumour respiratory motion. A number of studies are evaluating personalised radiation treatment including the concept of isotoxic radiotherapy and the boosting of the primary tumour based on functional imaging. Proton beam therapy is currently under investigation in locally advanced NSCLC. These approaches, either alone or in combination could potentially allow for further dose escalation and improvement of the therapeutic ratio and survival for patients with NSCLC.
Collapse
Affiliation(s)
| | - Neil Bayman
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Paula McCloskey
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Carl Rowbottom
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- The University of Manchester, Oxford Road, Greater Manchester, United Kingdom; Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
21
|
Liu YE, Lin Q, Meng FJ, Chen XJ, Ren XC, Cao B, Wang N, Zong J, Peng Y, Ku YJ, Chen Y. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study. Radiat Oncol 2013; 8:198. [PMID: 23937855 PMCID: PMC3751137 DOI: 10.1186/1748-717x-8-198] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/02/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. METHODS Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. RESULTS A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. CONCLUSION High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy.
Collapse
Affiliation(s)
- Yue-E Liu
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Fan-Jie Meng
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Xue-Ji Chen
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Xiao-Cang Ren
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Bin Cao
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Na Wang
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Jie Zong
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Yu Peng
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Ya-Jun Ku
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| | - Yan Chen
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
| |
Collapse
|
22
|
|
23
|
Rios Velazquez E, Aerts HJWL, Gu Y, Goldgof DB, De Ruysscher D, Dekker A, Korn R, Gillies RJ, Lambin P. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen. Radiother Oncol 2012; 105:167-73. [PMID: 23157978 PMCID: PMC3749821 DOI: 10.1016/j.radonc.2012.09.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 09/04/2012] [Accepted: 09/12/2012] [Indexed: 12/28/2022]
Abstract
PURPOSE To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS For 20 NSCLC patients (stages Ib-IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org. RESULTS High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2 cm(3), mean±SD) and manual delineations (81.9±94.1 cm(3); p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96). CONCLUSIONS Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the "gold standard". This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors.
Collapse
|
24
|
van Baardwijk A, Reymen B, Wanders S, Borger J, Ollers M, Dingemans AMC, Bootsma G, Geraedts W, Pitz C, Lunde R, Peters F, Lambin P, De Ruysscher D. Mature results of a phase II trial on individualised accelerated radiotherapy based on normal tissue constraints in concurrent chemo-radiation for stage III non-small cell lung cancer. Eur J Cancer 2012; 48:2339-46. [PMID: 22608261 DOI: 10.1016/j.ejca.2012.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sequential chemotherapy and individualised accelerated radiotherapy (INDAR) has been shown to be effective in non-small cell lung cancer (NSCLC), allowing delivering of high biological doses. We therefore performed a phase II trial (clinicaltrials.gov; NCT00572325) investigating the same strategy in concurrent chemo-radiation in stage III NSCLC. METHODS 137 stage III patients fit for concurrent chemo-radiation (PS 0-2; FEV(1) and DLCO ≥ 30%) were included from April 2006 till December 2009. An individualised prescribed dose based on normal tissue dose constraints was applied: mean lung dose (MLD) 19 Gy, spinal cord 54 Gy, brachial plexus 66 Gy, central structures 74 Gy. A total dose between 51 and 69 Gy was delivered in 1.5 Gy BID up to 45 Gy, followed by 2 Gy QD. Radiotherapy was started at the 2nd or 3rd course of chemotherapy. Primary end-point was overall survival (OS) and secondary end-point toxicity common terminology criteria for adverse events v3.0 (CTCAEv3.0). FINDINGS The median tumour volume was 76.4 ± 94.1 cc; 49.6% of patients had N2 and 32.1% N3 disease. The median dose was 65.0 ± 6.0 Gy delivered in 35 ± 5.7 days. Six patients (4.4%) did not complete radiotherapy. With a median follow-up of 30.9 months, the median OS was 25.0 months (2-year OS 52.4%). Severe acute toxicity (≥ G3, 35.8%) consisted mainly of G3 dysphagia during radiotherapy (25.5%). Severe late toxicity (≥ G3) was observed in 10 patients (7.3%). INTERPRETATION INDAR in concurrent chemo-radiation based on normal tissue constraints is feasible, even in patients with large tumour volumes and multi-level N2-3 disease, with acceptable severe late toxicity and promising 2-year survival.
