1
|
Snoeijink TJ, van der Hoek JL, Mirgolbabaee H, Vlogman TG, Roosen J, Nijsen JFW, Groot Jebbink E. In Vitro Investigation of Microcatheter Behavior During Microsphere Injection in Transarterial Radioembolization. J Endovasc Ther 2025:15266028251318953. [PMID: 39989304 DOI: 10.1177/15266028251318953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
PURPOSE To experimentally investigate the behavior of a clinically used microcatheter during transarterial radioembolization (TARE) microsphere injection in a successively bifurcating in vitro model. MATERIALS AND METHODS A symmetrical phantom was developed which bifurcated 3 times into 8 outlets. A blood-mimicking fluid was pumped through the phantom using a physiological representative waveform. Holmium-165 microspheres were injected in a pulsed manner at 3 different locations using a standard microcatheter and a rigid counterpart with same dimensions as a control. Motion of the catheter was studied with a top- and side-view camera on the phantom. Microspheres were collected at each outlet and their distribution over the 8 outlets was analyzed. RESULTS Due to the pulsatile flow in the phantom, strengthened by the pulsatile microsphere injection, the clinical catheter showed maximum displacements of 0.87 mm within a vessel with a diameter of 3.6 mm. This motion resulted in a different microsphere distribution for the clinical catheter compared with the rigid counterpart (75.9% vs 49.4% of the microspheres went to outlet 1-4, respectively). CONCLUSION In this in vitro model, the motion of the clinical catheter affected distribution of microspheres. Since the pulsatile administration of microspheres resulted in increased motion of the clinical catheter, standardizing microsphere administration could be beneficial to reduce interprocedural differences in TARE. CLINICAL IMPACT Our study demonstrated that microsphere distribution during transarterial radioembolization (TARE) is affected by catheter motion. Furthermore, increased catheter motion was observed as a result of the injection profile. Predictive tools such as the contrast CBCT and scout dose use different injection profiles compared to therapeutic TARE injections, potentially altering catheter tip behaviour and microsphere distribution, which could compromise their predictive values. Additionally, current TARE microsphere injection guidelines provide limited details, which may lead to variability across institutes and interventional radiologists. Standardizing injection techniques could reduce catheter motion variability and may facilitate more consistent and predictable microsphere distribution patterns.
Collapse
Affiliation(s)
- Tess Josien Snoeijink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Jan Lucas van der Hoek
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Hadi Mirgolbabaee
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Tristan Gerard Vlogman
- Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Joey Roosen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Bomberna T, Vermijs S, Bonne L, Verslype C, Maleux G, Debbaut C. Spatiotemporal Analysis of Particle Spread to Assess the Hybrid Particle-Flow CFD Model of Radioembolization of HCC Tumors. IEEE Trans Biomed Eng 2024; 71:1219-1227. [PMID: 37938948 DOI: 10.1109/tbme.2023.3331085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Computational fluid dynamics (CFD) models can potentially aid in pre-operative planning of transarterial radioactive microparticle injections to treat hepatocellular carcinoma, but these models are computationally very costly. Previously, we introduced the hybrid particle-flow model as a surrogate, less costly modelling approach for the full particle distribution in truncated hepatic arterial trees. We hypothesized that higher cross-sectional particle spread could increase the match between flow and particle distribution. Here, we investigate whether truncation is still reliable for selective injection scenarios, and if spread is an important factor to consider for reliable truncation. METHODS Moderate and severe up- and downstream truncation for selective injection served as input for the hybrid model to compare downstream particle distributions with non-truncated models. In each simulation, particle cross-sectional spread was quantified for 5-6 planes. RESULTS Severe truncation gave maximum differences in particle distribution of ∼4-11% and ∼8-9% for down- and upstream truncation, respectively. For moderate truncation, these differences were only ∼1-1.5% and ∼0.5-2%. Considering all particles, spread increased downstream of the tip to 80-90%. However, spread was found to be much lower at specific timepoints, indicating high time-dependency. CONCLUSION Combining domain truncation with hybrid particle-flow modelling is an effective method to reduce computational complexity, but moderate truncation is more reliable than severe truncation. Time-dependent spread measures show where differences might arise between flow and particle modelling. SIGNIFICANCE The hybrid particle-flow model cuts down computational time significantly by reducing the physical domain, paving the way towards future clinical applications.
Collapse
|
3
|
Serhal M, Gordon AC, Brown DB, Toskich BB, Lewandowski RJ. Transarterial Radioembolization: Overview of Radioembolic Devices. Semin Intervent Radiol 2023; 40:461-466. [PMID: 37927522 PMCID: PMC10622244 DOI: 10.1055/s-0043-1772814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Affiliation(s)
- Muhamad Serhal
- Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Andrew C. Gordon
- Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Daniel B. Brown
- Division of Interventional Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Beau B. Toskich
- Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Florida
| | - Robert J. Lewandowski
- Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
4
|
Accuracy and reproducibility of a cone beam CT-based virtual parenchymal perfusion algorithm in the prediction of SPECT/CT anatomical and volumetric results during the planification of radioembolization for HCC. Eur Radiol 2023; 33:3510-3520. [PMID: 36651956 DOI: 10.1007/s00330-023-09390-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate anatomical and volumetric predictability of a cone beam computed tomography (CBCT)-based virtual parenchymal perfusion (VPP) software for the single-photon-emission computed tomography (SPECT)/CT imaging results during the work-up for transarterial radioembolization (TARE) procedure in patients with hepatocellular carcinoma (HCC). METHODS VPP was evaluated retrospectively on CBCT data of patients treated by TARE for HCC. 99mTc macroaggregated albumin particles (99mTc-MAA) uptake territories on work-up SPECT/CT was used as ground truth for the evaluation. Semi-quantitative evaluation consisted of the ranking of visual consistency of the parenchymal enhancement and portal vein tumoral involvement on VPP and 99mTc-MAA SPECT/CT, using a three-rank scale and two-rank scale, respectively. Inter-reader agreement was evaluated using a kappa coefficient. Quantitative evaluation included absolute volume error calculation and Pearson correlation between volumes enhanced territories on VPP and 99mTc-MAA SPECT/CT. RESULTS Fifty-two CBCTs were performed in 33 included patients. Semi-quantitative evaluation showed a good concordance between actual 99mTc-MAA uptake and the virtual enhanced territories in 73% and 75% of cases; a mild concordance in 12% and 10% and a poor concordance in 15%, for the two readers. Kappa coefficient was 0.86. Portal vein involvement evaluation showed a good concordance in 58.3% and 66.7% for the two readers, respectively, with a kappa coefficient of 0.82. Quantitative evaluation showed a volume error of 0.46 ± 0.78 mL [0.01-3.55], and Pearson R2 factor at 0.75 with a p value < 0.01. CONCLUSION CBCT-based VPP software is accurate and reliable to predict 99mTc-MAA SPECT/CT anatomical and volumetric results in HCC patients during TARE. KEY POINTS • Virtual parenchymal perfusion (VPP) software is accurate and reliable in the prediction of 99mTc-MAA SPECT volumetric and targeting results in HCC patients during transarterial radioembolization (TARE). • VPP software may be used per-operatively to optimize the microcatheter position for 90Y infusion allowing precise tumor targeting while preserving non-tumoral parenchyma. • Post-operatively, VPP software may allow an accurate estimation of the perfused volume by each arterial branch and, thus, a precise 90Y dosimetry for TARE procedures.
Collapse
|
5
|
Bomberna T, Vermijs S, Lejoly M, Verslype C, Bonne L, Maleux G, Debbaut C. A Hybrid Particle-Flow CFD Modeling Approach in Truncated Hepatic Arterial Trees for Liver Radioembolization: A Patient-specific Case Study. Front Bioeng Biotechnol 2022; 10:914979. [PMID: 35711632 PMCID: PMC9197434 DOI: 10.3389/fbioe.2022.914979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. At its intermediate, unresectable stage, HCC is typically treated by local injection of embolizing microspheres in the hepatic arteries to selectively damage tumor tissue. Interestingly, computational fluid dynamics (CFD) has been applied increasingly to elucidate the impact of clinically variable parameters, such as injection location, on the downstream particle distribution. This study aims to reduce the computational cost of such CFD approaches by introducing a novel truncation algorithm to simplify hepatic arterial trees, and a hybrid particle-flow modeling approach which only models particles in the first few bifurcations. A patient-specific hepatic arterial geometry was pruned at three different levels, resulting in three trees: Geometry 1 (48 outlets), Geometry 2 (38 outlets), and Geometry 3 (17 outlets). In each geometry, 1 planar injection and 3 catheter injections (each with different tip locations) were performed. For the truncated geometries, it was assumed that, downstream of the truncated outlets, particles distributed themselves proportional to the blood flow. This allowed to compare the particle distribution in all 48 "outlets" for each geometry. For the planar injections, the median difference in outlet-specific particle distribution between Geometry 1 and 3 was 0.21%; while the median difference between outlet-specific flow and particle distribution in Geometry 1 was 0.40%. Comparing catheter injections, the maximum median difference in particle distribution between Geometry 1 and 3 was 0.24%, while the maximum median difference between particle and flow distribution was 0.62%. The results suggest that the hepatic arterial tree might be reliably truncated to estimate the particle distribution in the full-complexity tree. In the resulting hybrid particle-flow model, explicit particle modeling was only deemed necessary in the first few bifurcations of the arterial tree. Interestingly, using flow distribution as a surrogate for particle distribution in the entire tree was considerably less accurate than using the hybrid model, although the difference was much higher for catheter injections than for planar injections. Future work should focus on replicating and experimentally validating these results in more patient-specific geometries.
