1
|
Dube S, Pareek V, Barthwal M, Antony F, Sasaki D, Rivest R. Stereotactic Body Radiation Therapy (SBRT) in prostate cancer in the presence of hip prosthesis - is it a contraindication? A narrative review. BMC Urol 2024; 24:152. [PMID: 39061006 PMCID: PMC11282858 DOI: 10.1186/s12894-024-01479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/06/2024] [Indexed: 07/28/2024] Open
Abstract
Hip replacement is a common orthopedic surgery in the aging population. With the rising incidence of prostate cancer, metallic hip prosthetics can cause considerable beam hardening and streak artifacts, leading to difficulty in identifying the target volumes and planning process for radiation treatment. The growing use of Stereotactic Body Radiation Therapy (SBRT) to treat prostate cancer is now well established. However, the use of this treatment modality in the presence of a hip prosthesis is poorly understood. There is enough literature on planning for external beam radiation treatment without any difficulties in the presence of hip prosthesis with conventional or Hypofractionated treatment. However, there is a shortage of literature on the impact of the prosthesis in SBRT planning, and there is a need for further understanding and measures to mitigate the obstacles in planning for SBRT in the presence of hip prosthesis. We present our review of the intricacies that need to be understood while considering SBRT in the presence of hip prostheses in prostate cancer treatment.
Collapse
Affiliation(s)
- Sheen Dube
- Department of Biochemistry, University of Winnipeg, Winnipeg, MB, Canada
| | - Vibhay Pareek
- Dept. of Radiation Oncology, CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Winnipeg, MB, MB, R3E 0V9, Canada.
| | - Mansi Barthwal
- Dept. of Radiation Oncology, CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Winnipeg, MB, MB, R3E 0V9, Canada
| | - Febin Antony
- Dept. of Radiation Oncology, CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Winnipeg, MB, MB, R3E 0V9, Canada
| | - David Sasaki
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Ryan Rivest
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
3
|
Varnava M, Sumida I, Oda M, Kurosu K, Isohashi F, Seo Y, Otani K, Ogawa K. Dosimetric comparison between volumetric modulated arc therapy planning techniques for prostate cancer in the presence of intrafractional organ deformation. JOURNAL OF RADIATION RESEARCH 2021; 62:309-318. [PMID: 33341880 PMCID: PMC7948894 DOI: 10.1093/jrr/rraa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to compare single-arc (SA) and double-arc (DA) treatment plans, which are planning techniques often used in prostate cancer volumetric modulated arc therapy (VMAT), in the presence of intrafractional deformation (ID) to determine which technique is superior in terms of target dose coverage and sparing of the organs at risk (OARs). SA and DA plans were created for 27 patients with localized prostate cancer. ID was introduced to the clinical target volume (CTV), rectum and bladder to obtain blurred dose distributions using an in-house software. ID was based on the motion probability function of each structure voxel and the intrafractional motion of the respective organs. From the resultant blurred dose distributions of SA and DA plans, various parameters, including the tumor control probability, normal tissue complication probability, homogeneity index, conformity index, modulation complexity score for VMAT, dose-volume indices and monitor units (MUs), were evaluated to compare the two techniques. Statistical analysis showed that most CTV and rectum parameters were significantly larger for SA plans than for DA plans (P < 0.05). Furthermore, SA plans had fewer MUs and were less complex (P < 0.05). The significant differences observed had no clinical significance, indicating that both plans are comparable in terms of target and OAR dosimetry when ID is considered. The use of SA plans is recommended for prostate cancer VMAT because they can be delivered in shorter treatment times than DA plans, and therefore benefit the patients.
Collapse
Affiliation(s)
- Maria Varnava
- Corresponding author. Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan. Tel: +81-6-6879-3482; Fax: +81-6-6879-3489;
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michio Oda
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keita Kurosu
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Koerber SA, Beuthien-Baumann B. [Modern radiation therapy planning and image-guided radiotherapy using the example of prostate cancer]. Radiologe 2021; 61:28-35. [PMID: 33057736 DOI: 10.1007/s00117-020-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CLINICAL/METHODICAL ISSUE Optimizing radiotherapy demands precise delineation of the target structure, not only before but also during the course of radiotherapy. STANDARD RADIOLOGICAL METHODS For many years, planning of external radiation treatment planning has been based on computer tomography data. METHODOLOGICAL INNOVATIONS With the advent of image-guided radiotherapy (IGRT), magnetic resonance imaging (MRI) and functional hybrid imaging are increasingly being integrated into radiation treatment planning. The development of the MR-linac can be seen as an innovation. PERFORMANCE The integration of MRI and hybrid imaging (positron emission tomography [PET]/CT, PET/MRI) in the treatment planning process enables more precise treatment planning due to the better morphological and functional information. The integration of MRI data on the MR-linac in daily position control enables adaptation of the irradiation plan to the current conditions. ACHIEVEMENTS Technical innovation such as the MR-linac as well as increasing use of hybrid imaging contribute to the objective of further individualization within (radio)oncology. PRACTICAL RECOMMENDATIONS Using the example of prostate cancer, the application of prostate-specific membrane antigen (PSMA) ligands and hybrid imaging offers great potential for individualized strategic treatment decisions. The MR-linac appears to be particularly suitable for radiation therapy of prostate cancer. Special attention must be paid to the technical aspects of positioning and data acquisition for the purpose of radiation treatment planning.
Collapse
Affiliation(s)
- Stefan A Koerber
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland. .,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Deutschland.
| | | |
Collapse
|
5
|
Szegedi M, Boehm C, Paxton A, Rassiah‐Szegedi P, Sarkar V, Zhao H, Su F, Kokeny KE, Lloyd S, Tward J, Salter BJ. Comparison of transperineal ultrasound image guidance technique to transabdominal technique for prostate radiation therapy. Med Phys 2020; 47:6113-6121. [DOI: 10.1002/mp.14522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Martin Szegedi
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Christine Boehm
- Universitätsklinikum Düsseldorf Klinik für Strahlentherapie und Radioonkologie Düsseldorf Germany
| | - Adam Paxton
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | | | - Vikren Sarkar
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Hui Zhao
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Frances Su
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Kristine E. Kokeny
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Shane Lloyd
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Jonathan Tward
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Bill J. Salter
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| |
Collapse
|
6
|
Abstract
Modern radiation therapy treatment planning and delivery is a complex process that relies on advanced imaging and computing technology as well as expertise from the medical team. The process begins with simulation imaging, in which three-dimensional computed tomography images (or magnetic resonance images in some cases) are used to characterize the patient anatomy. From there, the radiation oncologist delineates the relevant target/tumor volumes and normal tissue and communicates the goals for treatment planning. The planning process attempts to generate a radiation therapy treatment plan that will deliver a therapeutic dose of radiation to the tumor while sparing nearby normal tissue.
