1
|
Keall PJ, El Naqa I, Fast MF, Hewson EA, Hindley N, Poulsen P, Sengupta C, Tyagi N, Waddington DEJ. Critical Review: Real-Time Dose-Guided Radiation Therapy. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00386-4. [PMID: 40327027 DOI: 10.1016/j.ijrobp.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Dramatic strides have been made in real-time adaptive radiation therapy, where treating single tumors as dynamic but rigid bodies has demonstrated a halving of toxicities for prostate cancer. However, the human body is much more complex than a rigid body. This review explores the ongoing development and future potential of dose-guided radiation therapy, where the three core process steps of volumetric imaging of the patient, dose accumulation, and dose-guided treatment adaptation occur quasi-continuously during treatment, fully accounting for the complexity of the dynamic human body. The clinical evidence supporting real-time adaptive radiation therapy was reviewed. The foundational studies, status, and potential of real-time volumetric imaging using both x-ray and magnetic resonance imaging technology were described. The development of real-time dose accumulation to the dynamic patient was evaluated, and a method to measure real-time dose delivery was assessed. The growth of real-time treatment adaptation was examined. Literature demonstrates continued improvements in patient outcomes because the treatment becomes more conformal to the dynamic patient. Real-time volumetric imaging using both x-ray and magnetic resonance imaging technology is poised for broader implementation. Real-time dose accumulation has demonstrated clinical feasibility, with approximations made to achieve real-time operation. Real-time treatment adaptation to deforming targets and multiple targets has been experimentally demonstrated. Tying together the inputs of the real-time volumetric anatomy and dose accumulation is real-time treatment adaptation that uses the available degrees of freedom to optimize the dose delivered to the patient, maximizing the treatment intent. Opportunities exist for artificial intelligence to accelerate the application of dose-guided radiation therapy to broader patient use. In summary, the emerging field of real-time dose-guided radiation therapy has the potential to significantly improve patient outcomes. The advances are primarily software-driven and therefore could be widely available and cost-effective upgrades to improve imaging and targeting cancer.
Collapse
Affiliation(s)
- Paul J Keall
- Image X Institute, University of Sydney, Sydney, Australia.
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, Florida
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily A Hewson
- Image X Institute, University of Sydney, Sydney, Australia
| | | | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
2
|
Ghaznavi H, Maraghechi B, Zhang H, Zhu T, Laugeman E, Zhang T, Zhao T, Mazur TR, Darafsheh A. Quantitative use of cone-beam computed tomography in proton therapy: challenges and opportunities. Phys Med Biol 2025; 70:09TR01. [PMID: 40269645 DOI: 10.1088/1361-6560/adc86c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
The fundamental goal in radiation therapy (RT) is to simultaneously maximize tumor cell killing and healthy tissue sparing. Reducing uncertainty margins improves normal tissue sparing, but generally requires advanced techniques. Adaptive RT (ART) is a compelling technique that leverages daily imaging and anatomical information to support reduced margins and to optimize plan quality for each treatment fraction. An especially exciting avenue for ART is proton therapy (PT), which aims to combine daily plan re-optimization with the unique advantages provided by protons, including reduced integral dose and near-zero dose deposition distal to the target along the beam direction. A core component for ART is onboard image guidance, and currently two options are available on proton systems, including cone-beam computed tomography (CBCT) and CT-on-rail (CToR) imaging. While CBCT suffers from poorer image quality compared to CToR imaging, CBCT platforms can be more easily integrated with PT systems and thus may support more streamlined adaptive proton therapy (APT). In this review, we present current status of CBCT application to proton therapy dose evaluation and plan adaptation, including progress, challenges and future directions.