Collapse
Affiliation(s)
- Tim Bomberna
- IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Saar Vermijs
- IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Maryse Lejoly
- Department of Radiology and Medical Imaging, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Chris Verslype
- Department of Clinical Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Lawrence Bonne
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte Debbaut
- IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Talaie R, Torkian P, Amili O, Aboufirass Y, Rostambeigi N, Jalaeian H, Golzarian J. Particle Distribution in Embolotherapy, How Do They Get There? A Critical Review of the Factors Affecting Arterial Distribution of Embolic Particles. Ann Biomed Eng 2022; 50:885-897. [PMID: 35524027 DOI: 10.1007/s10439-022-02965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Embolization has tremendously evolved in recent years and has expanded to treatment of a variety of pathologic processes. There has been emerging evidence that the level of arterial occlusion and the distribution of embolic particles may play an important role in the clinical outcome. This is a comprehensive literature review to identify variables that play important role in determination of level of occlusion of blood vessels and distribution of embolic particles. The literature searches between 1996 to 2020 through PubMed and Ovid-MEDLINE yielded over 1030 articles of which 30 studies providing details on the level of occlusion are reviewed here. We divided the playing factors into characteristics of the particles, solution/injection and vascular bed. Accordingly, particle size, type and aggregation, compressibility/deformability, and biodegradability are categorized as the factors involving particles' behavioral nature. Infusion rate and concentration/dilution of the medium are related to the carrying solution. Hemodynamics and the arterial resistance are characteristics of the vascular bed that also play an important role in the distribution of embolic particles. Understanding and predicting the level of embolization is a complex multi-factor problem that requires more evidence, warranting further randomized controlled trials, and powered human and animal studies.
Collapse
Affiliation(s)
- Reza Talaie
- Department of Vascular and Interventional Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Pooya Torkian
- Department of Vascular and Interventional Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Omid Amili
- Department of Mechanical, Industrial and Manufacturing Engineering (MIME), University of Toledo, Toledo, OH, USA
| | | | - Nassir Rostambeigi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hamed Jalaeian
- Department of Interventional Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jafar Golzarian
- Department of Vascular and Interventional Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
d'Abadie P, Walrand S, Goffette P, Amini N, Maanen AV, Lhommel R, Jamar F. Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:768-773. [PMID: 34792032 DOI: 10.5152/dir.2021.20785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We aimed to determine whether antireflux (ARC) catheter may result in better tumor targeting in liver radioembolization using 90Y-resin microspheres. METHODS Patients treated with resin microspheres for hepatocellular carcinoma (HCC) and secondary liver malignancies were retrospectively analyzed. All patients underwent a 99mTc-macroaggregated albumin (99mTc-MAA) single photon emission computed tomography (SPECT) following the planning arteriography with a conventional end-hole catheter. For 90Y-microspheres injection, two groups were defined depending on the type of catheter used: an ARC group (n=38) and a control group treated with a conventional end-hole catheter (n=23). 90Y positron emission tomography computed tomography (PET/CT) was performed after the therapeutic arteriography. The choice of the catheter was not randomized, but left to the choice of the interventional radiologist. 99mTc-MAA SPECT and 90Y PET/CT were co-registered with the baseline imaging to determine a tumor to normal liver ratio (T/NL[MAA or 90Y]) and tumor dose (TD[MAA or 90Y]) for the planning and therapy. RESULTS Overall, 38 patients (115 lesions) and 23 patients (75 lesions) were analyzed in the ARC and control groups, respectively. In the ARC group, T/NL90Y and TD90Y were significantly higher than T/NLMAA and TDMAA. Median (IQR) T/NL90Y was 2.16 (2.15) versus 1.74 (1.43) for T/NLMAA (p < 0.001). Median (IQR) TD90Y was 90.96 Gy (98.31 Gy) versus 73.72 Gy (63.82 Gy) for TDMAA (p < 0.001). In this group, the differences were highly significant for neuroendocrine metastases (NEM) and HCC and less significant for colorectal metastases (CRM). In the control group, no significant differences were demonstrated. CONCLUSION The use of an ARC significantly improves tumor deposition in liver radioembolization with resin microspheres.
Collapse
Affiliation(s)
- Philippe d'Abadie
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Stephan Walrand
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Pierre Goffette
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Nadia Amini
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Aline van Maanen
- From the Department of Nuclear Medicine Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Renaud Lhommel
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - François Jamar
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| |
Collapse
|
8
|
Aramburu J, Antón R, Rodríguez-Fraile M, Sangro B, Bilbao JI. Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review. Cardiovasc Intervent Radiol 2021; 45:12-20. [PMID: 34518913 PMCID: PMC8716346 DOI: 10.1007/s00270-021-02956-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Yttrium-90 radioembolization (RE) is a widely used transcatheter intraarterial therapy for patients with unresectable liver cancer. In the last decade, computer simulations of hepatic artery hemodynamics during RE have been performed with the aim of better understanding and improving the therapy. In this review, we introduce the concept of computational fluid dynamics (CFD) modeling with a clinical perspective and we review the CFD models used to study RE from the fluid mechanics point of view. Finally, we show what CFD simulations have taught us about the hemodynamics during RE, the current capabilities of CFD simulations of RE, and we suggest some future perspectives.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra and CIBEREHD, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
9
|
Bibok A, Kim DW, Malafa M, Kis B. Minimally invasive image-guided therapy of primary and metastatic pancreatic cancer. World J Gastroenterol 2021; 27:4322-4341. [PMID: 34366607 PMCID: PMC8316906 DOI: 10.3748/wjg.v27.i27.4322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a challenging malignancy with limited treatment options and poor life expectancy. The only curative option is surgical resection, but only 15%-20% of patients are resectable at presentation because more than 50% of patients has distant metastasis at diagnosis and the rest of them has locally advanced pancreatic cancer (LAPC). The standard of care first line treatment for LAPC patients is chemotherapy with or without radiation therapy. Recent developments in minimally invasive ablative techniques may add to the treatment armamentarium of LAPC. There are increasing number of studies evaluating these novel ablative techniques, including radiofrequency ablation, microwave ablation, cryoablation and irreversible electroporation. Most studies which included pancreatic tumor ablation, demonstrated improved overall survival in LAPC patients. However, the exact protocols are yet to set up to which stage of the treatment algorithm ablative techniques can be added and in what kind of treatment combinations. Patients with metastatic pancreatic cancer has dismal prognosis with 5-year survival is only 3%. The most common metastatic site is the liver as 90% of pancreatic cancer patients develop liver metastasis. Chemotherapy is the primary treatment option for patients with metastatic pancreatic cancer. However, when the tumor is not responding to chemotherapy or severe drug toxicity develops, locoregional liver-directed therapies can provide an opportunity to control intrahepatic disease progression and improve survival in selected patients. During the last decade new therapeutic options arose with the advancement of minimally invasive technologies to treat pancreatic cancer patients. These new therapies have been a topic of increasing interest due to the severe prognostic implications of locally advanced and metastatic pancreatic cancer and the low comorbid risk of these procedures. This review summarizes new ablative options for patients with LAPC and percutaneous liver-directed therapies for patients with liver-dominant metastatic disease.
Collapse
Affiliation(s)
- Andras Bibok
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, United States
- Department of Transplantation & Surgery, Radiology Unit, Semmelweis University, Budapest 1085, Hungary
| | - Dae Won Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Bela Kis
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, United States
| |
Collapse
|
10
|
Hoffman C, Periyasamy S, Longhurst C, Medero R, Roldan-Alzate A, Speidel MA, Laeseke PF. A technique for intra-procedural blood velocity quantitation using time-resolved 2D digital subtraction angiography. CVIR Endovasc 2021; 4:11. [PMID: 33411087 PMCID: PMC7790988 DOI: 10.1186/s42155-020-00199-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 2D digital subtraction angiography (DSA) is utilized qualitatively to assess blood velocity changes that occur during arterial interventions. Quantitative angiographic metrics, such as blood velocity, could be used to standardize endpoints during angiographic interventions. PURPOSE To assess the accuracy and precision of a quantitative 2D DSA (qDSA) technique and to determine its feasibility for in vivo measurements of blood velocity. MATERIALS AND METHODS A quantitative DSA technique was developed to calculate intra-procedural blood velocity. In vitro validation was performed by comparing velocities from the qDSA method and an ultrasonic flow probe in a bifurcation phantom. Parameters of interest included baseline flow rate, contrast injection rate, projection angle, and magnification. In vivo qDSA analysis was completed in five different branches of the abdominal aorta in two 50 kg swine and compared to 4D Flow MRI. Linear regression, Bland-Altman, Pearson's correlation coefficient and chi squared tests were used to assess the accuracy and precision of the technique. RESULTS In vitro validation showed strong correlation between qDSA and flow probe velocities over a range of contrast injection and baseline flow rates (slope = 1.012, 95% CI [0.989,1.035], Pearson's r = 0.996, p < .0001). The application of projection angle and magnification corrections decreased variance to less than 5% the average baseline velocity (p = 0.999 and p = 0.956, respectively). In vivo validation showed strong correlation with a small bias between qDSA and 4D Flow MRI velocities for all five abdominopelvic arterial vessels of interest (slope = 1.01, Pearson's r = 0.880, p = <.01, Bias = 0.117 cm/s). CONCLUSION The proposed method allows for accurate and precise calculation of blood velocities, in near real-time, from time resolved 2D DSAs.