Collapse
|
7
|
Boda-Heggemann J, Sihono DSK, Streb L, Mertens L, Vogel L, Stieler F, Wenz F, Giordano FA, Kalisch I, Lohr F, Fleckenstein J. Ultrasound-based repositioning and real-time monitoring for abdominal SBRT in DIBH. Phys Med 2019; 65:46-52. [DOI: 10.1016/j.ejmp.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
|
8
|
Kim H, Chang AR, Cho S, Ye SJ. A patient-specific three-dimensional couplant pad for ultrasound image-guided radiation therapy: a feasibility study. Radiat Oncol 2018; 13:164. [PMID: 30176924 PMCID: PMC6122664 DOI: 10.1186/s13014-018-1098-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 08/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A wide application of ultrasound for radiation therapy has been hindered by a few issues such as skin and target deformations due to probe pressure, optical tracking disabilities caused by irregular surfaces and inter-user variations. The purpose of this study was to overcome these barriers by using a patient-specific three-dimensional (3D) couplant pad (CP). METHODS A patient skin mold was designed using a skin contour of simulation CT images and fabricated by a 3D printer. A CP was then casted by pouring gelatin solution into a container accommodating the mold. To validate the use of the CP in positioning accuracy and imaging quality, phantom tests were carried out in our ultrasound-based localization system and then daily ultrasound images of four patients were acquired with and without the CP before treatment. RESULTS In the phantom study, the use of CP increased a contrast-to-noise ratio from 2.4 to 4.0. The positioning accuracies in the US scans with and without the CP were less than 1 mm in all directions. In the patient study, the use of CP decreased the centroid offset of the target volume after target position alignment from 4.4 mm to 2.9 mm. One patient with a small volume of target showed a substantial increase in the inter-fractional target contour agreement (from 0.07 (poor agreement) to 0.31 (fair agreement) in Kappa values) by using the CP. CONCLUSIONS Our patient-specific 3D CP based on a 3D mold printing technique not only maintained the tracking accuracy but also reduced the inter-user variation, as well as that could potentially improve detectability of optical markers and target visibility for ultrasound image-guided radiotherapy.
Collapse
Affiliation(s)
- Heejung Kim
- Department of Biomedical Engineering, Seoul National University, Seoul, Korea.,Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul, Korea
| | - Ah Ram Chang
- Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul, Korea
| | - Sungwoo Cho
- Department of Surgery, Soonchunhyang University Hospital, Seoul, Korea
| | - Sung-Joon Ye
- Department of Transdisciplinary Studies, Seoul National University, Seoul, Korea. .,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
9
|
Zaorsky NG, Showalter TN, Ezzell GA, Nguyen PL, Assimos DG, D'Amico AV, Gottschalk AR, Gustafson GS, Keole SR, Liauw SL, Lloyd S, McLaughlin PW, Movsas B, Prestidge BR, Taira AV, Vapiwala N, Davis BJ. ACR Appropriateness Criteria for external beam radiation therapy treatment planning for clinically localized prostate cancer, part II of II. Adv Radiat Oncol 2017; 2:437-454. [PMID: 29114613 PMCID: PMC5605284 DOI: 10.1016/j.adro.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To present the most updated American College of Radiology (ACR) Appropriateness Criteria formed by an expert panel on the appropriate delivery of external beam radiation to manage stage T1 and T2 prostate cancer (in the definitive setting and post-prostatectomy) and to provide clinical variants with expert recommendations based on accompanying Appropriateness Criteria for target volumes and treatment planning. METHODS AND MATERIALS The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a panel of multidisciplinary experts. The guideline development and revision process includes an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In instances in which evidence is lacking or equivocal, expert opinion may supplement available evidence to recommend imaging or treatment. RESULTS The panel summarizes the most recent and relevant literature on the topic, including organ motion and localization methods, image guidance, and delivery techniques (eg, 3-dimensional conformal intensity modulation). The panel presents 7 clinical variants, including (1) a standard case and cases with (2) a distended rectum, (3) a large-volume prostate, (4) bilateral hip implants, (5) inflammatory bowel disease, (6) prior prostatectomy, and (7) a pannus extending into the radiation field. Each case outlines the appropriate techniques for simulation, treatment planning, image guidance, dose, and fractionation. Numerical rating and commentary is given for each treatment approach in each variant. CONCLUSIONS External beam radiation is a key component of the curative management of T1 and T2 prostate cancer. By combining the most recent medical literature, these Appropriateness Criteria can aid clinicians in determining the appropriate treatment delivery and personalized approaches for individual patients.
Collapse
Affiliation(s)
| | | | - Gary A. Ezzell
- Mayo Clinic, Phoenix, Arizona (research author [contributing])
| | - Paul L. Nguyen
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts (panel vice-chair)
| | - Dean G. Assimos
- University of Alabama School of Medicine, Birmingham, Alabama (American Urological Association)
| | - Anthony V. D'Amico
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts (American Society of Clinical Oncology)
| | | | | | | | | | - Shane Lloyd
- Huntsman Cancer Hospital, Salt Lake City, Utah
| | | | | | | | - Al V. Taira
- Mills Peninsula Hospital, San Mateo, California
| | - Neha Vapiwala
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
10
|
Comparison of 2 transabdominal ultrasound image guidance techniques for prostate and prostatic fossa radiation therapy. Pract Radiat Oncol 2017; 7:e99-e107. [PMID: 28274407 DOI: 10.1016/j.prro.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/09/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Our clinic is a long-term user of a first-generation transabdominal (TA) biplanar (2.5-dimensional [2.5D]) ultrasound image guidance (USIG) system for prostate cancer treatments. We are also an early adopter and development partner for a new, second-generation, fully 3D USIG system that allows for volumetric TA localization of the prostate. This new system has been evaluated at our institution by direct comparison with the previously established first-generation TA method for prostate alignment. METHODS AND MATERIALS We compared the 2 TA-USIG methods on the same subjects and same treatment sessions. A total of 1428 fractions delivered to 41 treated patients (16 intact prostate, 25 fossa) were analyzed regarding the agreement of alignments between the 2 US positioning systems. Patients were first aligned to tattoos using treatment room lasers. TA-USIG using the 3D system was then performed to align contours derived during the computed tomography simulation process to their corresponding daily US-visualized structures. The US-3D system image guidance shifts were performed and recorded as the "initial" shifts. A 2.5D system alignment was then immediately performed using the same computed tomography derived reference contours and the indicated shifts, relative to the 3D system, were recorded as the difference between the 2 alignment methods. RESULTS The average difference between the 2 TA-USIG alignments for all patients was 0.4 ± 0.7 mm, 0.7 ± 0.9 mm, and 0.5 ± 0.9 mm in the left-right, anteroposterior, and superoinferior directions, respectively. No significant difference in system agreement between intact prostate versus fossa patients was observed. CONCLUSION Our comparison of an established 2.5D USIG method with a newer, fully 3D approach for prostate alignment of 41 different patients (1428 fractions) shows excellent agreement with each other, despite the nontrivial difference in imaging approaches. This shows that the 2 specific USIG approaches yield results that are consistent with each other, and that the USIG modality yields consistent results within the modality.