Collapse
Affiliation(s)
- Angela van Baardwijk
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Intensity modulated radiation therapy with field rotation--a time-varying fractionation study. Health Care Manag Sci 2012; 15:138-54. [PMID: 22231648 DOI: 10.1007/s10729-012-9190-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
This paper proposes a novel mathematical approach to the beam selection problem in intensity modulated radiation therapy (IMRT) planning. The approach allows more beams to be used over the course of therapy while limiting the number of beams required in any one session. In the proposed field rotation method, several sets of beams are interchanged throughout the treatment to allow a wider selection of beam angles than would be possible with fixed beam orientations. The choice of beamlet intensities and the number of identical fractions for each set are determined by a mixed integer linear program that controls jointly for the distribution per fraction and the cumulative dose distribution delivered to targets and critical structures. Trials showed the method allowed substantial increases in the dose objective and/or sparing of normal tissues while maintaining cumulative and fraction size limits. Trials for a head and neck site showed gains of 25%-35% in the objective (average tumor dose) and for a thoracic site gains were 7%-13%, depending on how strict the fraction size limits were set. The objective did not rise for a prostate site significantly, but the tolerance limits on normal tissues could be strengthened with the use of multiple beam sets.
Collapse
|
26
|
Saka B, Rardin RL, Langer MP, Dink D. Adaptive intensity modulated radiation therapy planning optimization with changing tumor geometry and fraction size limits. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/19488300.2011.609871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Lopez Guerra JL, Wei Q, Yuan X, Gomez D, Liu Z, Zhuang Y, Yin M, Li M, Wang LE, Cox JD, Liao Z. Functional promoter rs2868371 variant of HSPB1 associates with radiation-induced esophageal toxicity in patients with non-small-cell lung cancer treated with radio(chemo)therapy. Radiother Oncol 2011; 101:271-7. [PMID: 21937138 DOI: 10.1016/j.radonc.2011.08.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/09/2023]
Abstract
PURPOSE We investigated the association between single-nucleotide polymorphisms (SNPs) in the heat shock protein beta-1 (HSPB1) gene and the risk of radiation-induced esophageal toxicity (RIET) in patients with non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS The experimental dataset comprised 120 NSCLC patients who were treated with radio(chemo)therapy between 2005 and 2009, when novel radiation techniques were implemented at MD Anderson. The validation dataset comprised 181 NSCLC patients treated between 1998 and 2004. We genotyped two SNPs of the HSPB1 gene (rs2868370 and rs2868371) by TaqMan assay. RESULTS Univariate and multivariate analyses of the experimental dataset showed that the CG/GG genotypes of HSPB1 rs2868371 were associated with significantly lower risk of grade ⩾3 RIET than the CC genotype (univariate hazard ratio [HR] 0.30; 95% confidence interval [CI], 0.10-0.91; P=0.033; multivariate HR 0.29; 95% CI, 0.09-0.97; P=0.045). This difference in risk was replicated in the validation cohort despite the different radiation techniques used during that period. CONCLUSIONS The CG/GG genotypes of HSPB1 rs2868371 were associated with lower risk of RIET, compared with the CC genotype in patients with NSCLC treated with radio(chemo)therapy. This finding should be validated in large multi-institutional prospective trials.
Collapse
Affiliation(s)
- Jose Luis Lopez Guerra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van Loon J, van Baardwijk A, Boersma L, Ollers M, Lambin P, De Ruysscher D. Therapeutic implications of molecular imaging with PET in the combined modality treatment of lung cancer. Cancer Treat Rev 2011; 37:331-43. [PMID: 21320756 DOI: 10.1016/j.ctrv.2011.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/13/2011] [Accepted: 01/21/2011] [Indexed: 12/23/2022]
Abstract
Molecular imaging with PET, and certainly integrated PET-CT, combining functional and anatomical imaging, has many potential advantages over anatomical imaging alone in the combined modality treatment of lung cancer. The aim of the current article is to review the available evidence regarding PET with FDG and other tracers in the combined modality treatment of locally advanced lung cancer. The following topics are addressed: tumor volume definition, outcome prediction and the added value of PET after therapy, and finally its clinical implications and future perspectives. The additional value of FDG-PET in defining the primary tumor volume has been established, mainly in regions with atelectasis or post-treatment effects. Selective nodal irradiation (SNI) of FDG-PET positive nodal stations is the preferred treatment in NSCLC, being safe and leading to decreased normal tissue exposure, providing opportunities for dose escalation. First results in SCLC show similar results. FDG-uptake on the pre-treatment PET scan is of prognostic value. Data on the value of pre-treatment FDG-uptake to predict response to combined modality treatment are conflicting, but the limited data regarding early metabolic response during treatment do show predictive value. The FDG response after radical treatment is of prognostic significance. FDG-PET in the follow-up has potential benefit in NSCLC, while data in SCLC are lacking. Radiotherapy boosting of radioresistant areas identified with FDG-PET is subject of current research. Tracers other than (18)FDG are promising for treatment response assessment and the visualization of intra-tumor heterogeneity, but more research is needed before they can be clinically implemented.