Collapse
Affiliation(s)
- Carson Hoffman
- Department of Medical Physics, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Sarvesh Periyasamy
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Colin Longhurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Rafael Medero
- Department of Mechanical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Alejandro Roldan-Alzate
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Mechanical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Michael A Speidel
- Department of Medical Physics, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Paul F Laeseke
- Section of Interventional Radiology, Department of Radiology, University of Wisconsin - Madison, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
11
|
Taebi A, Vu CT, Roncali E. Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioembolization Dosimetry. J Biomech Eng 2021; 143:011002. [PMID: 32601676 PMCID: PMC7580665 DOI: 10.1115/1.4047656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Yttrium-90 (90Y) radioembolization is a minimally invasive procedure increasingly used for advanced liver cancer treatment. In this method, radioactive microspheres are injected into the hepatic arterial bloodstream to target, irradiate, and kill cancer cells. Accurate and precise treatment planning can lead to more efficient and safer treatment by delivering a higher radiation dose to the tumor while minimizing the exposure of the surrounding liver parenchyma. Treatment planning primarily relies on the estimated radiation dose delivered to tissue. However, current methods used to estimate the dose are based on simplified assumptions that make the dosimetry results unreliable. In this work, we present a computational model to predict the radiation dose from the 90Y activity in different liver segments to provide a more realistic and personalized dosimetry. Computational fluid dynamics (CFD) simulations were performed in a 3D hepatic arterial tree model segmented from cone-beam CT angiographic data obtained from a patient with hepatocellular carcinoma (HCC). The microsphere trajectories were predicted from the velocity field. 90Y dose distribution was then calculated from the volumetric distribution of the microspheres. Two injection locations were considered for the microsphere administration, a lobar and a selective injection. Results showed that 22% and 82% of the microspheres were delivered to the tumor, after each injection, respectively, and the combination of both injections ultimately delivered 49% of the total administered 90Y microspheres to the tumor. Results also illustrated the nonhomogeneous distribution of microspheres between liver segments, indicating the importance of developing patient-specific dosimetry methods for effective radioembolization treatment.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
12
|
Bomberna T, Koudehi GA, Claerebout C, Verslype C, Maleux G, Debbaut C. Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv 2020; 18:409-422. [PMID: 33210955 DOI: 10.1080/17425247.2021.1853702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Transarterial therapies are routinely used for the locoregional treatment of unresectable hepatocellular carcinoma (HCC). However, the impact of clinical parameters (i.e. injection location, particle size, particle density etc.) and patient-specific conditions (i.e. hepatic geometry, cancer burden) on the intrahepatic particle distribution (PD) after transarterial injection of embolizing microparticles is still unclear. Computational fluid dynamics (CFD) may help to better understand this impact.Methods: Using CFD, both the blood flow and microparticle mass transport were modeled throughout the 3D-reconstructed arterial vasculature of a patient-specific healthy and cirrhotic liver. An experimental feasibility study was performed to simulate the PD in a 3D-printed phantom of the cirrhotic arterial network.Results: Axial and in-plane injection locations were shown to be effective parameters to steer particles toward tumor tissue in both geometries. Increasing particle size or density made it more difficult for particles to exit the domain. As cancer burden increased, the catheter tip location mattered less. The in vitro study and numerical results confirmed that PD largely mimics flow distribution, but that significant differences are still possible.Conclusions: Our findings highlight that optimal parameter choice can lead to selective targeting of tumor tissue, but that targeting potential highly depends on patient-specific conditions.
Collapse
Affiliation(s)
- Tim Bomberna
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Ghazal Adeli Koudehi
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Charlotte Claerebout
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Chris Verslype
- Department of Clinical Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Leuven, Belgium
| | - Charlotte Debbaut
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| |
Collapse
|
13
|
Periyasamy S, Hoffman CA, Longhurst C, Schefelker GC, Ozkan OS, Speidel MA, Laeseke PF. A Quantitative Digital Subtraction Angiography Technique for Characterizing Reduction in Hepatic Arterial Blood Flow During Transarterial Embolization. Cardiovasc Intervent Radiol 2020; 44:310-317. [PMID: 33025244 DOI: 10.1007/s00270-020-02640-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/27/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE There is no standardized and objective method for determining the optimal treatment endpoint (sub-stasis) during transarterial embolization. The objective of this study was to demonstrate the feasibility of using a quantitative digital subtraction angiography (qDSA) technique to characterize intra-procedural changes in hepatic arterial blood flow velocity in response to transarterial embolization in an in vivo porcine model. MATERIALS AND METHODS Eight domestic swine underwent bland transarterial embolizations to partial- and sub-stasis angiographic endpoints with intraprocedural DSA acquisitions. Embolized lobes were assessed on histopathology for ischemic damage and tissue embolic particle density. Analysis of target vessels used qDSA and a commercially available color-coded DSA (ccDSA) tool to calculate blood flow velocities and time-to-peak, respectively. RESULTS Blood flow velocities calculated using qDSA showed a statistically significant difference (p < 0.01) between partial- and sub-stasis endpoints, whereas time-to-peak calculated using ccDSA did not show a significant difference. During the course of embolizations, the average correlation with volume of particles delivered was larger for qDSA (- 0.86) than ccDSA (0.36). There was a statistically smaller mean squared error (p < 0.01) and larger coefficient of determination (p < 0.01) for qDSA compared to ccDSA. On pathology, the degree of embolization as calculated by qDSA had a moderate, positive correlation (p < 0.01) with the tissue embolic particle density of ischemic regions within the embolized lobe. CONCLUSIONS qDSA was able to quantitatively discriminate angiographic embolization endpoints and, compared to a commercially available ccDSA method, improve intra-procedural characterization of blood flow changes. Additionally, the qDSA endpoints correlated with tissue-level changes.
Collapse
Affiliation(s)
- Sarvesh Periyasamy
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1310-C WIMR, 1111 Highland Avenue, Madison, WI, 53705, USA. .,Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA.
| | - Carson A Hoffman
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Colin Longhurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Orhan S Ozkan
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Michael A Speidel
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
14
|
Taebi A, Pillai RM, S. Roudsari B, Vu CT, Roncali E. Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions. Bioengineering (Basel) 2020; 7:E64. [PMID: 32610459 PMCID: PMC7552664 DOI: 10.3390/bioengineering7030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Transarterial embolization is a minimally invasive treatment for advanced liver cancer using microspheres loaded with a chemotherapeutic drug or radioactive yttrium-90 (90Y) that are injected into the hepatic arterial tree through a catheter. For personalized treatment, the microsphere distribution in the liver should be optimized through the injection volume and location. Computational fluid dynamics (CFD) simulations of the blood flow in the hepatic artery can help estimate this distribution if carefully parameterized. An important aspect is the choice of the boundary conditions imposed at the inlet and outlets of the computational domain. In this study, the effect of boundary conditions on the hepatic arterial tree hemodynamics was investigated. The outlet boundary conditions were modeled with three-element Windkessel circuits, representative of the downstream vasculature resistance. Results demonstrated that the downstream vasculature resistance affected the hepatic artery hemodynamics such as the velocity field, the pressure field and the blood flow streamline trajectories. Moreover, the number of microspheres received by the tumor significantly changed (more than 10% of the total injected microspheres) with downstream resistance variations. These findings suggest that patient-specific boundary conditions should be used in order to achieve a more accurate drug distribution estimation with CFD in transarterial embolization treatment planning.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| | - Rex M. Pillai
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | | | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
15
|
Ortega J, Antón R, Ramos JC, Rivas A, Larraona GS, Sangro B, Bilbao JI, Aramburu J. On the importance of spiral-flow inflow boundary conditions when using idealized artery geometries in the analysis of liver radioembolization: A parametric study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3337. [PMID: 32212316 DOI: 10.1002/cnm.3337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
In the last decades, the numerical studies on hemodynamics have become a valuable explorative scientific tool. The very first studies were done over idealized geometries, but as numerical methods and the power of computers have become more affordable, the studies tend to be patient specific. We apply the study to the numerical analysis of tumor-targeting during liver radioembolization (RE). RE is a treatment for liver cancer, and is performed by injecting radiolabeled microspheres via a catheter placed in the hepatic artery. The objective of the procedure is to maximize the release of radiolabeled microspheres into the tumor and avoid a healthy tissue damage. Idealized virtual arteries can serve as a generalist approach that permits to separately analyze the effect of a variable in the microsphere distribution with respect to others. However, it is important to use proper physiological boundary conditions (BCs). It is not obvious, the need to account for the effect of tortuosity when using an idealized virtual artery. We study the use of idealized geometry of a hepatic artery as a valid research tool, exploring the importance of using realistic spiral-flow inflow BC. By using a literature-based cancer scenario, we vary two parameters to analyze the microsphere distribution through the outlets of the geometry. The parameters varied are the type of microspheres injected and the microsphere injection velocity. The results with realistic inlet velocity profile showed that the particle distribution in the liver segments is not affected by the analyzed injection velocity values neither by the particle density. NOVELTY STATEMENT: In this article, we assessed the use of idealized geometries as a valid research tool and applied the use of an idealized geometry to the case of an idealized hepatic artery to study the particle-hemodynamics during radioembolization (RE). We studied three different inflow boundary conditions (BCs) to assess the usefulness of the geometry, two types of particle injection velocities and two types of commercially available microspheres for RE treatment. In recent years, the advent in computational resources allowed for more detailed patient-specific geometry generation and discretization and hemodynamics simulations. However, general studies based on idealized geometries can be performed in order to provide medical doctors with some basic and general guidelines when using a given catheter for a given cancer scenario. Moreover, using an idealized geometry can be a reasonable approach which allows us to isolate a given parameter and control other parameters, so that parameters can be independently assessed. Even though an idealized geometry does not match any patient's geometry, the use of an idealized geometry can be valid when drawing general conclusions that may be useful in patient-specific cases. However, we believe that even if an idealized hepatic artery geometry is used for the study, it is necessary to account for the upstream and downstream tortuosity of vessels through the BCs. In this work, we highlighted the need of modeling the tortuosity of upstream and downstream vasculatures through the BCs.