Collapse
|
11
|
Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT. Strahlenther Onkol 2016; 193:221-228. [PMID: 27928626 DOI: 10.1007/s00066-016-1084-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The accuracy of a transperineal three-dimensional ultrasound system (3DUS) was assessed for prostate positioning and compared to fiducial- and bone-based positioning in kV cone beam computed tomography (CBCT) during definitive radiotherapy of prostate cancer. METHODS Each of the 7 patients had three fiducial markers implanted into the prostate before treatment. Prostate positioning was simultaneously measured by 3DUS and CBCT before each fraction. In total, 177 pairs of 3DUS and CBCT scans were collected. Bone-match and seed-match were performed for each CBCT. Using seed-match as a reference, the accuracy of 3DUS and bone-match was evaluated. Systematic and random errors as well as optimal setup margins were calculated for 3DUS and bone-match. RESULTS The discrepancy between 3DUS and seed-match in CBCT (average ± standard deviation) was 0.0 ± 1.7 mm laterally, 0.2 ± 2.0 mm longitudinally, and 0.3 ± 1.7 mm vertically. Using seed-match as a reference, systematic errors for 3DUS were 1.2 mm, 1.1 mm, and 0.9 mm; and random errors were 1.4 mm, 1.8 mm, and 1.6 mm, on lateral, longitudinal, and vertical axes, respectively. By analogy, the difference of bone-match to seed-match was 0.1 ± 1.1 mm laterally, 1.3 ± 3.8 mm longitudinally, and 1.3 ± 4.5 mm vertically. Systematic errors were 0.5 mm, 2.2 mm, and 2.6 mm; and random errors were 1.0 mm, 3.1 mm, and 3.9 mm on lateral, longitudinal, and vertical axes, respectively. The accuracy of 3DUS was significantly higher than that of bone-match on longitudinal and vertical axes, but not on the lateral axis. CONCLUSION Image-guided radiotherapy of prostate cancer based on transperineal 3DUS was feasible, with overall small discrepancy to seed-match in CBCT in this retrospective study. Compared to bone-match, transperineal 3DUS achieved higher accuracy on longitudinal and vertical axes.
Collapse
|
12
|
Evaluation of a new transperineal ultrasound probe for inter-fraction image-guidance for definitive and post-operative prostate cancer radiotherapy. Phys Med 2016; 32:499-505. [PMID: 26851164 DOI: 10.1016/j.ejmp.2016.01.481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate a new system based on transperineal ultrasound (TP-US) acquisitions for prostate and post-prostatectomy pre-treatment positioning by comparing this device to cone-beam computed tomography (CBCT). METHODS The differences between CBCT/CT and TP-US/TP-US registrations were analyzed on 427 and 453 sessions for 13 prostate and 14 post-prostatectomy patients, respectively. The inter-operator variability (IOV) of the registration process, and the impact and variability of the probe pressure were also evaluated. RESULTS CBCT and TP-US shift agreements at ± 5 mm were 76.6%, 95.1%, 96.3% and 90.3%, 85.0%, 97.6% in anterior-posterior, superior-inferior and left-right directions, for prostate and post-prostatectomy patients, respectively. IOV values were similar between the 2 modalities. Displacements above 5 mm due to strong pressures were observed on both localizations, but such pressures were rarely reproduced during treatment courses. CONCLUSIONS High concordance between CBCT/CT and TP-US/TP-US localization of prostates or prostatic beds was found in this study. TP-US based prepositioning is a feasible method to ensure accurate treatment delivery, and represents an attractive alternative to invasive and/or irradiating imaging modalities.
Collapse
|
13
|
Hess CB, Thompson HM, Benedict SH, Seibert JA, Wong K, Vaughan AT, Chen AM. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy. Int J Radiat Oncol Biol Phys 2016; 94:978-92. [PMID: 27026304 DOI: 10.1016/j.ijrobp.2015.12.372] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning--a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of "gentle IGRT."
Collapse
Affiliation(s)
- Clayton B Hess
- Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California
| | - Holly M Thompson
- Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California
| | - Stanley H Benedict
- Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California
| | - J Anthony Seibert
- Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California
| | - Kenneth Wong
- Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California
| | - Andrew T Vaughan
- Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California
| | - Allen M Chen
- Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
14
|
Baker M, Juhler-Nøttrup T, Behrens CF. Impact of ultrasound probe pressure on uterine positional displacement in gynecologic cancer patients. ACTA ACUST UNITED AC 2015; 10:583-90. [PMID: 25482485 DOI: 10.2217/whe.14.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM The aim of this study was to quantify the uterine positional displacement induced by ultrasound probe pressure on a phantom and address the daily uterine motion in a healthy volunteer. MATERIALS & METHODS The phantom mimics the female pelvic region. The incorporated organs were subjected to displacement. A total of 42 phantom scans and 16 volunteer scans were acquired. The uterine shifts were measured in three directions. RESULTS & DISCUSSION The difference of uterine positional displacements, using pressure versus without pressure on the phantom, was not statistically significant. The daily uterine positional variations of the volunteer were larger than the probe pressure induced displacements. CONCLUSION The larger daily uterine shifts of the volunteer outweighed the submillimeter impact of the probe pressure in all directions.
Collapse
Affiliation(s)
- Mariwan Baker
- Department of Oncology(R), Radiotherapy Research Unit, Herlev Hospital, Herlev Ringvej 75, Herlev, Denmark
| | | | | |
Collapse
|
15
|
Ultrasound versus Cone-beam CT image-guided radiotherapy for prostate and post-prostatectomy pretreatment localization. Phys Med 2015; 31:997-1004. [PMID: 26422200 DOI: 10.1016/j.ejmp.2015.07.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the accuracy of an intra-modality trans-abdominal ultrasound (TA-US) device against soft-tissue based Cone-Beam Computed tomography (CBCT) registration for prostate and post-prostatectomy pre-treatment positioning. METHODS The differences between CBCT and US shifts were calculated on 25 prostate cancer patients (cohort A) and 11 post-prostatectomy patients (cohort B), resulting in 284 and 106 paired shifts for cohorts A and B, respectively. As a second step, a corrective method was applied to the US registration results to decrease the systematic shifts observed between TA-US and CBCT results. This method consisted of subtracting the mean difference obtained between US and CBCT registration results during the first 3 sessions from the US registration results of the subsequent sessions. Inter-operator registration variability (IOV) was also investigated for both modalities. RESULTS After initial review, about 20% of the US images were excluded because of insufficient quality. The average differences between US and CBCT were: 2.8 ± 4.1 mm, -0.9 ± 4.2 mm, 0.4 ± 3.4 mm for cohort A and 1.3 ± 5.0 mm, -2.3 ± 4.6 mm, 0.5 ± 2.9 mm for cohort B, in the anterior-posterior (AP), superior-inferior (SI) and lateral (LR) directions, respectively. After applying the corrective method, only the differences in the AP direction remained significant (p < 0.05). The IOV values were between 0.6-2.0 mm and 2.1-3.5 mm for the CBCT and TA-US modalities, respectively. CONCLUSIONS Based on the obtained results and on the image quality, the TA-US imaging modality is not safely interchangeable with CBCT for pre-treatment repositioning. Treatment margins adaptation based on the correction of the systematic shifts should be considered.