Collapse
Affiliation(s)
- Judith van Loon
- Maastricht University Medical Centre, Department of Radiation Oncology, MAASTRO Clinic, GROW Research Institute, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
For NSCLC, F-18 FDG-PET scans allow more thorough staging, thus avoiding unnecessary treatments. It reduces radiation treatment volumes because of the avoidance of mediastinal lymph nodes that are PET negative and hence reduces toxicity with the same radiation dose or enables radiation dose escalation with the same toxicity. Further research is needed to assess the effect of PET on survival. PET also reduces interobserver variability for delineating tumors and opens perspective for more automated delineation parts in radiation planning. F-18 FDG-PET-CT scans can already at present be used in routine clinical practice. It is of paramount importance that the necessary calibrations have been done and that strictly standardized protocols for every step in the treatment and planning chain are implemented. For the delineation of target volumes, a combination of PET-CT images, auto-delineation tools, and last not but least manual editing of the target volumes is necessary. The latter is needed because of resolution deficiencies of PET and any other imaging modality as well as the incorporation of other that image information (e.g., know patterns of tumor spread according to pathological studies, knowledge of endoscopic findings, and other tumor and patient factors) to come to target volume definitions that have proven their clinical efficacy.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Department of Radiotherapy (Maastro Clinic), GROW Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
30
|
van Elmpt W, Öllers M, van Herwijnen H, den Holder L, Vercoulen L, Wouters M, Lambin P, De Ruysscher D. Volume or Position Changes of Primary Lung Tumor During (Chemo-)Radiotherapy Cannot Be Used as a Surrogate for Mediastinal Lymph Node Changes: The Case for Optimal Mediastinal Lymph Node Imaging During Radiotherapy. Int J Radiat Oncol Biol Phys 2011; 79:89-95. [DOI: 10.1016/j.ijrobp.2009.10.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/08/2009] [Accepted: 10/23/2009] [Indexed: 11/15/2022]
|
31
|
Phernambucq E, Spoelstra F, Verbakel W, Postmus P, Melissant C, Maassen van den Brink K, Frings V, van de Ven P, Smit E, Senan S. Outcomes of concurrent chemoradiotherapy in patients with stage III non-small-cell lung cancer and significant comorbidity. Ann Oncol 2011; 22:132-138. [DOI: 10.1093/annonc/mdq316] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
32
|
Effectiveness of surgery and individualized high-dose hyperfractionated accelerated radiotherapy on survival in clinical stage I non-small cell lung cancer. A propensity score matched analysis. Radiother Oncol 2010; 97:413-7. [DOI: 10.1016/j.radonc.2010.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/16/2010] [Accepted: 08/22/2010] [Indexed: 11/22/2022]
|
33
|
Panettieri V, Malik ZI, Eswar CV, Landau DB, Thornton JMC, Nahum AE, Mayles WPM, Fenwick JD. Influence of dose calculation algorithms on isotoxic dose-escalation of non-small cell lung cancer radiotherapy. Radiother Oncol 2010; 97:418-24. [PMID: 20826028 DOI: 10.1016/j.radonc.2010.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/01/2010] [Accepted: 06/06/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE A series of phase I/II clinical trials are being initiated in several UK centres to explore the use of dose-escalated schedules for the treatment of non-small cell lung cancer (NSCLC). Among them the IDEAL-CRT trial (ISRCTN12155469) will investigate the introduction of individualised "isotoxic" treatment schedules based on the relative mean lung normalised total dose (rNTD(mean)), an estimator related to lung toxicity. Since treatment planning will be performed using different treatment planning systems (TPSs), for the quality assurance of the trial we have carried out work to quantify the influence of dose calculation algorithms based on the determination of rNTD(mean) and on the choice of individualised prescription doses. MATERIAL AND METHODS Twenty-five patient plans with stage I, II and III NSCLC were calculated, with the same prescription dose, using the Adaptive Convolve (AC) and Collapsed Cone (CC) algorithms of the Pinnacle TPS, the pencil beam convolution (PBC) and AAA algorithms of Eclipse, and the CC and pencil beam (PB) algorithms of Oncentra Masterplan (OMP). For the paired-lungs-GTV structure, dose-volume histograms were obtained and used to calculate the corresponding rNTD(mean) values and results obtained with the different algorithms were compared. RESULTS For most (19 out of 25) of the patients studied, no algorithm-to-algorithm differences were seen in dose prescription based on rNTD(mean). For the other 6 patients differences were within 2.3 Gy, except in one case where the difference was 4 Gy. CONCLUSIONS For the IDEAL-CRT trial no corrections need to be applied to the value of rNTD(mean) calculated using any of the more advanced convolution/superposition algorithms studied in this work. For the two pencil beam algorithms analysed, no correction is necessary for the data obtained with the Eclipse-PBC, while for OMP-PB data a small correction needs to be applied, by using a scaling factor, to make prescription doses consistent with the other algorithms investigated.