Collapse
Affiliation(s)
- Julio Ortega
- Escuela de Ingeniería Mecánica, Pontificia Universidad Católica de Valparaíso, Quilpué, Chile
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Raul Antón
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan C Ramos
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Alejandro Rivas
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Gorka S Larraona
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose I Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Aramburu
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| |
Collapse
|
16
|
Roncali E, Taebi A, Foster C, Vu CT. Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation. Ann Biomed Eng 2020; 48:1499-1510. [PMID: 32006268 PMCID: PMC7160004 DOI: 10.1007/s10439-020-02469-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
Yttrium-90 (Y-90) transarterial radioembolization uses radioactive microspheres injected into the hepatic artery to irradiate liver tumors internally. One of the major challenges is the lack of reliable dosimetry methods for dose prediction and dose verification. We present a patient-specific dosimetry approach for personalized treatment planning based on computational fluid dynamics (CFD) simulations of the microsphere transport combined with Y-90 physics modeling called CFDose. The ultimate goal is the development of a software to optimize the amount of activity and injection point for optimal tumor targeting. We present the proof-of-concept of a CFD dosimetry tool based on a patient's angiogram performed in standard-of-care planning. The hepatic arterial tree of the patient was segmented from the cone-beam CT (CBCT) to predict the microsphere transport using multiscale CFD modeling. To calculate the dose distribution, the predicted microsphere distribution was convolved with a Y-90 dose point kernel. Vessels as small as 0.45 mm were segmented, the microsphere distribution between the liver segments using flow analysis was predicted, the volumetric microsphere and resulting dose distribution in the liver volume were computed. The patient was imaged with positron emission tomography (PET) 2 h after radioembolization to evaluate the Y-90 distribution. The dose distribution was found to be consistent with the Y-90 PET images. These results demonstrate the feasibility of developing a complete framework for personalized Y-90 microsphere simulation and dosimetry using patient-specific input parameters.
Collapse
Affiliation(s)
- Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Amirtahà Taebi
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Cameron Foster
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Catherine Tram Vu
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| |
Collapse
|
17
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Liver Radioembolization: An Analysis of Parameters that Influence the Catheter-Based Particle-Delivery via CFD. Curr Med Chem 2020; 27:1600-1615. [DOI: 10.2174/0929867325666180622145647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
Abstract
Radioembolization (RE) is a valuable treatment for liver cancer. It consists of administering
radioactive microspheres by an intra-arterially placed catheter with the aim of
lodging these microspheres, which are driven by the bloodstream, in the tumoral bed. Even
though it is a safe treatment, some radiation-induced complications may arise. In trying to
detect or solve the possible incidences that cause nontarget irradiation, simulating the particle-
hemodynamics in hepatic arteries during RE by computational fluid dynamics (CFD)
tools has become a valuable approach. This paper reviews the parameters that influence the
outcome of RE and that have been studied via numerical simulations. In this numerical approach,
the outcome of RE is regarded as successful if particles reach the artery branches that
feed tumor-bearing liver segments. Up to 10 parameters have been reviewed. The variation
of each parameter actually alters the hemodynamic pattern in the vicinities of the catheter tip
and locally alters the incorporation of the particles into the bloodstream. Therefore, in general,
the local influences of these parameters should result in global differences in terms of
particle distribution in the hepatic artery branches. However, it has been observed that under
some (qualitatively described) appropriate conditions where particles align with blood
streamlines, the local influence resulting from a variation of a given parameter vanishes and
no global differences are observed. Furthermore, the increasing number of CFD studies on
RE suggests that numerical simulations have become an invaluable research tool in the study
of RE.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Alejandro Rivas
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Juan C. Ramos
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| | - José I. Bilbao
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
18
|
Change in Perfusion Angiography During Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma Predicts Short-Term Outcomes. AJR Am J Roentgenol 2019; 213:746-754. [DOI: 10.2214/ajr.18.20499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
In Vitro Study of Particle Transport in Successively Bifurcating Vessels. Ann Biomed Eng 2019; 47:2271-2283. [PMID: 31165293 DOI: 10.1007/s10439-019-02293-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
Abstract
To reach a predictive understanding of how particles travel through bifurcating vessels is of paramount importance in many biomedical settings, including embolization, thromboembolism, and drug delivery. Here we utilize an in vitro model in which solid particles are injected through a rigid vessel that symmetrically bifurcates in successive branching generations. The geometric proportion and fluid dynamics parameters are relevant to the liver embolization. The volumetric flow field is reconstructed via phase-contrast magnetic resonance imaging, from which the particle trajectories are calculated for a range of size and density using the particle equation of motion. The method is validated by directly tracking the injected particles via optical imaging. The results indicate that, opposite to the common assumption, the particles distribution is fundamentally different from the volumetric flow partition. In fact, the amount of delivered particles vary substantially between adjacent branches even when the flow is uniformly distributed. This is not due to the inertia of the particles, nor to gravity. The particle distribution is rather rooted in their different pathways, which in turn are linked to their release origin along the main vessel cross-section. Therefore, the tree geometry and the associated flow streamlines are the prime determinant of the particle fate, while local changes of volumetric flow rate to selected branches do not generally produce proportional changes of particle delivery.
Collapse
|
20
|
Tchelebi L, Sharma NK. Selective Internal Radiation Therapy in the Multidisciplinary Management of Liver Metastases From Colorectal Carcinoma. Semin Nucl Med 2019; 49:182-188. [DOI: 10.1053/j.semnuclmed.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Radosa CG, Radosa JC, Grosche-Schlee S, Zöphel K, Plodeck V, Kühn JP, Kotzerke J, Hoffmann RT. Holmium-166 Radioembolization in Hepatocellular Carcinoma: Feasibility and Safety of a New Treatment Option in Clinical Practice. Cardiovasc Intervent Radiol 2019; 42:405-412. [PMID: 30603976 DOI: 10.1007/s00270-018-2133-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate clinical feasibility, technical success and toxicity of 166Ho-radioembolization (166Ho-RE) as new approach for treatment of hepatocellular carcinomas (HCC) and to assess postinterventional calculation of exact dosimetry through quantitative analysis of MR images. MATERIALS AND METHODS From March 2017 to April 2018, nine patients suffering from HCC were treated with 166Ho-RE. To calculate mean doses on healthy liver/tumor tissue, MR was performed within the first day after treatment. For evaluation of hepatotoxicity and to rule out radioembolization-induced liver disease (REILD), the Model for End-Stage Liver Disease (MELD) Score, the Common Terminology Criteria for Adverse Events and specific laboratory parameters were used 1-day pre- and posttreatment and after 60 days. After 6 months, MR/CT follow-up was performed. RESULTS In five patients the right liver lobe, in one patient the left liver lobe and in three patients both liver lobes were treated. Median administered activity was 3.7 GBq (range 1.7-5.9 GBq). Median dose on healthy liver tissue was 41 Gy (21-55 Gy) and on tumor tissue 112 Gy (61-172 Gy). Four patients suffered from mild postradioembolization syndrome. No significant differences in median MELD-Score were observed pre-, posttherapeutic and 60 days after 166Ho-RE. No deterioration of liver function and no indicators of REILD were observed. One patient showed a complete response, four a partial response, three a stable disease and one a progressive disease at the 6 months follow-up. CONCLUSION 166Ho-RE seems to be a feasible and safe treatment option with no significant hepatotoxicity for treatment of HCC.
Collapse
Affiliation(s)
- Christoph G Radosa
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Julia C Radosa
- Department of Gynecology and Obstetrics, Saarland University Hospital, Kirrbergerstraße 100, 66421, Homburg, Germany
| | - Sabine Grosche-Schlee
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Verena Plodeck
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jens P Kühn
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ralf-Thorsten Hoffmann
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
22
|
Kis B, El-Haddad G, Sheth RA, Parikh NS, Ganguli S, Shyn PB, Choi J, Brown KT. Liver-Directed Therapies for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2018; 24:1073274817729244. [PMID: 28975829 PMCID: PMC5937250 DOI: 10.1177/1073274817729244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (IHC) are primary liver cancers where all or most of the tumor burden is usually confined to the liver. Therefore, locoregional liver-directed therapies can provide an opportunity to control intrahepatic disease with minimal systemic side effects. The English medical literature and clinical trials were reviewed to provide a synopsis on the available liver-directed percutaneous therapies for HCC and IHC. Locoregional liver-directed therapies provide survival benefit for patients with HCC and IHC compared to best medical treatment and have lower comorbid risks compared to surgical resection. These treatment options should be considered, especially in patients with unresectable disease.