Collapse
Affiliation(s)
- Hamid Ghaznavi
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Borna Maraghechi
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
- Department of Radiation Oncology, City of Hope Cancer Center, Irvine, CA 92618, United States of America
| | - Hailei Zhang
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Tong Zhu
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Eric Laugeman
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Tiezhi Zhang
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Tianyu Zhao
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Thomas R Mazur
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Arash Darafsheh
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
3
|
Chai H, Miyasaka Y, Hagiwara Y, Souda H, Ishizawa M, Sato H, Iwai T. Investigation of pelvic floor influence on prostate displacement in image-guided radiotherapy. Prostate 2025; 85:123-129. [PMID: 39377167 DOI: 10.1002/pros.24808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE The uncertainty of target location during prostate cancer radiotherapy plays an important role in accurate dose delivery and radiation toxicity in adjacent organs. This study analyzed displacement correlations between the prostate and pelvic floor. METHODS AND MATERIALS We retrospectively analyzed registration results from 467 daily cone-beam computed tomography (CT) in 12 patients with prostate cancer who received radiation therapy. We analyzed prostate displacement and the pelvic floor relative to the pelvic bone's anatomy in the translational and rotational directions and identified statistical correlations. RESULTS The systematic (Σ) and random (σ) displacements of the prostate in the three translational directions, anterior-posterior (AP), superior-inferior (SI), and right-left (RL), were 1.49 ± 1.45, 2.10 ± 1.40, and 0.24 ± 0.53 mm, respectively, and in the rotational directions of the pitch, roll, and yaw were 2.10 ± 2.02°, 0.42 ± 0.74°, and 0.42 ± 0.64°, respectively. The pelvic floor displacements were 2.37 ± 1.96, 2.71 ± 2.28, and 0.47 ± 0.84 mm in the AP, SI, and RL directions, respectively, and 0.93 ± 1.49°, 0.98 ± 1.28 °, and 0.87 ± 0.94° in the pitch, roll, and yaw directions, respectively. Additionally, there were statistically significant correlations between the displacement of the prostate and pelvic floor in the AP and SI directions, with correlation coefficients (r) of 0.74 (p < 0.001) and 0.69 (p < 0.001), respectively. CONCLUSIONS The movement of the pelvic floor may be an important factor that causes prostate displacement, affecting the accuracy of radiotherapy. Therefore, it is necessary to take appropriate measures to ensure that the pelvic floor muscle tension is as consistent as possible in the treatment' CT scan and daily treatment.
Collapse
Affiliation(s)
- Hongbo Chai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Yasuhito Hagiwara
- Department of Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hikaru Souda
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Miyu Ishizawa
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hiraku Sato
- Department of Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takeo Iwai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| |
Collapse
|
4
|
Riou O, Prunaretty J, Michalet M. Personalizing radiotherapy with adaptive radiotherapy: Interest and challenges. Cancer Radiother 2024; 28:603-609. [PMID: 39353797 DOI: 10.1016/j.canrad.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024]
Abstract
Adaptive radiotherapy (ART) is a recent development in radiotherapy technology and treatment personalization that allows treatment to be tailored to the daily anatomical changes of patients. While it was until recently only performed "offline", i.e. between two radiotherapy sessions, it is now possible during ART to perform a daily online adaptive process for a given patient. Therefore, ART allows a daily customization to ensure optimal coverage of the treatment target volumes with minimized margins, taking into account only the uncertainties related to the adaptive process itself. This optimization appears particularly relevant in case of daily variations in the positioning of the target volume or of the organs at risk (OAR) associated with a proximity of these volumes and a tenuous therapeutic index. ART aims to minimize severe acute and late toxicity and allows tumor dose escalation. These new achievements have been possible thanks to technological development, the contribution of new multimodal and onboard imaging modalities and the integration of artificial intelligence tools for the contouring, planning and delivery of radiation therapy. Online ART is currently available on two types of radiotherapy machines: MR-linear accelerators and recently CBCT-linear accelerators. We will first describe the benefits, advantages, constraints and limitations of each of these two modalities, as well as the online adaptive process itself. We will then evaluate the clinical situations for which online adaptive radiotherapy is particularly indicated on MR- and CBCT-linear accelerators. Finally, we will detail some challenges and possible solutions in the development of online ART in the coming years.