Collapse
|
16
|
Western C, Hristov D, Schlosser J. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance. Cureus 2015; 7:e280. [PMID: 26180704 PMCID: PMC4494460 DOI: 10.7759/cureus.280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 11/05/2022] Open
Abstract
External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included.
Collapse
Affiliation(s)
- Craig Western
- Department of Mechanical Engineering, Stanford University
| | | | | |
Collapse
|
17
|
Li M, Ballhausen H, Hegemann NS, Ganswindt U, Manapov F, Tritschler S, Roosen A, Gratzke C, Reiner M, Belka C. A comparative assessment of prostate positioning guided by three-dimensional ultrasound and cone beam CT. Radiat Oncol 2015; 10:82. [PMID: 25890013 PMCID: PMC4465303 DOI: 10.1186/s13014-015-0380-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/16/2015] [Indexed: 12/25/2022] Open
Abstract
Background The accuracy of the Elekta Clarity™ three-dimensional ultrasound system (3DUS) was assessed for prostate positioning and compared to seed- and bone-based positioning in kilo-voltage cone-beam computed tomography (CBCT) during a definitive radiotherapy. Methods The prostate positioning of 6 patients, with fiducial markers implanted into the prostate, was controlled by 3DUS and CBCT. In total, 78 ultrasound scans were performed trans-abdominally and compared to bone-matches and seed-matches in CBCT scans. Setup errors detected by the different modalities were compared. Systematic and random errors were analysed, and optimal setup margins were calculated. Results The discrepancy between 3DUS and seed-match in CBCT was −0.2 ± 2.7 mm laterally, −1.9 ± 2.3 mm longitudinally and 0.0 ± 3.0 mm vertically and significant only in longitudinal direction. Using seed-match as reference, systematic errors of 3DUS were 1.3 mm laterally, 0.8 mm longitudinally and 1.4 mm vertically, and random errors were 2.5 mm laterally, 2.3 mm longitudinally, and 2.7 mm vertically. No significant difference could be detected for 3DUS in comparison to bone-match in CBCT. Conclusions 3DUS is feasible for image guidance for patients with prostate cancer and appears comparable to CBCT based image guidance in the retrospective study. While 3DUS offers some distinct advantages such as no need of invasive fiducial implantation and avoidance of extra radiation, its disadvantages include the operator dependence of the technique and dependence on sufficient bladder filling. Further study of 3DUS for image guidance in a large patient cohort is warranted.
Collapse
Affiliation(s)
- Minglun Li
- Department of Radiation Oncology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Hendrik Ballhausen
- Department of Radiation Oncology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Nina-Sophie Hegemann
- Department of Radiation Oncology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Ute Ganswindt
- Department of Radiation Oncology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Stefan Tritschler
- Department of Urology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Alexander Roosen
- Department of Urology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Christian Gratzke
- Department of Urology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
18
|
Fontanarosa D, van der Meer S, Bamber J, Harris E, O'Shea T, Verhaegen F. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys Med Biol 2015; 60:R77-114. [PMID: 25592664 DOI: 10.1088/0031-9155/60/3/r77] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information.This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O'Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.
Collapse
Affiliation(s)
- Davide Fontanarosa
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN, the Netherlands. Oncology Solutions Department, Philips Research, High Tech Campus 34, Eindhoven 5656 AE, the Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Stereotactic ultrasound for target volume definition in a patient with prostate cancer and bilateral total hip replacement. Pract Radiat Oncol 2014; 5:197-202. [PMID: 25413396 DOI: 10.1016/j.prro.2014.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/08/2014] [Accepted: 08/11/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE Target-volume definition for prostate cancer in patients with bilateral metal total hip replacements (THRs) is a challenge because of metal artifacts in the planning computed tomography (CT) scans. Magnetic resonance imaging (MRI) can be used for matching and prostate delineation; however, at a spatial and temporal distance from the planning CT, identical rectal and vesical filling is difficult to achieve. In addition, MRI may also be impaired by metal artifacts, even resulting in spatial image distortion. Here, we present a method to define prostate target volumes based on ultrasound images acquired during CT simulation and online-matched to the CT data set directly at the planning CT. METHODS AND MATERIALS A 78-year-old patient with cT2cNxM0 prostate cancer with bilateral metal THRs was referred to external beam radiation therapy. T2-weighted MRI was performed on the day of the planning CT with preparation according to a protocol for reproducible bladder and rectal filling. The planning CT was obtained with the immediate acquisition of a 3-dimensional ultrasound data set with a dedicated stereotactic ultrasound system for online intermodality image matching referenced to the isocenter by ceiling-mounted infrared cameras. MRI (offline) and ultrasound images (online) were thus both matched to the CT images for planning. Daily image guided radiation therapy (IGRT) was performed with transabdominal ultrasound and compared with cone beam CT. RESULTS Because of variations in bladder and rectal filling and metal-induced image distortion in MRI, soft-tissue-based matching of the MRI to CT was not sufficient for unequivocal prostate target definition. Ultrasound-based images could be matched, and prostate, seminal vesicles, and target volumes were reliably defined. Daily IGRT could be successfully completed with transabdominal ultrasound with good accordance between cone beam CT and ultrasound. CONCLUSIONS For prostate cancer patients with bilateral THRs causing artifacts in planning CTs, ultrasound referenced to the isocenter of the CT simulator and acquired with intermodal online coregistration directly at the planning CT is a fast and easy method to reliably delineate the prostate and target volumes and for daily IGRT.
Collapse
|
20
|
Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Häring P, Debus J, Sterzing F. MR-guidance--a clinical study to evaluate a shuttle- based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 2014; 9:12. [PMID: 24401489 PMCID: PMC3904210 DOI: 10.1186/1748-717x-9-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this clinical study is to investigate the clinical feasibility and safety of a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Methods/Design A total of 40 patients with an indication for a neoadjuvant, adjuvant or definitive radiation treatment will be recruited including tumors of the head and neck region, thorax, upper gastrointestinal tract and pelvic region. All study patients will receive standard therapy, i.e. highly conformal radiation techniques like CT-guided intensity-modulated radiotherapy (IMRT) with or without concomitant chemotherapy or other antitumor medication, and additionally daily short MR scans in treatment position with the same immobilisation equipment used for irradiation for position verification and imaging of the anatomical and functional changes during the course of radiotherapy. For daily position control, skin marks and a stereotactic frame will be used for both imaging modalities. Patient transfer between the MR device and the linear accelerator will be performed with a shuttle system which uses an air-bearing patient platform for both procedures. The daily acquired MR and CT data sets will be digitally registrated, correlated with the planning CT and compared with each other regarding translational and rotational errors. Aim of this clinical study is to establish a shuttle-based approach for realising MR-guided radiotherapy for certain clinical situations. Second objectives are to compare MR-guided radiotherapy with the gold standard of CT image guidance for quality assurance of radiotherapy, to establish an appropiate MR protocol therefore, and to assess the possibility of using MR-based image guidance not only for position verification but also for adaptive strategies in radiotherapy. Discussion Compared to CT, MRI might offer the advantage of providing IGRT without delivering an additional radiation dose to the patients and the possibility of optimisation of adaptive therapy strategies due to its superior soft tissue contrast. However, up to now, hybrid MR-linac devices are still under construction and not clinically applicable. For the near future, a shuttle-based approach would be a promising alternative for providing MR-guided radiotherapy, so that the present study was initiated to determine feasibility and safety of such an approach. Besides positioning information, daily MR data under treatment offer the possibility to assess tumor regression and functional parameters, with a potential impact not only on adaptive therapy strategies but also on early assessment of treatment response.