Collapse
Affiliation(s)
- Vanessa Panettieri
- Department of Physics, Clatterbridge Centre for Oncology NHS Foundation Trust, Wirral, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Development, external validation and clinical usefulness of a practical prediction model for radiation-induced dysphagia in lung cancer patients. Radiother Oncol 2010; 97:455-61. [DOI: 10.1016/j.radonc.2010.09.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/23/2010] [Accepted: 09/26/2010] [Indexed: 12/31/2022]
|
35
|
van Elmpt W, Öllers M, Lambin P, De Ruysscher D. Should patient setup in lung cancer be based on the primary tumor? An analysis of tumor coverage and normal tissue dose using repeated positron emission tomography/computed tomography imaging. Int J Radiat Oncol Biol Phys 2010; 82:379-85. [PMID: 21093173 DOI: 10.1016/j.ijrobp.2010.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE Evaluation of the dose distribution for lung cancer patients using a patient setup procedure based on the bony anatomy or the primary tumor. METHODS AND MATERIALS For 39 patients with non-small-cell lung cancer, the planning fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scan was registered to a repeated FDG-PET/CT scan made in the second week of treatment. Two patient setup methods were analyzed based on the bony anatomy or the primary tumor. The original treatment plan was copied to the repeated scan, and target and normal tissue structures were delineated. Dose distributions were analyzed using dose-volume histograms for the primary tumor, lymph nodes, lungs, and spinal cord. RESULTS One patient showed decreased dose coverage of the primary tumor caused by progressive disease and required replanning to achieve adequate coverage. For the other patients, the minimum dose to the primary tumor did not significantly deviate from the planned dose: -0.2 ± 1.7% (p = 0.71) and -0.1 ± 1.7% (p = 0.85) for the bony anatomy setup and the primary tumor setup, respectively. For patients (n = 31) with nodal involvement, 10% showed a decrease in minimum dose larger than 5% for the bony anatomy setup and 13% for the primary tumor setup. The mean lung dose exceeded the maximum allowed 20 Gy in 21% of the patients for the bony anatomy setup and in 13% for the primary tumor setup, whereas for the spinal cord this occurred in 10% and 13% of the patients, respectively. CONCLUSIONS In 10% and 13% of patients with nodal involvement, setup based on bony anatomy or primary tumor, respectively, led to important dose deviations in nodal target volumes. Overdosage of critical structures occurred in 10-20% of the patients. In cases of progressive disease, repeated imaging revealed underdosage of the primary tumor. Development of practical ways for setup procedures based on repeated high-quality imaging of all tumor sites during radiotherapy should therefore be an important research focus.
Collapse
Affiliation(s)
- Wouter van Elmpt
- Department of Radiation Oncology, MAASTRO, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Wanet M, Lee JA, Weynand B, De Bast M, Poncelet A, Lacroix V, Coche E, Grégoire V, Geets X. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother Oncol 2010; 98:117-25. [PMID: 21074882 DOI: 10.1016/j.radonc.2010.10.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to validate a gradient-based segmentation method for GTV delineation on FDG-PET in NSCLC through surgical specimen, in comparison with threshold-based approaches and CT. MATERIALS AND METHODS Ten patients with stage I-II NSCLC were prospectively enrolled. Before lobectomy, all patients underwent contrast enhanced CT and gated FDG-PET. Next, the surgical specimen was removed, inflated with gelatin, frozen and sliced. The digitized slices were used to reconstruct the 3D macroscopic specimen. GTVs were manually delineated on the macroscopic specimen and on CT images. GTVs were automatically segmented on PET images using a gradient-based method, a source to background ratio method and fixed threshold values at 40% and 50% of SUV(max). All images were finally registered. Analyses of raw volumes and logarithmic differences between GTVs and GTV(macro) were performed on all patients and on a subgroup excluding the poorly defined tumors. A matching analysis between the different GTVs was also conducted using Dice's similarity index. RESULTS Considering all patients, both lung and mediastinal windowed CT overestimated the macroscopy, while FDG-PET provided closer values. Among various PET segmentation methods, the gradient-based technique best estimated the true tumor volume. When analysis was restricted to well defined tumors without lung fibrosis or atelectasis, the mediastinal windowed CT accurately assessed the macroscopic specimen. Finally, the matching analysis did not reveal significant difference between the different imaging modalities. CONCLUSIONS FDG-PET improved the GTV definition in NSCLC including when the primary tumor was surrounded by modifications of the lung parenchyma. In this context, the gradient-based method outperformed the threshold-based ones in terms of accuracy and robustness. In other cases, the conventional mediastinal windowed CT remained appropriate.