Collapse
Affiliation(s)
- Olivier Riou
- Department of Radiation Oncology, Institut du cancer de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie de Méditerranée Occitanie, université de Montpellier, Montpellier, France; U1194, Inserm, Montpellier, France.
| | - Jessica Prunaretty
- Department of Radiation Oncology, Institut du cancer de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie de Méditerranée Occitanie, université de Montpellier, Montpellier, France; U1194, Inserm, Montpellier, France
| | - Morgan Michalet
- Department of Radiation Oncology, Institut du cancer de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie de Méditerranée Occitanie, université de Montpellier, Montpellier, France; U1194, Inserm, Montpellier, France
| |
Collapse
|
5
|
Patrick HM, Kildea J. More than one way to skin a dose volume: the impact of dose-surface map calculation approach on study reproducibility. Phys Med Biol 2024; 69:025025. [PMID: 38168029 DOI: 10.1088/1361-6560/ad19ef] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Objective.Dose-surface maps (DSMs) provide spatial representations of the radiation dose to organ surfaces during radiotherapy and are a valuable tool for identifying dose deposition patterns that are predictive of radiation toxicities. Over the years, many different DSM calculation approaches have been introduced and used in dose-outcome studies. However, little consideration has been given to how these calculation approaches may be impacting the reproducibility of studies in the field. Therefore, we conducted an investigation to determine the level of equivalence of DSMs calculated with different approaches and their subsequent impact on study results.Approach.Rectum and bladder DSMs were calculated for 20 prostate radiotherapy patients using combinations of the most common slice orientation and spacing styles in the literature. Equivalence of differently calculated DSMs was evaluated using pixel-wise comparisons and DSM features (rectum only). Finally, mock cohort comparison studies were conducted with DSMs calculated using each approach to determine the level of dosimetric study reproducibility between calculation approaches.Main results.We found that rectum DSMs calculated using the planar and non-coplanar orientation styles were non-equivalent in the posterior rectal region and that equivalence of DSMs calculated with different slice spacing styles was conditional on the choice of inter-slice distance used. DSM features were highly sensitive to choice of slice orientation style and DSM sampling resolution. Finally, while general result trends were consistent between the comparison studies performed using different DSMs, statisitically significant subregions and features could vary greatly in position and magnitude.Significance.We have determined that DSMs calculated with different calculation approaches are frequently non-equivalent and can lead to differing conclusions between studies performed using the same dataset. We recommend that the DSM research community work to establish consensus calculation approaches to ensure reproducibility within the field.
Collapse
Affiliation(s)
- Haley M Patrick
- Medical Physics Unit, McGill University, Montreal, QC, H4A3J1, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, QC, H4A3J1, Canada
| |
Collapse
|
6
|
Jiang J, Min Seo Choi C, Deasy JO, Rimner A, Thor M, Veeraraghavan H. Artificial intelligence-based automated segmentation and radiotherapy dose mapping for thoracic normal tissues. Phys Imaging Radiat Oncol 2024; 29:100542. [PMID: 38369989 PMCID: PMC10869275 DOI: 10.1016/j.phro.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024] Open
Abstract
Background and purpose Objective assessment of delivered radiotherapy (RT) to thoracic organs requires fast and accurate deformable dose mapping. The aim of this study was to implement and evaluate an artificial intelligence (AI) deformable image registration (DIR) and organ segmentation-based AI dose mapping (AIDA) applied to the esophagus and the heart. Materials and methods AIDA metrics were calculated for 72 locally advanced non-small cell lung cancer patients treated with concurrent chemo-RT to 60 Gy in 2 Gy fractions in an automated pipeline. The pipeline steps were: (i) automated rigid alignment and cropping of planning CT to week 1 and week 2 cone-beam CT (CBCT) field-of-views, (ii) AI segmentation on CBCTs, and (iii) AI-DIR-based dose mapping to compute dose metrics. AIDA dose metrics were compared to the planned dose and manual contour dose mapping (manual DA). Results AIDA required ∼2 min/patient. Esophagus and heart segmentations were generated with a mean Dice similarity coefficient (DSC) of 0.80±0.15 and 0.94±0.05, a Hausdorff distance at 95th percentile (HD95) of 3.9±3.4 mm and 14.1±8.3 mm, respectively. AIDA heart dose was significantly lower than the planned heart dose (p = 0.04). Larger dose deviations (>=1Gy) were more frequently observed between AIDA and the planned dose (N = 26) than with manual DA (N = 6). Conclusions Rapid estimation of RT dose to thoracic tissues from CBCT is feasible with AIDA. AIDA-derived metrics and segmentations were similar to manual DA, thus motivating the use of AIDA for RT applications.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Chloe Min Seo Choi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