Collapse
Affiliation(s)
- Tilman Bostel
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boda-Heggemann J, Frauenfeld A, Weiss C, Simeonova A, Neumaier C, Siebenlist K, Attenberger U, Heußel CP, Schneider F, Wenz F, Lohr F. Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases. Radiat Oncol 2014; 9:10. [PMID: 24401323 PMCID: PMC3909294 DOI: 10.1186/1748-717x-9-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023] Open
Abstract
Background Stereotactic Ablative RadioTherapy (SABR) of lung tumors/metastases has been shown to be an effective treatment modality with low toxicity. Outcome and toxicity were retrospectively evaluated in a unique single-institution cohort treated with intensity-modulated image-guided breath-hold SABR (igSABR) without external immobilization. The dose–response relationship is analyzed based on Biologically Equivalent Dose (BED). Patients and methods 50 lesions in 43 patients with primary NSCLC (n = 27) or lung-metastases of various primaries (n = 16) were consecutively treated with igSABR with Active-Breathing-Coordinator (ABC®) and repeat-breath-hold cone-beam-CT. After an initial dose-finding/-escalation period, 5x12 Gy for peripheral lesions and single doses of 5 Gy to varying dose levels for central lesions were applied. Overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC) and toxicity were analyzed. Results The median BED2 was 83 Gy. 12 lesions were treated with a BED2 of <80 Gy, and 38 lesions with a BED2 of >80 Gy. Median follow-up was 15 months. Actuarial 1- and 2-year OS were 67% and 43%; respectively. Cause of death was non-disease-related in 27%. Actuarial 1- and 2-year PFS was 42% and 28%. Progression site was predominantly distant. Actuarial 1- and 2 year LC was 90% and 85%. LC showed a trend for a correlation to BED2 (p = 0.1167). Pneumonitis requiring conservative treatment occurred in 23%. Conclusion Intensity-modulated breath-hold igSABR results in high LC-rates and low toxicity in this unfavorable patient cohort with inoperable lung tumors or metastases. A BED2 of <80 Gy was associated with reduced local control.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaar M, Figl M, Hoffmann R, Birkfellner W, Stock M, Georg D, Goldner G, Hummel J. Automatic patient alignment system using 3D ultrasound. Med Phys 2013; 40:041714. [PMID: 23556884 DOI: 10.1118/1.4795129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Recent developments in radiation therapy such as intensity modulated radiotherapy (IMRT) or dose painting promise to provide better dose distribution on the tumor. For effective application of these methods the exact positioning of the patient and the localization of the irradiated organ and surrounding structures is crucial. Especially with respect to the treatment of the prostate, ultrasound (US) allows for differentiation between soft tissue and was therefore applied by various repositioning systems, such as BAT or Clarity. The authors built a new system which uses 3D US at both sites, the CT room and the intervention room and applied a 3D/3D US/US registration for automatic repositioning. METHODS In a first step the authors applied image preprocessing methods to prepare the US images for an optimal registration process. For the 3D/3D registration procedure five different metrics were evaluated. To find the image metric which fits best for a particular patient three 3D US images were taken at the CT site and registered to each other. From these results an US registration error was calculated. The most successful image metric was then applied for the US/US registration process. The success of the whole repositioning method was assessed by taking the results of an ExacTrac system as golden standard. RESULTS The US/US registration error was found to be 2.99 ± 1.54 mm with respect to the mutual information metric by Mattes (eleven patients) which revealed to be the most suitable of the assessed metrics. For complete repositioning chain the error amounted to 4.15 ± 1.20 mm (ten patients). CONCLUSIONS The authors developed a system for patient repositioning which works automatically without the necessity of user interaction with an accuracy which seems to be suitable for clinical application.
Collapse
Affiliation(s)
- Marcus Kaar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna A-1090, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mayyas E, Chetty IJ, Chetvertkov M, Wen N, Neicu T, Nurushev T, Ren L, Lu M, Stricker H, Pradhan D, Movsas B, Elshaikh MA. Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: A prospective study. Med Phys 2013; 40:041707. [DOI: 10.1118/1.4794502] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Beaulieu L, Carlsson Tedgren A, Carrier JF, Davis SD, Mourtada F, Rivard MJ, Thomson RM, Verhaegen F, Wareing TA, Williamson JF. Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation. Med Phys 2012; 39:6208-36. [PMID: 23039658 DOI: 10.1118/1.4747264] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Luc Beaulieu
- Département de Radio-Oncologie, Centre hospitalier universitaire de Québec, Québec, Québec G1R 2J6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Onishi H, Kuriyama K, Komiyama T, Marino K, Araya M, Saito R, Aoki S, Maehata Y, Tominaga L, Sano N, Oguri M, Onohara K, Watanabe I, Koshiishi T, Ogawa K, Araki T. Large prostate motion produced by anal contraction. Radiother Oncol 2012; 104:390-4. [DOI: 10.1016/j.radonc.2012.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/04/2011] [Accepted: 04/29/2012] [Indexed: 11/26/2022]
|
26
|
Abstract
Radiotherapy technology has improved rapidly over the past two decades. New imaging modalities, such as positron emission (computed) tomography (PET, PET-CT) and high-resolution morphological and functional magnetic resonance imaging (MRI) have been introduced into the treatment planning process. Image-guided radiation therapy (IGRT) with 3D soft tissue depiction directly imaging target and normal structures, is currently replacing patient positioning based on patient surface markers, frame-based intracranial and extracranial stereotactic treatment and partially also 2D field verification methods. On-line 3D soft tissue-based position correction unlocked the full potential of new delivery techniques, such as intensity-modulated radiotherapy, by safely delivering highly conformal dose distributions that facilitate dose escalation and hypofractionation. These strategies have already resulted in better clinical outcomes, e.g. in prostate and lung cancer and are expected to further improve radiotherapy results.