Collapse
Affiliation(s)
- Marie Wanet
- Department of Radiation Oncology, Center of Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
[¹⁸F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys 2010; 81:698-705. [PMID: 20884128 DOI: 10.1016/j.ijrobp.2010.06.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/08/2010] [Accepted: 06/17/2010] [Indexed: 11/24/2022]
Abstract
PURPOSE Our hypothesis was that pretreatment inflammation in the lung makes pulmonary tissue more susceptible to radiation damage. The relationship between pretreatment [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake in the lungs (as a surrogate for inflammation) and the delivered radiation dose and radiation-induced lung toxicity (RILT) was investigated. METHODS AND MATERIALS We retrospectively studied a prospectively obtained cohort of 101 non-small-cell lung cancer patients treated with (chemo)radiation therapy (RT). [(18)F]FDG-positron emission tomography-computed tomography (PET-CT) scans used for treatment planning were studied. Different parameters were used to describe [(18)F]FDG uptake patterns in the lungs, excluding clinical target volumes, and the interaction with radiation dose. An increase in the dyspnea grade of 1 (Common Terminology Criteria for Adverse Events version 3.0) or more points compared to the pre-RT score was used as an endpoint for analysis of RILT. The effect of [(18)F]FDG and CT-based variables, dose, and other patient or treatment characteristics that effected RILT was studied using logistic regression. RESULTS Increased lung density and pretreatment [(18)F]FDG uptake were related to RILT after RT with univariable logistic regression. The 95th percentile of the [(18)F]FDG uptake in the lungs remained significant in multivariable logistic regression (p = 0.016; odds ratio [OR] = 4.3), together with age (p = 0.029; OR = 1.06), and a pre-RT dyspnea score of ≥1 (p = 0.005; OR = 0.20). Significant interaction effects were demonstrated among the 80th, 90th, and 95th percentiles and the relative lung volume receiving more than 2 and 5 Gy. CONCLUSIONS The risk of RILT increased with the 95th percentile of the [(18)F]FDG uptake in the lungs, excluding clinical tumor volume (OR = 4.3). The effect became more pronounced as the fraction of the 5%, 10%, and 20% highest standardized uptake value voxels that received more than 2 Gy to 5 Gy increased. Therefore, the risk of RILT may be decreased by applying sophisticated radiotherapy techniques to avoid areas in the lung with high [(18)F]FDG uptake.
Collapse
|
38
|
The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 2010; 186:471-81. [PMID: 20814658 DOI: 10.1007/s00066-010-2150-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/05/2010] [Indexed: 01/08/2023]
Abstract
Fluorodeoxyglucose positron emission tomography (FDG-PET) plays an increasingly important role in radiotherapy, beyond staging and selection of patients. Especially for non-small cell lung cancer, FDG-PET has, in the majority of the patients, led to the safe decrease of radiotherapy volumes, enabling radiation dose escalation and, experimentally, redistribution of radiation doses within the tumor. In limited-disease small cell lung cancer, the role of FDG-PET is emerging. For primary brain tumors, PET based on amino acid tracers is currently the best choice, including high-grade glioma. This is especially true for low-grade gliomas, where most data are available for the use of (11)C-MET (methionine) in radiation treatment planning. For esophageal cancer, the main advantage of FDG-PET is the detection of otherwise unrecognized lymph node metastases. In Hodgkin's disease, FDG-PET is essential for involved-node irradiation and leads to decreased irradiation volumes while also decreasing geographic miss. FDG-PET's major role in the treatment of cervical cancer with radiation lies in the detection of para-aortic nodes that can be encompassed in radiation fields. Besides for staging purposes, FDG-PET is not recommended for routine radiotherapy delineation purposes. It should be emphasized that using PET is only safe when adhering to strictly standardized protocols.
Collapse
|
39
|
Hatton MQF, Martin JE. Continuous hyperfractionated accelerated radiotherapy (CHART) and non-conventionally fractionated radiotherapy in the treatment of non-small cell lung cancer: a review and consideration of future directions. Clin Oncol (R Coll Radiol) 2010; 22:356-64. [PMID: 20399629 DOI: 10.1016/j.clon.2010.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
Abstract
There is a well-established role for radiation treatment in the management of non-small cell lung cancer. As a single modality, it is indicated as a radical treatment option for patients deemed unsuitable for chemotherapy with inoperable locoregional disease or who decline surgery. In this patient group, the evidence shows advantages for accelerated treatment regimes, e.g. continuous hyperfractionated accelerated radiotherapy (CHART). Research efforts should be directed towards dose escalation with the application of the new technologies available. The multi-modality approach of chemoradiotherapy is established in the radical treatment of non-small cell lung cancer in those who are inoperable, radically treatable and fit enough to receive chemotherapy. How best these two modalities are combined remains unclear, and the combination of CHART and other non-conventionally fractionated radiotherapy schedules with chemotherapy and targeted agents is another potentially productive research area.