7
|
McDonald BA, Cardenas CE, O'Connell N, Ahmed S, Naser MA, Wahid KA, Xu J, Thill D, Zuhour RJ, Mesko S, Augustyn A, Buszek SM, Grant S, Chapman BV, Bagley AF, He R, Mohamed ASR, Christodouleas J, Brock KK, Fuller CD. Investigation of autosegmentation techniques on T2-weighted MRI for off-line dose reconstruction in MR-linac workflow for head and neck cancers. Med Phys 2024; 51:278-291. [PMID: 37475466 PMCID: PMC10799175 DOI: 10.1002/mp.16582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND In order to accurately accumulate delivered dose for head and neck cancer patients treated with the Adapt to Position workflow on the 1.5T magnetic resonance imaging (MRI)-linear accelerator (MR-linac), the low-resolution T2-weighted MRIs used for daily setup must be segmented to enable reconstruction of the delivered dose at each fraction. PURPOSE In this pilot study, we evaluate various autosegmentation methods for head and neck organs at risk (OARs) on on-board setup MRIs from the MR-linac for off-line reconstruction of delivered dose. METHODS Seven OARs (parotid glands, submandibular glands, mandible, spinal cord, and brainstem) were contoured on 43 images by seven observers each. Ground truth contours were generated using a simultaneous truth and performance level estimation (STAPLE) algorithm. Twenty total autosegmentation methods were evaluated in ADMIRE: 1-9) atlas-based autosegmentation using a population atlas library (PAL) of 5/10/15 patients with STAPLE, patch fusion (PF), random forest (RF) for label fusion; 10-19) autosegmentation using images from a patient's 1-4 prior fractions (individualized patient prior [IPP]) using STAPLE/PF/RF; 20) deep learning (DL) (3D ResUNet trained on 43 ground truth structure sets plus 45 contoured by one observer). Execution time was measured for each method. Autosegmented structures were compared to ground truth structures using the Dice similarity coefficient, mean surface distance (MSD), Hausdorff distance (HD), and Jaccard index (JI). For each metric and OAR, performance was compared to the inter-observer variability using Dunn's test with control. Methods were compared pairwise using the Steel-Dwass test for each metric pooled across all OARs. Further dosimetric analysis was performed on three high-performing autosegmentation methods (DL, IPP with RF and 4 fractions [IPP_RF_4], IPP with 1 fraction [IPP_1]), and one low-performing (PAL with STAPLE and 5 atlases [PAL_ST_5]). For five patients, delivered doses from clinical plans were recalculated on setup images with ground truth and autosegmented structure sets. Differences in maximum and mean dose to each structure between the ground truth and autosegmented structures were calculated and correlated with geometric metrics. RESULTS DL and IPP methods performed best overall, all significantly outperforming inter-observer variability and with no significant difference between methods in pairwise comparison. PAL methods performed worst overall; most were not significantly different from the inter-observer variability or from each other. DL was the fastest method (33 s per case) and PAL methods the slowest (3.7-13.8 min per case). Execution time increased with a number of prior fractions/atlases for IPP and PAL. For DL, IPP_1, and IPP_RF_4, the majority (95%) of dose differences were within ± 250 cGy from ground truth, but outlier differences up to 785 cGy occurred. Dose differences were much higher for PAL_ST_5, with outlier differences up to 1920 cGy. Dose differences showed weak but significant correlations with all geometric metrics (R2 between 0.030 and 0.314). CONCLUSIONS The autosegmentation methods offering the best combination of performance and execution time are DL and IPP_1. Dose reconstruction on on-board T2-weighted MRIs is feasible with autosegmented structures with minimal dosimetric variation from ground truth, but contours should be visually inspected prior to dose reconstruction in an end-to-end dose accumulation workflow.