Collapse
|
27
|
Abdel-Wahab M, Mahmoud O, Merrick G, Hsu ICJ, Arterbery VE, Ciezki JP, Frank SJ, Mohler JL, Moran BJ, Rosenthal SA, Rossi CJ, Yamada Y. ACR Appropriateness Criteria® external-beam radiation therapy treatment planning for clinically localized prostate cancer. J Am Coll Radiol 2012; 9:233-8. [PMID: 22469373 DOI: 10.1016/j.jacr.2011.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 12/20/2022]
Abstract
Image-based radiation treatment planning and localization have contributed to better targeting of the prostate and sparing of normal tissues. Guidelines are needed to address radiation dose delivery, including patient setup and immobilization, target volume definition, treatment planning, treatment delivery methods, and target localization. Guidelines for external-beam radiation treatment planning have been updated and are presented here. The use of appropriate doses, simulation techniques, and verification of field setup are essential for the accurate delivery of radiation therapy. The ACR Appropriateness Criteria(®) are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Collapse
Affiliation(s)
- May Abdel-Wahab
- Cleveland Clinic Foundation, Taussig Comprehensive Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boda-Heggemann J, Dinter D, Weiss C, Frauenfeld A, Siebenlist K, Attenberger U, Ottstadt M, Schneider F, Hofheinz RD, Wenz F, Lohr F. Hypofractionated image-guided breath-hold SABR (stereotactic ablative body radiotherapy) of liver metastases--clinical results. Radiat Oncol 2012; 7:92. [PMID: 22710033 PMCID: PMC3464721 DOI: 10.1186/1748-717x-7-92] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/18/2012] [Indexed: 02/03/2023] Open
Abstract
Purpose Stereotactic Ablative Body Radiotherapy (SABR) is a non-invasive therapy option for inoperable liver oligometastases. Outcome and toxicity were retrospectively evaluated in a single-institution patient cohort who had undergone ultrasound-guided breath-hold SABR. Patients and methods 19 patients with liver metastases of various primary tumors consecutively treated with SABR (image-guidance with stereotactic ultrasound in combination with computer-controlled breath-hold) were analysed regarding overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC), acute and late toxicity. Results PTV (planning target volume)-size was 108 ± 109cm3 (median 67.4 cm3). BED2 (Biologically effective dose in 2 Gy fraction) was 83.3 ± 26.2 Gy (median 78 Gy). Median follow-up and median OS were 12 months. Actuarial 2-year-OS-rate was 31%. Median PFS was 4 months, actuarial 1-year-PFS-rate was 20%. Site of first progression was predominantly distant. Regression of irradiated lesions was observed in 84% (median time to detection of regression was 2 months). Actuarial 6-month-LC-rate was 92%, 1- and 2-years-LC-rate 57%, respectively. BED2 influenced LC. When a cut-off of BED2 = 78 Gy was used, the higher BED2 values resulted in improved local control with a statistical trend to significance (p = 0.0999). Larger PTV-sizes, inversely correlated with applied dose, resulted in lower local control, also with a trend to significance (p-value = 0.08) when a volume cut-off of 67 cm3 was used. No local relapse was observed at PTV-sizes < 67 cm3 and BED2 > 78 Gy. No acute clinical toxicity > °2 was observed. Late toxicity was also ≤ °2 with the exception of one gastrointestinal bleeding-episode 1 year post-SABR. A statistically significant elevation in the acute phase was observed for alkaline-phosphatase; in the chronic phase for alkaline-phosphatase, bilirubine, cholinesterase and C-reactive protein. Conclusions A trend to statistically significant correlation of local progression was observed for BED2 and PTV-size. Dose-levels BED2 > 78 Gy cannot be reached in large lesions constituting a significant fraction of this series. Image-guided SABR (igSABR) is therefore an effective non-invasive treatment modality with low toxicity in patients with small inoperable liver metastases.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sterzing F, Engenhart-Cabillic R, Flentje M, Debus J. Image-guided radiotherapy: a new dimension in radiation oncology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2011; 108:274-80. [PMID: 21603562 DOI: 10.3238/arztebl.2011.0274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/17/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND The vital importance of imaging techniques in radiation oncology now extends beyond diagnostic evaluation and treatment planning. Recent technical advances have enabled the integration of various imaging modalities into the everyday practice of radiotherapy directly at the linear accelerator, improving the management of inter- and intrafractional variations. METHODS We present the topic of image-guided radiotherapy (IGRT) on the basis of a selective review of the literature. RESULTS IGRT can be performed with the aid of ultrasound, 2D X-ray devices, and computed tomography. It enables instant correction for positioning deviations and thereby improves the precision of daily radiotherapy fractions. It also enables immediate adjustment for changes in the position and filling status of the internal organs. Anatomical changes that take place over the course of radiotherapy, such as weight loss, tumor shrinkage, and the opening of atelectases, can be detected as they occur and accounted for in dosimetric calculations. There have not yet been any randomized controlled trials showing that IGRT causes fewer adverse effects or improves tumor control compared to conventional radiotherapy. CONCLUSION IGRT is more precise and thus potentially safer than conventional radiotherapy. It also enables the application of special radiotherapeutic techniques with narrow safety margins in the vicinity of radiosensitive organs. Proper patient selection for IGRT must take account of the goals of treatment and the planning characteristics, as well as the available technical and human resources. IGRT should be used for steep dose gradients near organs at risk, for highly conformal dose distributions in the gastrointestinal tract where adjustment for filling variations is needed, for high-precision dose escalation to avoid geographic miss, and for patients who cannot lie perfectly still because of pain or claustrophobia.
Collapse
Affiliation(s)
- Florian Sterzing
- Abteilung für Radio onkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Germany.
| | | | | | | |
Collapse
|
30
|
Hayden AJ, Martin JM, Kneebone AB, Lehman M, Wiltshire KL, Skala M, Christie D, Vial P, McDowall R, Tai KH. Australian & New Zealand Faculty of Radiation Oncology Genito-Urinary Group: 2010 consensus guidelines for definitive external beam radiotherapy for prostate carcinoma. J Med Imaging Radiat Oncol 2010; 54:513-25. [DOI: 10.1111/j.1754-9485.2010.02214.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Blessing M, Stsepankou D, Wertz H, Arns A, Lohr F, Hesser J, Wenz F. Breath-hold target localization with simultaneous kilovoltage/megavoltage cone-beam computed tomography and fast reconstruction. Int J Radiat Oncol Biol Phys 2010; 78:1219-26. [PMID: 20554124 DOI: 10.1016/j.ijrobp.2010.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. METHODS AND MATERIALS An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90° within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 × 512 × 512 volume within 6 s. RESULTS The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2-3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180°-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was <6 mGy. CONCLUSION The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV-MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.