Collapse
Affiliation(s)
- M Q F Hatton
- Department of Clinical Oncology, Weston Park Hospital, Sheffield, UK.
| | | |
Collapse
|
40
|
Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 2010; 76:S3-9. [PMID: 20171515 PMCID: PMC3431964 DOI: 10.1016/j.ijrobp.2009.09.040] [Citation(s) in RCA: 782] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 12/16/2022]
Abstract
Advances in dose-volume/outcome (or normal tissue complication probability, NTCP) modeling since the seminal Emami paper from 1991 are reviewed. There has been some progress with an increasing number of studies on large patient samples with three-dimensional dosimetry. Nevertheless, NTCP models are not ideal. Issues related to the grading of side effects, selection of appropriate statistical methods, testing of internal and external model validity, and quantification of predictive power and statistical uncertainty, all limit the usefulness of much of the published literature. Synthesis (meta-analysis) of data from multiple studies is often impossible because of suboptimal primary analysis, insufficient reporting and variations in the models and predictors analyzed. Clinical limitations to the current knowledge base include the need for more data on the effect of patient-related cofactors, interactions between dose distribution and cytotoxic or molecular targeted agents, and the effect of dose fractions and overall treatment time in relation to nonuniform dose distributions. Research priorities for the next 5-10 years are proposed.
Collapse
Affiliation(s)
- Søren M Bentzen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
van Baardwijk A, Wanders S, Boersma L, Borger J, Ollers M, Dingemans AMC, Bootsma G, Geraedts W, Pitz C, Lunde R, Lambin P, De Ruysscher D. Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I to III non-small-cell lung cancer. J Clin Oncol 2010; 28:1380-6. [PMID: 20142596 DOI: 10.1200/jco.2009.24.7221] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE We previously showed that individualized radiation dose escalation based on normal tissue constraints would allow safe administration of high radiation doses with low complication rate. Here, we report the mature results of a prospective, single-arm study that used this individualized tolerable dose approach. PATIENTS AND METHODS In total, 166 patients with stage III or medically inoperable stage I to II non-small-cell lung cancer, WHO performance status 0 to 2, a forced expiratory volume at 1 second and diffusing capacity of lungs for carbon monoxide >or= 30% were included. Patients were irradiated using an individualized prescribed total tumor dose (TTD) based on normal tissue dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8 Gy fractions twice daily. Only sequential chemoradiation was administered. The primary end point was overall survival (OS), and the secondary end point was toxicity according to Common Terminology Criteria of Adverse Events (CTCAE) v3.0. RESULTS The median prescribed TTD was 64.8 Gy (standard deviation, +/- 11.4 Gy) delivered in 25 +/- 5.8 days. With a median follow-up of 31.6 months, the median OS was 21.0 months with a 1-year OS of 68.7% and a 2-year OS of 45.0%. Multivariable analysis showed that only a large gross tumor volume significantly decreased OS (P < .001). Both acute (grade 3, 21.1%; grade 4, 2.4%) and late toxicity (grade 3, 4.2%; grade 4, 1.8%) were acceptable. CONCLUSION Individualized prescribed radical radiotherapy based on normal tissue constraints with sequential chemoradiation shows survival rates that come close to results of concurrent chemoradiation schedules, with acceptable acute and late toxicity. A prospective randomized study is warranted to further investigate its efficacy.
Collapse
Affiliation(s)
- Angela van Baardwijk
- Department of RadiationOncology (MAASTRO), GROWResearch Institute, Maastricht UniversityMedical Center, Maastricht.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): An exploratory clinical study. Radiother Oncol 2009; 91:393-8. [DOI: 10.1016/j.radonc.2009.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/19/2009] [Accepted: 02/27/2009] [Indexed: 11/22/2022]
|
43
|
Partridge M, Tree A, Brock J, McNair H, Fernandez E, Panakis N, Brada M. Improvement in tumour control probability with active breathing control and dose escalation: a modelling study. Radiother Oncol 2009; 91:325-9. [PMID: 19368984 DOI: 10.1016/j.radonc.2009.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/09/2009] [Accepted: 03/17/2009] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The prognosis from non-small cell lung cancer remains poor, even in those patients suitable for radical radiotherapy. The ability of radiotherapy to achieve local control is hampered by the sensitivity of normal structures to irradiation at the high tumour doses needed. This study aimed to look at the potential gain in tumour control probability from dose escalation facilitated by moderate deep inspiration breath-hold. METHOD The data from 28 patients, recruited into two separate studies were used. These patients underwent planning with and without the use of moderate deep inspiration breath-hold with an active breathing control (ABC) device. Whilst maintaining the mean lung dose (MLD) at the level of the conventional plan, the ABC plan dose was theoretically escalated to a maximum of 84 Gy, constrained by usual normal tissue tolerances. Calculations were performed using data for both lungs and for the ipsilateral lung only. Resulting local progression-free survival at 30 months was calculated using a standard logistic model. RESULTS The prescription dose could be escalated from 64 Gy to a mean of 73.7+/-6.5 Gy without margin reduction, which represents a statistically significant increase in tumour control probability from 0.15+/-0.01 to 0.29+/-0.11 (p<0.0001). The results were not statistically different whether both lungs or just the ipsilateral lung was used for calculations. CONCLUSION A near-doubling of tumour control probability is possible with modest dose escalation, which can be achieved with no extra increase in lung dose if deep inspiration breath-hold techniques are used.