Collapse
Affiliation(s)
- Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos E Cardenas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Sara Ahmed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mohamed A Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kareem A Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Raed J Zuhour
- Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Shane Mesko
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander Augustyn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samantha M Buszek
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen Grant
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bhavana V Chapman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander F Bagley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Renjie He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Wu X, Amstutz F, Weber DC, Unkelbach J, Lomax AJ, Zhang Y. Patient-specific quality assurance for deformable IMRT/IMPT dose accumulation: Proposition and validation of energy conservation based validation criterion. Med Phys 2023; 50:7130-7138. [PMID: 37345380 DOI: 10.1002/mp.16564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Deformable image registration (DIR)-based dose accumulation (DDA) is regularly used in adaptive radiotherapy research. However, the applicability and reliability of DDA for direct clinical usage are still being debated. One primary concern is the validity of DDA, particularly for scenarios with substantial anatomical changes, for which energy-conservation problems were observed in conceptual studies. PURPOSE We present and validate an energy-conservation (EC)-based DDA validation workflow and further investigate its usefulness for actual patient data, specifically for lung cancer cases. METHODS For five non-small cell lung cancer (NSCLC) patients, DDA based on five selective DIR methods were calculated for five different treatment plans, which include one intensity-modulated photon therapy (IMRT), two intensity-modulated proton therapy (IMPT), and two combined proton-photon therapy (CPPT) plans. All plans were optimized on the planning CT (planCT) acquired in deep inspiration breath-hold (DIBH) and were re-optimized on the repeated DIBH CTs of three later fractions. The resulting fractional doses were warped back to the planCT using each DIR. An EC-based validation of the accumulation process was implemented and applied to all DDA results. Correlations between relative organ mass/volume variations and the extent of EC violation were then studied using Bayesian linear regression (BLR). RESULTS For most OARs, EC violation within 10% is observed. However, for the PTVs and GTVs with substantial regression, severe overestimation of the fractional energy was found regardless of treatment type and applied DIR method. BLR results show that EC violation is linearly correlated to the relative mass variation (R^2 > 0.95) and volume variation (R^2 > 0.60). CONCLUSION DDA results should be used with caution in regions with high mass/volume variation for intensity-based DIRs. EC-based validation is a useful approach to provide patient-specific quality assurance of the validity of DDA in radiotherapy.
Collapse
Affiliation(s)
- Xin Wu
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Information Technology & Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
9
|
Patrick HM, Poon E, Kildea J. Experimental validation of a novel method of dose accumulation for the rectum. Acta Oncol 2023; 62:915-922. [PMID: 37504890 DOI: 10.1080/0284186x.2023.2238556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Dose-surface maps (DSMs) are an increasingly popular tool to evaluate spatial dose-outcome relationships for the rectum. Recently, DSM addition has been proposed as an alternative method of dose accumulation from deformable registration-based techniques. In this study, we performed the first experimental investigation of the accuracy at which DSM accumulation can capture the total dose delivered to a rectum's surface in the presence of inter-fraction motion. MATERIAL AND METHODS A custom PVC rectum phantom capable of representing typical rectum inter-fraction motion and filling variations was constructed for this project. The phantom allowed for the placement of EBT3 film sheets on the representative rectum surface to measure rectum surface dose. A multi-fraction prostate VMAT treatment was designed and delivered to the phantom in a water tank for a variety of inter-fraction motion scenarios. DSMs for each fraction were calculated in two ways using CBCT images acquired during delivery and summed to produce accumulated DSMs. Accumulated DSMs were then compared to film measurements using gamma analysis (3%/2 mm criteria). Similarity of isodose clusters between films and DSMs was also investigated. RESULTS Baseline agreement between film measurements and accumulated DSMs for a stationary rectum was 95.6%. Agreement between film and accumulated DSMs in the presence of different types of inter.-fraction motion was ≥92%, and isodose cluster mean distance to agreement was within 1.5 mm for most scenarios. Overall, DSM accumulation performed the best when using DSMs that accounted for changes in rectum path orientation. CONCLUSION Dose accumulation performed with DSMs was found to accurately replicate total delivered dose to a rectum phantom in the presence of inter-fraction motion.