Collapse
Affiliation(s)
- Bela Kis
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ghassan El-Haddad
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rahul A Sheth
- 2 Department of Interventional Radiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Nainesh S Parikh
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Suvranu Ganguli
- 3 Center for Image Guided Cancer Therapy, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B Shyn
- 4 Department of Radiology, Abdominal Imaging and Intervention, Brigham and Women's, Boston, MA, USA
| | - Junsung Choi
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Karen T Brown
- 5 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
23
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28474382 DOI: 10.1002/cnm.2895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Liver radioembolization is a promising treatment option for combating liver tumors. It is performed by placing a microcatheter in the hepatic artery and administering radiation-emitting microspheres through the arterial bloodstream so that they get lodged in the tumoral bed. In avoiding nontarget radiation, the standard practice is to conduct a pretreatment, in which the microcatheter location and injection velocity are decided. However, between pretreatment and actual treatment, some of the parameters that influence the particle distribution in the liver can vary, resulting in radiation-induced complications. The present study aims to analyze the influence of a commercially available microcatheter with an angled tip and particle injection velocity in terms of segment-to-segment particle distribution. Specifically, 4 tip orientations and 2 injection velocities are combined to yield a set of 8 numerical simulations of the particle-hemodynamics in a patient-specific truncated hepatic artery. For each simulation, 4 cardiac pulses are simulated. Particles are injected during the first cycle, and the remaining pulses enable the majority of the injected particles to exit the computational domain. Results indicate that, in terms of injection velocity, particles are more spread out in the cross-sectional lumen areas as the injection velocity increases. The tip's orientation also plays a role because it influences the near-tip hemodynamics, therefore altering the particle travel through the hepatic artery. However, results suggest that particle distribution tries to match the blood flow split, therefore particle injection velocity and microcatheter tip orientation playing a minor role in segment-to-segment particle distribution.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Alejandro Rivas
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Juan Carlos Ramos
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
24
|
Pasciak AS, Lin A, Georgiades C, Findeiss LK, Kauffman S, Bradley YC. Computational simulation of the predicted dosimetric impact of adjuvant yttrium-90 PET/CT-guided percutaneous ablation following radioembolization. EJNMMI Res 2016; 6:89. [PMID: 27957721 PMCID: PMC5153383 DOI: 10.1186/s13550-016-0244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/29/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND 90Y PET/CT post-radioembolization imaging has demonstrated that the distribution of 90Y in a tumor can be non-uniform. Using computational modeling, we predicted the dosimetric impact of post-treatment 90Y PET/CT-guided percutaneous ablation of the portions of a tumor receiving the lowest absorbed dose. A cohort of fourteen patients with non-resectable liver cancer previously treated using 90Y radioembolization were included in this retrospective study. Each patient exhibited potentially under-treated areas of tumor following treatment based on quantitative 90Y PET/CT. 90Y PET/CT was used to guide electrode placement for simulated adjuvant radiofrequency ablation in areas of tumor receiving the lowest dose. The finite element method was used to solve Penne's bioheat transport equation, coupled with the Arrhenius thermal cell-death model to determine 3D thermal ablation zones. Tumor and unablated tumor absorbed-dose metrics (average dose, D50, D70, D90, V100) following ablation were compared, where D70 is the minimum dose to 70% of tumor and V100 is the fractional tumor volume receiving more than 100 Gy. RESULTS Compared to radioembolization alone, 90Y radioembolization with adjuvant ablation was associated with predicted increases in all tumor dose metrics evaluated. The mean average absorbed dose increased by 11.2 ± 6.9 Gy. Increases in D50, D70, and D90 were 11.0 ± 6.9 Gy, 13.3 ± 10.9 Gy, and 11.8 ± 10.8 Gy, respectively. The mean increase in V100 was 7.2 ± 4.2%. All changes were statistically significant (P < 0.01). A negative correlation between pre-ablation tumor volume and D50, average dose, and V100 was identified (ρ < - 0.5, P < 0.05) suggesting that adjuvant radiofrequency ablation may be less beneficial to patients with large tumor burdens. CONCLUSIONS This study has demonstrated that adjuvant 90Y PET/CT-guided radiofrequency ablation may improve tumor absorbed-dose metrics. These data may justify a prospective clinical trial to further evaluate this hybrid approach.
Collapse
Affiliation(s)
- Alexander S Pasciak
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA.
- School of Medicine, The Johns Hopkins Hospital, 733 N Broadway, Baltimore, MD, 21205, USA.
| | - Abigail Lin
- School of Medicine, The Johns Hopkins Hospital, 733 N Broadway, Baltimore, MD, 21205, USA
| | | | - Laura K Findeiss
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | | | - Yong C Bradley
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| |
Collapse
|
25
|
Gandhi M, Choo SP, Thng CH, Tan SB, Low ASC, Cheow PC, Goh ASW, Tay KH, Lo RHG, Goh BKP, Wong JS, Ng DCE, Soo KC, Liew WM, Chow PKH. Single administration of Selective Internal Radiation Therapy versus continuous treatment with sorafeNIB in locally advanced hepatocellular carcinoma (SIRveNIB): study protocol for a phase iii randomized controlled trial. BMC Cancer 2016; 16:856. [PMID: 27821083 PMCID: PMC5100089 DOI: 10.1186/s12885-016-2868-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background Approximately 20 % of hepatocellular carcinoma (HCC) patients diagnosed in the early stages may benefit from potentially curative ablative therapies such as surgical resection, transplantation or radiofrequency ablation. For patients not eligible for such options, prognosis is poor. Sorafenib and Selective Internal Radiation Therapy (SIRT) are clinically proven treatment options in patients with unresectable HCC, and this study aims to assess overall survival following either SIRT or Sorafenib therapy for locally advanced HCC patients. Methods This investigator-initiated, multi-centre, open-label, randomized, controlled trial will enrol 360 patients with locally advanced HCC, as defined by Barcelona Clinic Liver Cancer stage B or stage C, without distant metastases, and which is not amenable to immediate curative treatment. Exclusion criteria include previous systemic therapy, metastatic disease, complete occlusion of the main portal vein, or a Child-Pugh score of >7. Eligible patients will be randomised 1:1 and stratified by centre and presence or absence of portal vein thrombosis to receive either a single administration of SIRT using yttrium-90 resin microspheres (SIR-Spheres®, Sirtex Medical Limited, Sydney, Australia) targeted at HCC in the liver by the trans-arterial route or continuous oral Sorafenib (Nexavar®, Bayer Pharma AG, Berlin, Germany) at a dose of 400 mg twice daily until disease progression, no further response, complete regression or unacceptable toxicity. Patients for both the Sorafenib and SIRT arms will be followed-up every 4 weeks for the first 3 months and 12 weekly thereafter. Overall survival is the primary endpoint, assessed for the intention-to-treat population. Secondary endpoints are tumour response rate, time-to-tumour progression, progression free survival, quality of life and down-staging to receive potentially curative therapy. Discussion Definitive data comparing these two therapies will help to determine clinical practice in the large group of patients with locally advanced HCC and improve outcomes for such patients. Trial registration ClinicalTrials.gov identifier, NCT01135056, first received 24, May 2010.
Collapse
Affiliation(s)
- Mihir Gandhi
- Biostatistics, Singapore Clinical Research Institute, #02-01, Nanos, 31 Biopolis Way, Singapore, Singapore.,Centre for Quantitative Medicine, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.,Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, Tempere, Finland
| | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore
| | - Choon Hua Thng
- Division of Oncologic Imaging, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore
| | - Say Beng Tan
- Office of Research, Singapore Health Services, 31 Third Hospital Avenue, #03-03 Bowyer Block C, Singapore, Singapore.,Clinical Sciences, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Albert Su Chong Low
- Department of Diagnostic Radiology, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Anthony Soon Whatt Goh
- Department of Nuclear Medicine and PET, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Kiang Hiong Tay
- Department of Diagnostic Radiology, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Richard Hoau Gong Lo
- Department of Diagnostic Radiology, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Brian Kim Poh Goh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Jen San Wong
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - David Chee Eng Ng
- Department of Nuclear Medicine and PET, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Khee Chee Soo
- Division of Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore
| | - Wei Ming Liew
- Project Management, Singapore Clinical Research Institute, #02-01, Nanos, 31 Biopolis Way, Singapore, Singapore
| | - Pierce K H Chow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore. .,Office of Clinical, Academic and Faculty Affairs, Duke-NUS Medical School, 8 College Road, Singapore, Singapore. .,Program in Translational and Clinical Liver Research, National Cancer Centre Singapore, Singapore, Singapore.
| | | |
Collapse
|
26
|
Numerical investigation of liver radioembolization via computational particle–hemodynamics: The role of the microcatheter distal direction and microsphere injection point and velocity. J Biomech 2016; 49:3714-3721. [DOI: 10.1016/j.jbiomech.2016.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022]
|
27
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Liver cancer arterial perfusion modelling and CFD boundary conditions methodology: a case study of the haemodynamics of a patient-specific hepatic artery in literature-based healthy and tumour-bearing liver scenarios. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02764. [PMID: 26727946 DOI: 10.1002/cnm.2764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Some of the latest treatments for unresectable liver malignancies (primary or metastatic tumours), which include bland embolisation, chemoembolisation, and radioembolisation, among others, take advantage of the increased arterial blood supply to the tumours to locally attack them. A better understanding of the factors that influence this transport may help improve the therapeutic procedures by taking advantage of flow patterns or by designing catheters and infusion systems that result in the injected beads having increased access to the tumour vasculature. Computational analyses may help understand the haemodynamic patterns and embolic-microsphere transport through the hepatic arteries. In addition, physiological inflow and outflow boundary conditions are essential in order to reliably represent the blood flow through arteries. This study presents a liver cancer arterial perfusion model based on a literature review and derives boundary conditions for tumour-bearing liver-feeding hepatic arteries based on the arterial perfusion characteristics of normal and tumorous liver segment tissue masses and the hepatic artery branching configuration. Literature-based healthy and tumour-bearing realistic scenarios are created and haemodynamically analysed for the same patient-specific hepatic artery. As a result, this study provides boundary conditions for computational fluid dynamics simulations that will allow researchers to numerically study, for example, various intravascular devices used for liver disease intra-arterial treatments with different cancer scenarios. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jorge Aramburu
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain
| | - Raúl Antón
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII, 36, 31008, Pamplona, Spain.
| | - Alejandro Rivas
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain
| | - Juan Carlos Ramos
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII, 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pio XII, 36, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av. Pio XII, 36, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII, 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pio XII, 36, 31008, Pamplona, Spain
| |
Collapse
|
28
|
Computational assessment of the effects of the catheter type on particle–hemodynamics during liver radioembolization. J Biomech 2016; 49:3705-3713. [DOI: 10.1016/j.jbiomech.2016.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 01/04/2023]
|
29
|
Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, Gjertsson P, Bernhardt P. Simulation Model of Microsphere Distribution for Selective Internal Radiation Therapy Agrees With Observations. Int J Radiat Oncol Biol Phys 2016; 96:414-421. [DOI: 10.1016/j.ijrobp.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/19/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023]
|
30
|
Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model. J Vasc Interv Radiol 2016; 28:260-268.e2. [PMID: 27641675 DOI: 10.1016/j.jvir.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate material density, flow, and viscosity effects on microsphere distribution within an in vitro model designed to simulate hepatic arteries. MATERIALS AND METHODS A vascular flow model was used to compare distribution of glass and resin surrogates in a clinically derived flow range (60-120 mL/min). Blood-mimicking fluid (BMF) composed of glycerol and water (20%-50% vol/vol) was used to simulate a range of blood viscosities. Microsphere distribution was quantified gravimetrically, and injectate solution was dyed to enable quantification by UV spectrophotometry. Microsphere injection rate (5-30 mL/min) and the influence of contrast agent dilution of injection solution (0%-60% vol/vol) were also investigated. RESULTS No significant differences in behavior were observed between the glass and resin surrogate materials under any tested flow conditions (P = .182; n = 144 injections). Microspheres tend to align more consistently with the saline injection solution (r2 = 0.5712; n = 144) compared with total BMF flow distribution (r2 = 0.0104; n = 144). The most predictable injectate distribution (ie, greatest alignment with BMF flow, < 5% variation) was demonstrated with > 10-mL/min injection rates of pure saline solution, although < 20% variation with glass microsphere distribution was observed with injection solution containing as much as 30% contrast medium when injected at > 20 mL/min. CONCLUSIONS Glass and resin yttrium-90 surrogates demonstrated similar distribution in a range of clinically relevant flow conditions, suggesting that microsphere density does not have a significant influence on microsphere distribution. Injection parameters that enhanced the mixing of the spheres with the BMF resulted in the most predictable distribution.