Collapse
|
44
|
De Ruysscher D, Dehing C, Yu S, Wanders R, Öllers M, Dingemans AMC, Bootsma G, Hochstenbag M, Geraedts W, Pitz C, Simons J, Boersma L, Borger J, Dekker A, Lambin P. Dyspnea evolution after high-dose radiotherapy in patients with non-small cell lung cancer. Radiother Oncol 2009; 91:353-9. [DOI: 10.1016/j.radonc.2008.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/10/2008] [Accepted: 10/12/2008] [Indexed: 11/27/2022]
|
45
|
Yuan X, Liao Z, Liu Z, Wang LE, Tucker SL, Mao L, Wang XS, Martel M, Komaki R, Cox JD, Milas L, Wei Q. Single nucleotide polymorphism at rs1982073:T869C of the TGFbeta 1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol 2009; 27:3370-8. [PMID: 19380441 DOI: 10.1200/jco.2008.20.6763] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE In search of reliable biologic markers to predict the risk of normal tissue damage by radio(chemo)therapy before treatment, we investigated the association between single nucleotide polymorphisms (SNPs) in the transforming growth factor 1 (TGFbeta1) gene and risk of radiation pneumonitis (RP) in patients with non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Using 164 available genomic DNA samples from patients with NSCLC treated with definitive radio(chemo)therapy, we genotyped three SNPs of the TGFbeta1 gene (rs1800469:C-509T, rs1800471:G915C, and rs1982073:T869C) by polymerase chain reaction restriction fragment length polymorphism method. We used Kaplan-Meier cumulative probability to assess the risk of grade > or = 3 RP and Cox proportional hazards analyses to evaluate the effect of TGFbeta1 genotypes on such risk. RESULTS There were 90 men and 74 women in the study, with median age of 63 years. Radiation doses ranging from 60 to 70 Gy (median = 63 Gy) in 30 to 58 fractions were given to 158 patients (96.3%) and platinum-based chemotherapy to 147 (89.6%). Grade > or = 2 and grade > or = 3 RP were observed in 74 (45.1%) and 36 patients (22.0%), respectively. Multivariate analysis found CT/CC genotypes of TGFbeta1 rs1982073:T869C to be associated with a statistically significantly lower risk of RP grades > or = 2 (hazard ratio [HR] = 0.489; 95% CI, 0.227 to 0.861; P = .013) and grades > or = 3 (HR = 0.390; 95% CI, 0.197 to .774; P = 0.007), respectively, compared with the TT genotype, after adjustment for Karnofsky performance status, smoking status, pulmonary function, and dosimetric parameters. CONCLUSION Our results showed that CT/CC genotypes of TGFbeta1 rs1982073:T869C gene were associated with lower risk of RP in patients with NSCLC treated with definitive radio(chemo)therapy and thus may serve as a reliable predictor of RP.
Collapse
Affiliation(s)
- Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aerts HJWL, van Baardwijk AAW, Petit SF, Offermann C, Loon JV, Houben R, Dingemans AMC, Wanders R, Boersma L, Borger J, Bootsma G, Geraedts W, Pitz C, Simons J, Wouters BG, Oellers M, Lambin P, Bosmans G, Dekker ALAJ, De Ruysscher D. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan. Radiother Oncol 2009; 91:386-92. [PMID: 19329207 DOI: 10.1016/j.radonc.2009.03.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Non-small cell lung cancer (NSCLC) tumours are mostly heterogeneous. We hypothesized that areas within the tumour with a high pre-radiation (18)F-deoxyglucose (FDG) uptake, could identify residual metabolic-active areas, ultimately enabling selective-boosting of tumour sub-volumes. MATERIAL AND METHODS Fifty-five patients with inoperable stage I-III NSCLC treated with chemo-radiation or with radiotherapy alone were included. For each patient one pre-radiotherapy and one post-radiotherapy FDG-PET-CT scans were available. Twenty-two patients showing persistent FDG uptake in the primary tumour after radiotherapy were analyzed. Overlap fractions (OFs) were calculated between standardized uptake value (SUV) threshold-based auto-delineations on the pre- and post-radiotherapy scan. RESULTS Patients with residual metabolic-active areas within the tumour had a significantly worse survival compared to individuals with a complete metabolic response (p=0.002). The residual metabolic-active areas within the tumour largely corresponded (OF>70%) with the 50%SUV high FDG uptake area of the pre-radiotherapy scan. The hotspot within the residual area (90%SUV) was completely within the GTV (OF=100%), and had a high overlap with the pre-radiotherapy 50%SUV threshold (OF>84%). CONCLUSIONS The location of residual metabolic-active areas within the primary tumour after therapy corresponded with the original high FDG uptake areas pre-radiotherapy. Therefore, a single pre-treatment FDG-PET-CT scan allows for the identification of residual metabolic-active areas.