Collapse
Affiliation(s)
- H M Patrick
- Medical Physics Unit, McGill University, Montreal, Québec, Canada
| | - E Poon
- Department of Medical Physics, McGill University Health Centre, Montreal, Québec, Canada
| | - J Kildea
- Medical Physics Unit, McGill University, Montreal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
10
|
Arumugam S, Young T, Do V, Chlap P, Tawfik C, Udovitch M, Wong K, Sidhom M. Assessment of intrafraction motion and its dosimetric impact on prostate radiotherapy using an in-house developed position monitoring system. Front Oncol 2023; 13:1082391. [PMID: 37519787 PMCID: PMC10375704 DOI: 10.3389/fonc.2023.1082391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To implement an in-house developed position monitoring software, SeedTracker, for conventional fractionation prostate radiotherapy, and study the effect on dosimetric impact and intrafraction motion. Methods Thirty definitive prostate radiotherapy patients with implanted fiducial markers were included in the study. All patients were treated with VMAT technique and plans were generated using the Pinnacle planning system using the 6MV beam model for Elekta linear accelerator. The target dose of 60 Gy in 20 fractions was prescribed for 29 of 30 patients, and one patient was treated with the target dose of 78 Gy in 39 fractions. The SeedTracker position monitoring system, which uses the x-ray images acquired during treatment delivery in the Elekta linear accelerator and associated XVI system, was used for online prostate position monitoring. The position tolerance for online verification was progressively reduced from 5 mm, 4 mm, and to 3 mm in 10 patient cohorts to effectively manage the treatment interruptions resulting from intrafraction motion in routine clinical practice. The delivered dose to target volumes and organs at risk in each of the treatment fractions was assessed by incorporating the observed target positions into the original treatment plan. Results In 27 of 30 patients, at least one gating event was observed, with a total of 177 occurrences of position deviation detected in 146 of 619 treatment fractions. In 5 mm, 4 mm, and 3 mm position tolerance cohorts, the position deviations were observed in 13%, 24%, and 33% of treatment fractions, respectively. Overall, the mean (range) deviation of -0.4 (-7.2 to 5.3) mm, -0.9 (-6.1 to 15.6) mm, and -1.7 (-7.0 to 6.1) mm was observed in Left-Right, Anterior-Posterior, and Superior-Inferior directions, respectively. The prostate CTV D99 would have been reduced by a maximum value of 1.3 Gy compared to the planned dose if position deviations were uncorrected, but with corrections, it was 0.3 Gy. Similarly, PTV D98 would have been reduced by a maximum value of 7.6 Gy uncorrected, with this difference reduced to 2.2 Gy with correction. The V60 to the rectum increased by a maximum of 1.0% uncorrected, which was reduced to 0.5%. Conclusion Online target position monitoring for conventional fractionation prostate radiotherapy was successfully implemented on a standard Linear accelerator using an in-house developed position monitoring software, with an improvement in resultant dose to prostate target volume.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tony Young
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Viet Do
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Phillip Chlap
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Christine Tawfik
- Department of Radiation Therapy, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Mark Udovitch
- Department of Radiation Therapy, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Karen Wong
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Mark Sidhom
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| |
Collapse
|
11
|