Collapse
|
31
|
Quantitative Real-Time Fluoroscopy Analysis on Measurement of the Hepatic Arterial Flow During Transcatheter Arterial Chemoembolization of Hepatocellular Carcinoma: Comparison with Quantitative Digital Subtraction Angiography Analysis. Cardiovasc Intervent Radiol 2016; 39:1557-1563. [DOI: 10.1007/s00270-016-1421-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
|
32
|
Bozkurt MF, Salanci BV, Uğur Ö. Intra-Arterial Radionuclide Therapies for Liver Tumors. Semin Nucl Med 2016; 46:324-39. [DOI: 10.1053/j.semnuclmed.2016.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Pasciak AS, Bourgeois AC, Bradley YC. A Microdosimetric Analysis of Absorbed Dose to Tumor as a Function of Number of Microspheres per Unit Volume in 90Y Radioembolization. J Nucl Med 2016; 57:1020-6. [PMID: 26912424 DOI: 10.2967/jnumed.115.163444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/01/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Differences in maximum tolerable absorbed dose to normal liver between (90)Y radioembolization and external-beam radiation therapy have been explained by citing differences in absorbed-dose heterogeneity at the microscopic level. We investigated microscopic absorbed-dose heterogeneity in radioembolization as a function of the number of microspheres per unit volume in tumor. The goal was to determine what effect the number of microspheres may have, if any, on tumor control in (90)Y radioembolization. METHODS (90)Y PET/CT data were combined with microscopic probability-density functions describing microsphere clustering to provide realistic simulation using Monte Carlo modeling on both a macroscopic and a microscopic level. A complete microdosimetric analysis using 100-μm voxels was performed on the basis of (90)Y PET/CT data from 19 tumors treated using radioembolization. Simulations were performed with average tumor microsphere-number densities from 200 to 70,000 spheres/mL. Monte Carlo simulations of each tumor and number density were repeated 20 times to establish SE. A 2-way balanced ANOVA was used to determine whether differences in microsphere-number density affected common tumor-dose metrics. RESULTS Decreasing the microsphere-number density resulted in a decrease in D70, the minimum dose to 70% of the tumor. The slope of the dose-volume histogram also decreased with decreasing microsphere-number density in all tumors. Compared with a density of 50,000 spheres/mL, decreases in D70 were statistically significant below 20,000 spheres/mL. However, these differences are unlikely to have clinical significance until the density decreases to below 5,000 spheres/mL. Although D70 was decreased at a low microsphere-number density, one can compensate for decreases by an increase in the average tumor-absorbed dose, that is, by increasing the radioembolization treatment dose. CONCLUSION Differences in microsphere-number density may have an effect on microscopic tumor absorbed-dose inhomogeneity. These results begin to explain differences in treatment planning strategies between glass and resin radioembolization devices.
Collapse
Affiliation(s)
- Alexander S Pasciak
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee School of Medicine, Johns Hopkins Hospital, Baltimore, Maryland; and
| | - Austin C Bourgeois
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee Department of Radiology, Medical University of South Carolina, Charleston, South Carolina
| | - Yong C Bradley
- Department of Radiology, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| |
Collapse
|
34
|
Golfieri R, Mosconi C, Cappelli A, Giampalma E, Galaverni MC, Pettinato C, Renzulli M, Monari F, Angelelli B, Pini P, Terzi E, Ascanio S, Garzillo G, Piscaglia F, Bolondi L, Trevisani F. Efficacy of radioembolization according to tumor morphology and portal vein thrombosis in intermediate-advanced hepatocellular carcinoma. Future Oncol 2015; 11:3133-42. [PMID: 26467398 DOI: 10.2217/fon.15.267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE We analyzed overall survival (OS) following radioembolization according to macroscopic growth pattern (nodular vs infiltrative) and vascular invasion in intermediate-advanced hepatocellular carcinoma (HCC). METHODS Between September 2005 and November 2013, 104 patients (50.0% portal vein thrombosis [PVT], 29.8% infiltrative morphology) were treated. RESULTS Median OS differed significantly between patients with segmental and lobar or main PVT (p = 0.031), but was 17 months in both those with patent vessels and segmental PVT. Median OS did not differ for infiltrative and nodular HCC. Median OS was prolonged in patients with a treatment response at 3 months (p = 0.023). Prior TACE was also a significant predictor of improved OS. CONCLUSION A further indication for radioembolization might be infiltrative HCC, since OS was similar to nodular types.
Collapse
Affiliation(s)
- Rita Golfieri
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Cristina Mosconi
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Alberta Cappelli
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Emanuela Giampalma
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Maria Cristina Galaverni
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Cinzia Pettinato
- Medical Physics Unit, Radiology Unit, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Matteo Renzulli
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Fabio Monari
- Radiation Oncology Unit, Radiology Unit, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Bruna Angelelli
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Patrizia Pini
- Department of Medical & Surgical Sciences, University of Bologna, Bologna, Italy
| | - Eleonora Terzi
- Department of Medical & Surgical Sciences, University of Bologna, Bologna, Italy
| | - Salvatore Ascanio
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Giorgio Garzillo
- Radiology Unit, Department of Diagnostic & Preventive Medicine, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical & Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Bolondi
- Department of Medical & Surgical Sciences, University of Bologna, Bologna, Italy
| | - Franco Trevisani
- Department of Medical & Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Ahmadzadehfar H, Meyer C, Pieper CC, Bundschuh R, Muckle M, Gärtner F, Schild HH, Essler M. Evaluation of the delivered activity of yttrium-90 resin microspheres using sterile water and 5 % glucose during administration. EJNMMI Res 2015; 5:54. [PMID: 26463848 PMCID: PMC4604161 DOI: 10.1186/s13550-015-0133-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The purpose of this study is to evaluate the impact of switching from sterile water to 5 % glucose (G5W) for the administration of yttrium-90 ((90)Y)-resin microspheres on the total activity of (90)Y administered (expressed as a proportion of the prescribed/calculated activity), as well as the number of cases of stasis and the reported incidence of discomfort during the selective internal radiation therapy (SIRT) procedure. METHODS In December 2013, we switched from sterile water to G5W for the administration of SIRT using (90)Y resin microspheres in all patients. This retrospective observational single-center case series describes our experience in the months preceding and after the switch. Apart from the change in administration medium, the protocol for SIRT was otherwise identical. RESULTS One hundred and four SIRT procedures were performed on 78 patients (45 male, mean age: 63 years, range: 31-87 years) with either unresectable hepatocellular carcinoma, cholangiocarcinoma, or chemorefractory liver-dominant metastatic cancer. Compared with sterile water, the whole prescribed activity was administered in significantly more procedures with G5W: 85 vs. 22 %; p < 0.0001. A significantly higher proportion of the calculated activity was administered with G5W: 96.1 ± 11.0 % vs. 77.4 ± 24.3 % (p < 0.0001). G5W procedures were also associated with a significantly lower incidence of stasis (28 vs. 11 % procedures; p = 0.02) and mild-to-moderate upper abdominal pain during the procedure (1.8 vs. 44 % procedures; p < 0.0001). CONCLUSIONS Replacing sterile water with isotonic G5W during administration favorably impacts on the safety of SIRT, eliminates and/or minimizes flow reductions and stasis/reflux during administration of (90)Y resin microspheres, improves percentage activity delivered, and reduces peri-procedural pain.
Collapse
Affiliation(s)
- Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| | - Carsten Meyer
- Department of Radiology, University Hospital Bonn, Bonn, Germany
| | | | - Ralph Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marianne Muckle
- Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Florian Gärtner
- Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| |
Collapse
|
36
|
Xu Z, Jernigan S, Kleinstreuer C, Buckner GD. Solid Tumor Embolotherapy in Hepatic Arteries with an Anti-reflux Catheter System. Ann Biomed Eng 2015; 44:1036-46. [DOI: 10.1007/s10439-015-1411-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/24/2015] [Indexed: 12/30/2022]
|
37
|
van den Hoven AF, Lam MGEH, Jernigan S, van den Bosch MAAJ, Buckner GD. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:74. [PMID: 26231929 PMCID: PMC4522078 DOI: 10.1186/s13046-015-0188-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 12/30/2022]
Abstract
Background Liver tumors are increasingly treated with radioembolization. Here, we present first evidence of catheter design effect on particle-fluid dynamics and downstream branch targeting during microsphere administrations. Materials and methods A total of 7 experiments were performed in a bench-top model of the hepatic arterial vasculature with recreated hemodynamics. Fluorescent microspheres and clinically used holmium microspheres were administered with a standard microcatheter (SMC) and an anti-reflux catheter (ARC) positioned at the same level along the longitudinal vessel axis. Catheter-related particle flow dynamics were analyzed by reviewing video recordings of UV-light illuminated fluorescent microsphere administrations. Downstream branch distribution was analyzed by quantification of collected microspheres in separate filters for two first-order branches. Mean deviation from a perfectly homogenous distribution (DHD) was used to compare the distribution homogeneity between catheter types. Results The SMC administrations demonstrated a random off-centered catheter position (in 71 % of experiments), and a laminar particle flow pattern with an inhomogeneous downstream branch distribution, dependent on catheter position and injection force. The ARC administrations demonstrated a fixed centro-luminal catheter position, and a turbulent particle flow pattern with a more consistent and homogenous downstream branch distribution. Quantitative analyses confirmed a significantly more homogeneous distribution with the ARC; the mean DHD was 40.85 % (IQR 22.76 %) for the SMC and 15.54 % (IQR 6.46 %) for the ARC (p = 0.047). Conclusion Catheter type has a significant impact on microsphere administrations in an in-vitro hepatic arterial model. A within-patient randomized controlled trial has been initiated to investigate clinical catheter-related effects during radioembolization treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0188-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andor F van den Hoven
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Shaphan Jernigan
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, North Carolina, 27695, USA.