Collapse
Affiliation(s)
- Hugo J W L Aerts
- Department of Radiation Oncology (MAASTRO), Grow-School for Oncology and Developmental Biology, Maastricht University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Follow-up with 18FDG-PET–CT after radical radiotherapy with or without chemotherapy allows the detection of potentially curable progressive disease in non-small cell lung cancer patients: A prospective study. Eur J Cancer 2009; 45:588-95. [DOI: 10.1016/j.ejca.2008.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/09/2008] [Accepted: 10/16/2008] [Indexed: 12/30/2022]
|
48
|
The importance of patient characteristics for the prediction of radiation-induced lung toxicity. Radiother Oncol 2009; 91:421-6. [PMID: 19147245 DOI: 10.1016/j.radonc.2008.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/10/2008] [Accepted: 12/08/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE Extensive research has led to the identification of numerous dosimetric parameters as well as patient characteristics, associated with lung toxicity, but their clinical usefulness remains largely unknown. We investigated the predictive value of patient characteristics in combination with established dosimetric parameters. PATIENTS AND METHODS Data from 438 lung cancer patients treated with (chemo)radiation were used. Lung toxicity was scored using the Common Toxicity Criteria version 3.0. A multivariate model as well as two single parameter models, including either V(20) or MLD, was built. Performance of the models was expressed as the AUC (Area Under the Curve). RESULTS The mean MLD was 13.5 Gy (SD 4.5 Gy), while the mean V(20) was 21.0% (SD 7.3%). Univariate models with V(20) or MLD both yielded an AUC of 0.47. The final multivariate model, which included WHO-performance status, smoking status, forced expiratory volume (FEV(1)), age and MLD, yielded an AUC of 0.62 (95% CI: 0.55-0.69). CONCLUSIONS Within the range of radiation doses used in our clinic, dosimetric parameters play a less important role than patient characteristics for the prediction of lung toxicity. Future research should focus more on patient-related factors, as opposed to dosimetric parameters, in order to identify patients at high risk for developing radiation-induced lung toxicity more accurately.
Collapse
|
49
|
Dehing-Oberije C, Yu S, De Ruysscher D, Meersschout S, Van Beek K, Lievens Y, Van Meerbeeck J, De Neve W, Rao B, van der Weide H, Lambin P. Development and external validation of prognostic model for 2-year survival of non-small-cell lung cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 2008; 74:355-62. [PMID: 19095367 DOI: 10.1016/j.ijrobp.2008.08.052] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Radiotherapy, combined with chemotherapy, is the treatment of choice for a large group of non-small-cell lung cancer (NSCLC) patients. Recent developments in the treatment of these patients have led to improved survival. However, the clinical TNM stage is highly inaccurate for the prediction of survival, and alternatives are lacking. The objective of this study was to develop and validate a prediction model for survival of NSCLC patients, treated with chemoradiotherapy. PATIENTS AND METHODS The clinical data from 377 consecutive inoperable NSCLC patients, Stage I-IIIB, treated radically with chemoradiotherapy were collected. A prognostic model for 2-year survival was developed, using 2-norm support vector machines. The performance of the model was expressed as the area under the curve of the receiver operating characteristic and assessed using leave-one-out cross-validation, as well as two external data sets. RESULTS The final multivariate model consisted of gender, World Health Organization performance status, forced expiratory volume in 1 s, number of positive lymph node stations, and gross tumor volume. The area under the curve, assessed by leave-one-out cross-validation, was 0.74, and application of the model to the external data sets yielded an area under the curve of 0.75 and 0.76. A high- and low-risk group could be clearly identified using a risk score based on the model. CONCLUSION The multivariate model performed very well and was able to accurately predict the 2-year survival of NSCLC patients treated with chemoradiotherapy. The model could support clinicians in the treatment decision-making process.
Collapse
Affiliation(s)
- Cary Dehing-Oberije
- Department of Radiotherapy, MAASTRO Clinic, Research Institute of Growth and Development, University Hospital Maastricht, University Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Transition from a simple to a more advanced dose calculation algorithm for radiotherapy of non-small cell lung cancer (NSCLC): Implications for clinical implementation in an individualized dose-escalation protocol. Radiother Oncol 2008; 88:326-34. [DOI: 10.1016/j.radonc.2008.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/26/2008] [Accepted: 07/06/2008] [Indexed: 11/23/2022]
|