Collapse
Affiliation(s)
- Manuel Blessing
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Boda-Heggemann J, Hofheinz RD, Weiss C, Mennemeyer P, Mai SK, Hermes P, Wertz H, Post S, Massner B, Hieber U, Hochhaus A, Wenz F, Lohr F. Combined adjuvant radiochemotherapy with IMRT/XELOX improves outcome with low renal toxicity in gastric cancer. Int J Radiat Oncol Biol Phys 2009; 75:1187-95. [PMID: 19409725 DOI: 10.1016/j.ijrobp.2008.12.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/02/2008] [Accepted: 12/10/2008] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Adjuvant radiochemotherapy improves survival of patients with advanced gastric cancer. We assessed in two sequential cohorts whether improved radiotherapy technique (IMRT) together with intensified chemotherapy improves outcome vs. conventional three-dimensional conformal radiotherapy (3D-CRT) and standard chemotherapy in these patients while maintaining or reducing renal toxicity. MATERIALS AND METHODS Sixty consecutive patients treated for gastric cancer either with 3D-CRT (n = 27) and IMRT (n = 33) were evaluated. More than 70% had undergone D2 resection. Although there was a slight imbalance in R0 status between cohorts, N+ status was balanced. Chemotherapy consisted predominantly of 5-fluorouracil/folinic acid (n = 36) in the earlier cohort and mostly of oxaliplatin/capecitabine (XELOX, n = 24) in the later cohort. Primary end points were overall survival (OS), disease-free survival (DFS), and renal toxicity based on creatinine levels. RESULTS Median follow-up (FU) of all patients in the 3D-CRT group was 18 months and in the IMRT group 22 months (median FU of surviving patients 67 months in the 3D-CRT group and 25 months in the IMRT group). Overall median survival (and DFS) were 18 (13) months in the 3D-CRT group and both not reached in the IMRT group (p = 0.0492 and 0.0216). Actuarial 2-year survival was 37% and 67% in the 3D-CRT and IMRT groups, respectively. No late renal toxicity >Grade 2 (LENT-SOMA scale) was observed in either cohort. CONCLUSION When comparing sequentially treated patient cohorts with similar characteristics, OS and DFS improved with the use of IMRT and intensified chemotherapy without signs of increased renal toxicity.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boda-Heggemann J, Mennemeyer P, Wertz H, Riesenacker N, Küpper B, Lohr F, Wenz F. Accuracy of ultrasound-based image guidance for daily positioning of the upper abdomen: an online comparison with cone beam CT. Int J Radiat Oncol Biol Phys 2009; 74:892-7. [PMID: 19394160 DOI: 10.1016/j.ijrobp.2009.01.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 01/17/2009] [Accepted: 01/20/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE Image-guided intensity-modulated radiotherapy can improve protection of organs at risk when large abdominal target volumes are irradiated. We estimated the daily positioning accuracy of ultrasound-based image guidance for abdominal target volumes by a direct comparison of daily imaging obtained with cone beam computed tomography (CBCT). METHODS AND MATERIALS Daily positioning (n = 83 positionings) of 15 patients was completed by using ultrasound guidance after an initial CBCT was obtained. Residual error after ultrasound was estimated by comparison with a second CBCT. Ultrasound image quality was visually rated using a scale of 1 to 4. RESULTS Of 15 patients, 7 patients had good sonographic imaging quality, 5 patients had satisfactory sonographic quality, and 3 patients were excluded because of unsatisfactory sonographic quality. When image quality was good, residual errors after ultrasound were -0.1 +/- 3.11 mm in the x direction (left-right; group systematic error M = -0.09 mm; standard deviation [SD] of systematic error, Sigma = 1.37 mm; SD of the random error, sigma = 2.99 mm), 0.93 +/- 4.31 mm in the y direction (superior-inferior, M = 1.12 mm; Sigma = 2.96 mm; sigma = 3.39 mm), and 0.71 +/- 3.15 mm in the z direction (anteroposterior; M = 1.01 mm; Sigma = 2.46 mm; sigma = 2.24 mm). For patients with satisfactory image quality, residual error after ultrasound was -0.6 +/- 5.26 mm in the x (M = 0.07 mm; Sigma = 5.67 mm; sigma = 4.86 mm), 1.76 +/- 4.92 mm in the y (M = 3.54 mm; Sigma = 4.1 mm; sigma = 5.29 mm), and 1.19 +/- 4.75 mm in the z (M = 0.82 mm; Sigma = 2.86 mm; sigma = 3.05 mm) directions. CONCLUSIONS In patients from whom good sonographic image quality could be obtained, ultrasound improved daily positioning accuracy. In the case of satisfactory image quality, ultrasound guidance improved accuracy compared to that of skin marks only minimally. If sonographic image quality was unsatisfactory, daily CBCT scanning improved treatment accuracy distinctly over that of ultrasound. Use of daily ultrasound or CBCT imaging can help to reduce PTV margins and protect organs at risk compared to the use of skin mark-based positioning.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Turkbey B, Pinto PA, Choyke PL. Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 2009; 6:191-203. [PMID: 19352394 PMCID: PMC3520096 DOI: 10.1038/nrurol.2009.27] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The multifocal nature of prostate cancer has necessitated whole-gland therapy in the past; however, since the widespread use of PSA screening, patients frequently present with less-advanced disease. Many men with localized disease wish to avoid the adverse effects of whole-gland therapy; therefore, focal therapy for prostate cancer is being considered as a treatment option. For focal treatment to be viable, accurate imaging is required for diagnosis, staging, and monitoring of treatment. Developments in MRI and PET have brought more attention to prostate imaging and the possibility of improving the accuracy of focal therapy. In this Review, we discuss the advantages and disadvantages of conventional methods for imaging the prostate, new developments for targeted imaging, and the possible role of image-guided biopsy and therapy for localized prostate cancer.
Collapse
Affiliation(s)
- Baris Turkbey
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1088, USA
| | | | | |
Collapse
|
35
|
Köhler FM, Boda-Heggemann J, Küpper B, Wolff D, Wertz H, Lohr F, Wenz F. Phantom measurements to quantify the accuracy of a commercially available cone-beam CT gray-value matching algorithm using multiple Fiducials. Strahlenther Onkol 2009; 185:49-55. [PMID: 19224147 DOI: 10.1007/s00066-009-1887-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
Abstract
PURPOSE : To assess the accuracy of the gray-value matching algorithm (XVI, Elekta) when multiple iodine-125 ((125)I) seeds are used as fiducials. MATERIAL AND METHODS : A phantom, consisting of a plastic box filled with water-dense material containing about 50 dummy seeds, developed primarily as a manual-skill trainer for (125)I seed implantation was used (Figure 1). The phantom was scanned first with a planning CT (PCT) at a slice thickness of 1 mm, 3 mm and 5 mm and with cone-beam CT (CBCT) to be associated with each reference PCT. Matching was performed with the XVI gray-value algorithm. The isocenter was marked with external markers at PCT. After matching, residual error was determined as the difference between planned isocenter and the isocenter that would have been treated based on the matching process. The procedure was performed twice, once without any manipulation (Figure 2) and once with deformation of the seed-bearing dummy prostate by inserting a plug into the phantom aperture that mimics the rectum (Figure 3). RESULTS : For the undeformed phantom the maximal residual error regarding the isocenter after gray-value matching around the seed-bearing region was 0.0 mm in x, y and z directions in case of the PCT with 1 mm thickness. The range of residual error was 0-0.4 mm in case of the PCT with 3 mm and 0-0.8 mm in x, y and z directions in case of 5 mm slice thickness, respectively (Figure 4). For the deformed phantom similar results were obtained (maximum error: 1.1 mm). CONCLUSION : The residual error after seed-based matching regarding the phantom isocenter was < 1.1 mm in all cases and for the clinical situation (3 mm slice thickness) always < 0.4 mm. The algorithm is therefore appropriate for precision radiotherapy.