| | - Maurice A A J van den Bosch
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Gregory D Buckner
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, North Carolina, 27695, USA.
| |
Collapse
|
38
|
Lin YY, Lee RC, Tseng HS, Liu CA, Guo WY, Chang CY. Objective Measurement of Arterial Flow Before and After Transcatheter Arterial Chemoembolization: A Feasibility Study Using Quantitative Color-Coding Analysis. Cardiovasc Intervent Radiol 2015; 38:1494-501. [DOI: 10.1007/s00270-015-1111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
39
|
Peeters G, Debbaut C, Cornillie P, De Schryver T, Monbaliu D, Laleman W, Segers P. A Multilevel Modeling Framework to Study Hepatic Perfusion Characteristics in Case of Liver Cirrhosis. J Biomech Eng 2015; 137:051007. [DOI: 10.1115/1.4029280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/16/2022]
Abstract
Liver cirrhosis represents the end-stage of different liver disorders, progressively affecting hepatic architecture, hemodynamics, and function. Morphologically, cirrhosis is characterized by diffuse fibrosis, the conversion of normal liver architecture into structurally abnormal regenerative nodules and the formation of an abundant vascular network. To date, the vascular remodeling and altered hemodynamics due to cirrhosis are still poorly understood, even though they seem to play a pivotal role in cirrhogenesis. This study aims to determine the perfusion characteristics of the cirrhotic circulation using a multilevel modeling approach including computational fluid dynamics (CFD) simulations. Vascular corrosion casting and multilevel micro-CT imaging of a single human cirrhotic liver generated detailed datasets of the hepatic circulation, including typical pathological characteristics of cirrhosis such as shunt vessels and dilated sinusoids. Image processing resulted in anatomically correct 3D reconstructions of the microvasculature up to a diameter of about 500 μm. Subsequently, two cubic samples (150 × 150 × 150 μm3) were virtually dissected from vascularized zones in between regenerative nodules and applied for CFD simulations to study the altered cirrhotic microperfusion and permeability. Additionally, a conceptual 3D model of the cirrhotic macrocirculation was developed to reveal the hemodynamic impact of regenerative nodules. Our results illustrate that the cirrhotic microcirculation is characterized by an anisotropic permeability showing the highest value in the direction parallel to the central vein (kd,zz = 1.68 × 10−13 m2 and kd,zz = 7.79 × 10−13 m2 for sample 1 and 2, respectively) and lower values in the circumferential (kd,ϑϑ = 5.78 × 10−14 m2 and kd,ϑϑ = 5.65 × 10−13 m2 for sample 1 and 2, respectively) and radial (kd,rr = 9.87 × 10−14 m2 and kd,rr = 5.13 × 10−13 m2 for sample 1 and 2, respectively) direction. Overall, the observed permeabilities are markedly higher compared to a normal liver, implying a locally decreased intrahepatic vascular resistance (IVR) probably due to local compensation mechanisms (dilated sinusoids and shunt vessels). These counteract the IVR increase caused by the presence of regenerative nodules and dynamic contraction mechanisms (e.g., stellate cells, NO-concentration, etc.). Our conceptual 3D model of the cirrhotic macrocirculation indicates that regenerative nodules severely increase the IVR beyond about 65 vol. % of regenerative nodules. Numerical modeling allows quantifying perfusion characteristics of the cirrhotic macro- and microcirculation, i.e., the effect of regenerative nodules and compensation mechanisms such as dilated sinusoids and shunt vessels. Future research will focus on the development of models to study time-dependent degenerative adaptation of the cirrhotic macro- and microcirculation.
Collapse
Affiliation(s)
- Geert Peeters
- IBiTech – bioMMeda, Department of Electronics and Information Systems, iMinds Medical IT Department, Ghent University, De Pintelaan 185 – Block B, Gent 9000, Belgium e-mail:
| | - Charlotte Debbaut
- IBiTech – bioMMeda, Department of Electronics and Information Systems, iMinds Medical IT Department, Ghent University, De Pintelaan 185 – Block B, Gent 9000, Belgium e-mail:
| | - Pieter Cornillie
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Thomas De Schryver
- Centre for X-Ray Tomography, Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, Gent 9000, Belgium
| | - Diethard Monbaliu
- Department of Microbiology and Immunology, Abdominal Transplant Surgery, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wim Laleman
- Department of Liver and Biliopancreatic Disorders, Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Patrick Segers
- IBiTech – bioMMeda, Department of Electronics and Information Systems, iMinds Medical IT Department, Ghent University, De Pintelaan 185 – Block B, Gent 9000, Belgium e-mail:
| |
Collapse
|
40
|
O' Doherty J. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy. ACTA ACUST UNITED AC 2015; 2:1-34. [PMID: 27182449 DOI: 10.17229/jdit.2015-0428-016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
41
|
Zhu SJ, Poon EKW, Ooi ASH, Moore S. Enhanced Targeted Drug Delivery Through Controlled Release in a Three-Dimensional Vascular Tree. J Biomech Eng 2015; 137:1926224. [DOI: 10.1115/1.4028965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 01/01/2023]
Abstract
“Controlled particle release and targeting” is a technique using particle release score map (PRSM) and transient particle release score map (TPRSM) via backtracking to determine optimal drug injection locations for achieving an enhanced target efficiency (TE). This paper investigates the possibility of targeting desired locations through an idealized but complex three-dimensional (3D) vascular tree geometry under realistic hemodynamic conditions by imposing a Poiseuille velocity profile and a Womersley velocity profile derived from cine phase contrast magnetic resonance imaging (MRI) data for steady and pulsatile simulations, respectively. The shear thinning non-Newtonian behavior of blood was accounted for by the Carreau–Yasuda model. One-way coupled Eulerian–Lagrangian particle tracking method was used to record individual drug particle trajectories. Particle size and density showed negligible influence on the particle fates. With the proposed optimal release scoring algorithm, multiple optimal release locations were determined under steady flow conditions, whereas there was one unique optimal release location under pulsatile flow conditions. The initial in silico results appear promising, showing on average 66% TE in the pulsatile simulations, warranting further studies to improve the mathematical model and experimental validation.
Collapse
Affiliation(s)
- Shuang J. Zhu
- Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia e-mail:
| | - Eric K. W. Poon
- Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew S. H. Ooi
- Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen Moore
- IBM Research Collaboratory, Victoria Life Sciences Computation Initiative, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Vilgrain V, Abdel-Rehim M, Sibert A, Ronot M, Lebtahi R, Castéra L, Chatellier G. Radioembolisation with yttrium‒90 microspheres versus sorafenib for treatment of advanced hepatocellular carcinoma (SARAH): study protocol for a randomised controlled trial. Trials 2014; 15:474. [PMID: 25472660 PMCID: PMC4265525 DOI: 10.1186/1745-6215-15-474] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022] Open
Abstract
Background Untreated advanced hepatocellular carcinoma (HCC) is linked to poor prognosis. While sorafenib is the current recommended treatment for advanced HCC, radioembolisation (RE; also called selective internal radiation therapy or SIRT) with yttrium-90 microspheres has shown efficacy in cohort studies. However, there are no head-to-head trials comparing radiation therapy with yttrium-90 microspheres and sorafenib in advanced HCC. The SARAH trial has been designed to compare the efficacy and safety of sorafenib therapy and RE using yttrium-90 resin microspheres (SIR-Spheres™; Sirtex Medical Limited, North Sydney, Australia) in patients with advanced HCC. Quality of life (QoL) and cost-effectiveness will also be compared between therapies. Methods/Design SARAH is a prospective, randomised, controlled, open-label, multicentre trial comparing the efficacy of RE with sorafenib in the treatment of patients with advanced HCC. The trial aims to recruit adults with a life expectancy of >3 months, Eastern Cooperative Oncology Group (ECOG) performance status ≤1, and: advanced HCC according to the Barcelona criteria (stage C) or recurrent HCC after surgical or thermoablative treatment who are not eligible for surgical resection, liver transplantation or thermal ablation; or two rounds of failed chemoembolisation. Patients will be randomised 1:1 to receive either RE or sorafenib 400 mg twice daily. All patients will be monitored for between 12 and 48 months following start of treatment. The primary endpoint of the SARAH trial is overall survival (OS). Secondary endpoints include: adverse events, progression-free survival at 6 months; tumour response rate; general or liver disease-specific QoL scores; and cost of each treatment strategy. Assuming an increase in median OS of 4 months with RE versus sorafenib therapy, randomising at least 400 patients (200 in each treatment arm) will be sufficient for 80% power and a bilateral alpha risk of 5%; therefore, 440 patients will be enrolled to allow for 10% loss of patients due to ineligibility. Discussion The SARAH trial is the first randomised head-to-head study to compare RE with sorafenib in advanced HCC, and will establish the potential role of RE in HCC treatment guidelines. Trial registration ClinicalTrials.gov identifierNCT01482442, first received 28 November 2011 Electronic supplementary material The online version of this article (doi:10.1186/1745-6215-15-474) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valérie Vilgrain
- Department of Radiology, Assistance Publique, Hôpitaux de Paris, APHP, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard General Leclerc, 92118 Clichy, Hauts-de-Seine, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Radiation-Induced Cholecystitis after Hepatic Radioembolization: Do We Need to Take Precautionary Measures? J Vasc Interv Radiol 2014; 25:1717-23. [DOI: 10.1016/j.jvir.2014.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 11/15/2022] Open
|
44
|
Walrand S, Hesse M, Jamar F, Lhommel R. A hepatic dose-toxicity model opening the way toward individualized radioembolization planning. J Nucl Med 2014; 55:1317-22. [PMID: 24904111 DOI: 10.2967/jnumed.113.135301] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/09/2014] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The 50% normal-tissue complication probability (NTCP) after lobar irradiation of the liver results in highly variable biologic effective doses depending on the modality used: a biologic effective dose for 50% (BED50) of 115, 93, and 250 Gy for external-beam radiotherapy, resin microsphere radioembolization, and glass microsphere radioembolization, respectively. This misunderstood property has made it difficult to predict the maximal tolerable dose as a function of microsphere activity and targeted liver volume. The evolution toward more selective catheterization techniques, resulting in more variable targeted volumes, makes it urgent to solve this issue. METHODS We computed by Monte Carlo simulations the microsphere distribution in the portal triads based on microsphere transport dynamics through a synthetically grown hepatic arterial tree. Afterward, the microscale dose distribution was computed using a dose deposition kernel. We showed that the equivalent uniform dose cannot handle microscale dosimetry and fails to solve the discordance between the BED50 values. Consequently, we developed a new radiobiologic model to compute the liver NTCP from the microscale dose distribution. RESULTS The new model explains all the observed BED50 values and provides a way to compute the hepatic dose-toxicity relationship as a function of microsphere activity and targeted liver volume. The NTCP obtained is in agreement with the data reported from clinical radioembolization studies. CONCLUSION The results should encourage interventional radiologists to fine-tune the delivered dose to the liver as a function of the targeted volume. The present model could be used as the backbone of the treatment planning, allowing optimization of the absorbed dose to the tumors.