Collapse
|
36
|
Chen GTY, Sharp GC, Mori S. A review of image-guided radiotherapy. Radiol Phys Technol 2009; 2:1-12. [DOI: 10.1007/s12194-008-0045-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
|
37
|
Pinkawa M, Pursch-Lee M, Asadpour B, Gagel B, Piroth MD, Klotz J, Nussen S, Eble MJ. Image-guided radiotherapy for prostate cancer. Implementation of ultrasound-based prostate localization for the analysis of inter- and intrafraction organ motion. Strahlenther Onkol 2008; 184:679-85. [PMID: 19107350 DOI: 10.1007/s00066-008-1902-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/09/2008] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate inter- and intrafraction organ motion with an ultrasound-based prostate localization system (BAT) for patients treated with intensity-modulated radiotherapy for prostate cancer. PATIENTS AND METHODS After set-up to external skin marks, 260/219 ultrasound-based alignments were performed before/after irradiation in 32 consecutive patients. Image quality was classified as good, satisfactory or poor. Patient- and imaging-related parameters were analyzed to identify predictors for poor image quality. Shifts in relation to the treatment planning computed tomography (CT) were recorded before/after irradiation in the superior-inferior (SI), anterior-posterior (AP) and right-left (RL) directions to determine inter-/intrafraction prostate motion. RESULTS The thickness of tissue anterior to the bladder and bladder volume during the ultrasound localization as well as an inferior prostate position relative to public symphysis (determined in treatment planning CT) were found to be independent predictors of a poor image quality. Interfraction shifts (mean+/-standard deviation: -0.2+/-4.8 [SI], 2.4+/-6.6 [AP] and 1.9+/-4.6 [RL]) varied much stronger than intrafraction shifts (0.0+/-2.0 [SI], 0.6+/-2.2 [AP] and 0.2+/-1.9 [RL]). A larger pressure of the ultrasound probe (determined as a larger reduction of the distance abdominal skin to prostate between the planning CT and the ultrasound) was applied in case of poor image quality, associated with larger systematic posterior prostate displacements. CONCLUSION Intrafraction prostate shifts are considerably smaller in comparison to interfraction shifts. Bladder filling and a small pressure on the ultrasound probe are crucial to achieve an adequate image quality without systematic prostate displacements.
Collapse
Affiliation(s)
- Michael Pinkawa
- Department of Radiation Therapy, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zeng GG, McGowan TS, Larsen TM, Bruce LM, Moran NK, Tsao JR, MacPherson MS. Calcifications are potential surrogates for prostate localization in image-guided radiotherapy. Int J Radiat Oncol Biol Phys 2008; 72:963-6. [PMID: 18954708 DOI: 10.1016/j.ijrobp.2008.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/17/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the feasibility of using calcifications as surrogates for the prostate position during cone-beam computed tomography (CBCT) image-guided radiotherapy. METHODS AND MATERIALS The twice-weekly CBCT images taken during the treatment course of 4 patients were retrospectively studied for the stability of the calcifications. The geometric center of three fiducial markers was used as the reference. The planning CT images of 131 prostate patients recently treated with external beam radiotherapy at our center were reviewed to estimate the calcification occurrence rate. Analysis was conducted using the Varian Eclipse treatment planning system. Two patients were treated using prostate calcifications as the landmark in on-line registration. Both the Varian standard and the low-dose CBCT modes were used for imaging. RESULTS The calcifications were found to be stable during the treatment course. At the 95% confidence interval, the difference between the distance from an identified calcification to the fiducial markers on CBCT and the distance on the planning CT scans was 0.2 +/- 2.0 mm, 0.8 +/- 2.2 mm, and 0.4 +/- 2.4 mm in the left-right, anteroposterior, and superoinferior direction, respectively. Of the 131 patients, 46 (35%) had well-defined calcifications either inside the prostate or near the borders. Our experience in treating the first 2 patients demonstrated that the calcifications are easily distinguished on low-dose scans and that calcification registration can be precisely performed. CONCLUSION The results of our study have shown that calcifications can be reliable markers of prostate position and allow for precise image guidance with a low-imaging dose. With this approach, potentially about one-third of prostate patients could benefit from precise image guidance without the invasive use of markers.
Collapse
Affiliation(s)
- Grace G Zeng
- Carlo Fidani Peel Cancer Center, the Credit Valley Hospital, Mississauga, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
39
|
Boda-Heggemann J, Köhler FM, Wertz H, Ehmann M, Hermann B, Riesenacker N, Küpper B, Lohr F, Wenz F. Intrafraction motion of the prostate during an IMRT session: a fiducial-based 3D measurement with Cone-beam CT. Radiat Oncol 2008; 3:37. [PMID: 18986517 PMCID: PMC2588616 DOI: 10.1186/1748-717x-3-37] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/05/2008] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Image-guidance systems allow accurate interfractional repositioning of IMRT treatments, however, these may require up to 15 minutes. Therefore intrafraction motion might have an impact on treatment precision. 3D geometric data regarding intrafraction prostate motion are rare; we therefore assessed its magnitude with pre- and post-treatment fiducial-based imaging with cone-beam-CT (CBCT). METHODS 39 IMRT fractions in 5 prostate cancer patients after 125I-seed implantation were evaluated. Patient position was corrected based on the 125I-seeds after pre-treatment CBCT. Immediately after treatment delivery, a second CBCT was performed. Differences in bone- and fiducial position were measured by seed-based grey-value matching. RESULTS Fraction time was 13.6 +/- 1.6 minutes. Median overall displacement vector length of 125I-seeds was 3 mm (M = 3 mm, Sigma = 0.9 mm, sigma = 1.7 mm; M: group systematic error, Sigma: SD of systematic error, sigma: SD of random error). Median displacement vector of bony structures was 1.84 mm (M = 2.9 mm, Sigma = 1 mm, sigma = 3.2 mm). Median displacement vector length of the prostate relative to bony structures was 1.9 mm (M = 3 mm, Sigma = 1.3 mm, sigma = 2.6 mm). CONCLUSION a) Overall displacement vector length during an IMRT session is < 3 mm.b) Positioning devices reducing intrafraction bony displacements can further reduce overall intrafraction motion.c) Intrafraction prostate motion relative to bony structures is < 2 mm and may be further reduced by institutional protocols and reduction of IMRT duration.
Collapse
Affiliation(s)
- Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Frederick Marc Köhler
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Hansjörg Wertz
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Michael Ehmann
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Brigitte Hermann
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Nadja Riesenacker
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Beate Küpper
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Frank Lohr
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| |
Collapse
|