Collapse
Affiliation(s)
- Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy, and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Hesse
- Nuclear Medicine, Molecular Imaging, Radiotherapy, and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Francois Jamar
- Nuclear Medicine, Molecular Imaging, Radiotherapy, and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Renaud Lhommel
- Nuclear Medicine, Molecular Imaging, Radiotherapy, and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Abstract
Unresectable primary and metastatic liver tumors are a leading cause of cancer mortality and morbidity. This remains a challenging and key task for every oncologist despite significant advances that have been made with selective targeted systemic agents and in technology advances with radiotherapy delivery. Radioembolization (RE) is a technique of permanently implanting microspheres containing Yttrium-90 ((90)Y), a beta-emitting isotope with a treatment range of 2 mm, into hepatic tumors. This form of brachytherapy utilizes the unique dual vascular anatomy of the liver to preferentially deliver radioactive particles via the hepatic artery to tumor, sparing normal liver parenchyma. The main treatment inclusion criteria are patients with solid tumors, compensated liver functions, life expectancy of at least three months, and ECOG performance status 0-2. Benefit of RE has been proven in patients that have low-to-moderate extrahepatic disease burden, prior liver radiotherapy, heavy prior chemotherapy and biologic agent exposure, and history of hepatic surgery or ablation. Most of the clinical evidence is reported in metastatic colorectal, and neuroendocrine tumors (NET), and primary hepatocellular cancer. A growing body of data supports the use of RE in hepatic metastatic breast cancer, intrahepatic cholangiocarinoma, and many other metastatic tumor types. Side effects are typically mild constitutional and GI issues limited to the first 7-14 days post treatment, with only 6% grade 3 toxicity reported in large series. Potentially serious or fatal radiation induced liver disease is extremely rare, reported in only 1% or fewer in major series of both metastatic and primary tumors treated with RE. Currently, high priority prospective clinical trials are testing RE combined with chemotherapy in first line therapy for colorectal hepatic metastases, and combined with sorafenib for hepatocellular carcinomas (HCCs). Fortunately, this beneficial and now widely available therapy is being increasingly incorporated into the standard therapy algorithms of multidisciplinary GI cancer teams worldwide. This form of radiotherapy differs significantly from daily external beam radiotherapy in many ways, particularly in dose rate, dosimetric coverage and duration of radiation delivery, side effects, and patient selection factors. A wealth of experience using RE in solid tumors exists and ongoing major prospective clinical trials will soon clarify the role of RE in the management of metastatic colorectal liver metastases.
Collapse
Affiliation(s)
- Andrew Kennedy
- Radiation Oncology Research, Sarah Cannon Research Institute, 3322 West End Ave., Suite 800 Nashville, TN 37203, USA
| |
Collapse
|
46
|
Childress EM, Kleinstreuer C. Computationally Efficient Particle Release Map Determination for Direct Tumor-Targeting in a Representative Hepatic Artery System. J Biomech Eng 2013; 136:011012. [DOI: 10.1115/1.4025881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 12/16/2022]
Abstract
Implementation of a novel direct tumor-targeting technique requires a computer modeling stage to generate particle release maps (PRMs) which allow for optimal catheter positioning and selection of best injection intervals for drug-particles. This simulation task for a patient-specific PRM may require excessive computational resources and a relatively long turn-around time for a fully transient analysis. Hence, steady-state conditions were sought which generates PRMs equivalent to the pulsatile arterial flow environment. Fluid-particle transport in a representative hepatic artery system was simulated under fully transient and steady-state flow conditions and their corresponding PRMs were analyzed and compared. Comparisons of the transient PRMs from ten equal intervals of the cardiac pulse revealed that the diastolic phase produced relatively constant PRMs due to its semisteady flow conditions. Furthermore, steady-state PRMs, which best matched the transient particle release maps, were found for each interval and over the entire cardiac pulse. From these comparisons, the flow rate and outlet pressure differences proved to be important parameters for estimating the PRMs. The computational times of the fully transient and steady simulations differed greatly, i.e., about 10 days versus 0.5 to 1 h, respectively. The time-averaged scenario may provide the best steady conditions for estimating the transient particle release maps. However, given the considerable changes in the PRMs due to the accelerating and decelerating phases of the cardiac cycle, it may be better to model several steady scenarios, which encompass the wide range of flows and pressures experienced by the arterial system in order to observe how the PRMs may change throughout the pulse. While adding more computation time, this method is still significantly faster than running the full transient case. Finally, while the best steady PRMs provide a qualitative guide for best catheter placement, the final injection position could be adjusted in vivo using biodegradable mock-spheres to ensure that patient-specific optimal tumor-targeting is achieved. In general, the methodology described could generate computationally very efficient and sufficiently accurate solutions for the transient fluid-particle dynamics problem. However, future work should test this methodology in patient-specific geometries subject to various flow waveforms.
Collapse
Affiliation(s)
- E. M. Childress
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
| | - C. Kleinstreuer
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 e-mail:
| |
Collapse
|
47
|
Walrand S, Hesse M, Chiesa C, Lhommel R, Jamar F. The Low Hepatic Toxicity per Gray of 90Y Glass Microspheres Is Linked to Their Transport in the Arterial Tree Favoring a Nonuniform Trapping as Observed in Posttherapy PET Imaging. J Nucl Med 2013; 55:135-40. [DOI: 10.2967/jnumed.113.126839] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Salem R, Mazzaferro V, Sangro B. Yttrium 90 radioembolization for the treatment of hepatocellular carcinoma: biological lessons, current challenges, and clinical perspectives. Hepatology 2013; 58:2188-97. [PMID: 23512791 PMCID: PMC3732811 DOI: 10.1002/hep.26382] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/06/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Riad Salem
- Department of Radiology, Section of Interventional Radiology and Division of Interventional Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL
| | - Vincenzo Mazzaferro
- Gastro-Intestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Istituto Nazionale Tumori IRCCS, Milan, Italy
| | - Bruno Sangro
- Liver Unit, Clinica Universidad de Navarra, and Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Pamplona, Spain
| |
Collapse
|
49
|
Impact of fluid-structure interaction on direct tumor-targeting in a representative hepatic artery system. Ann Biomed Eng 2013; 42:461-74. [PMID: 24048712 DOI: 10.1007/s10439-013-0910-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/05/2013] [Indexed: 01/01/2023]
Abstract
Direct targeting of solid tumors with chemotherapeutic drugs and/or radioactive microspheres can be a treatment option which minimizes side-effects and reduces cost. Briefly, computational analysis generates particle release maps (PRMs) which visually link upstream particle injection regions in the main artery with associated exit branches, some connected to tumors. The overall goal is to compute patient-specific PRMs realistically, accurately, and cost-effectively, which determines the suitable radial placement of a micro-catheter for optimal particle injection. Focusing in this paper on new steps towards realism and accuracy, the impact of fluid-structure interaction on direct drug-targeting is evaluated, using a representative hepatic artery system with liver tumor as a test bed. Specifically, the effect of arterial wall motion was demonstrated by modeling a two-way fluid-structure interaction analysis with Lagrangian particle tracking in the bifurcating arterial system. Clearly, rapid computational evaluation of optimal catheter location for tumor-targeting in a clinical application is very important. Hence, rigid-wall cases were also compared to the flexible scenario to establish whether PRMs generated when based on simplifying assumptions could provide adequate guidance towards ideal catheter placement. It was found that the best rigid (i.e., time-averaged) geometry is the physiological one that occurs during the diastolic targeting interval.
Collapse
|
50
|
Lam MG, Smits ML. Value of 99mTc-Macroaggregated Albumin SPECT for Radioembolization Treatment Planning. J Nucl Med 2013; 54:1681-2. [DOI: 10.2967/jnumed.113.123281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|