Ghimire R, Moore KL, Branco D, Rash DL, Mayadev J, Ray X. Forecasting patient-specific dosimetric benefit from daily online adaptive radiotherapy for cervical cancer. Biomed Phys Eng Express 2023; 9:045030. [PMID: 37336202 DOI: 10.1088/2057-1976/acdf62] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Objective. Adaptive Radiotherapy (ART) is an emerging technique for treating cancer patients which facilitates higher delivery accuracy and has the potential to reduce toxicity. However, ART is also resource-intensive, Requiring extra human and machine time compared to standard treatment methods. In this analysis, we sought to predict the subset of node-negative cervical cancer patients with the greatest benefit from ART, so resources might be properly allocated to the highest-yield patients.Approach. CT images, initial plan data, and on-treatment Cone-Beam CT (CBCT) images for 20 retrospective cervical cancer patients were used to simulate doses from daily non-adaptive and adaptive techniques. We evaluated the coefficient of determination (R2) between dose and volume metrics from initial treatment plans and the dosimetric benefits to theBowelV40Gy,BowelV45Gy,BladderDmean,andRectumDmeanfrom adaptive radiotherapy using reduced 3 mm or 5 mm CTV-to-PTV margins. The LASSO technique was used to identify the most predictive metrics forBowelV40Gy.The three highest performing metrics were used to build multivariate models with leave-one-out validation forBowelV40Gy.Main results. Patients with higher initial bowel doses were correlated with the largest decreases in BowelV40Gyfrom daily adaptation (linear best fit R2= 0.77 for a 3 mm PTV margin and R2= 0.8 for a 5 mm PTV margin). Other metrics had intermediate or no correlation. Selected covariates for the multivariate model were differences in the initialBowelV40GyandBladderDmeanusing standard versus reduced margins and the initial bladder volume. Leave-one-out validation had an R2of 0.66 between predicted and true adaptiveBowelV40Gybenefits for both margins.Significance. The resulting models could be used to prospectively triage cervical cancer patients on or off daily adaptation to optimally manage clinical resources. Additionally, this work presents a critical foundation for predicting benefits from daily adaptation that can be extended to other patient cohorts.
Collapse
Affiliation(s)
- Rupesh Ghimire
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Kevin L Moore
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Daniela Branco
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Dominique L Rash
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Jyoti Mayadev
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| | - Xenia Ray
- University of California San Diego Health, 3855 Health Sciences Drive La Jolla, CA 92093, United States of America
| |
Collapse
|
12
|
Murr M, Brock KK, Fusella M, Hardcastle N, Hussein M, Jameson MG, Wahlstedt I, Yuen J, McClelland JR, Vasquez Osorio E. Applicability and usage of dose mapping/accumulation in radiotherapy. Radiother Oncol 2023; 182:109527. [PMID: 36773825 PMCID: PMC11877414 DOI: 10.1016/j.radonc.2023.109527] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Dose mapping/accumulation (DMA) is a topic in radiotherapy (RT) for years, but has not yet found its widespread way into clinical RT routine. During the ESTRO Physics workshop 2021 on "commissioning and quality assurance of deformable image registration (DIR) for current and future RT applications", we built a working group on DMA from which we present the results of our discussions in this article. Our aim in this manuscript is to shed light on the current situation of DMA in RT and to highlight the issues that hinder consciously integrating it into clinical RT routine. As a first outcome of our discussions, we present a scheme where representative RT use cases are positioned, considering expected anatomical variations and the impact of dose mapping uncertainties on patient safety, which we have named the DMA landscape (DMAL). This tool is useful for future reference when DMA applications get closer to clinical day-to-day use. Secondly, we discussed current challenges, lightly touching on first-order effects (related to the impact of DIR uncertainties in dose mapping), and focusing in detail on second-order effects often dismissed in the current literature (as resampling and interpolation, quality assurance considerations, and radiobiological issues). Finally, we developed recommendations, and guidelines for vendors and users. Our main point include: Strive for context-driven DIR (by considering their impact on clinical decisions/judgements) rather than perfect DIR; be conscious of the limitations of the implemented DIR algorithm; and consider when dose mapping (with properly quantified uncertainties) is a better alternative than no mapping.
Collapse
Affiliation(s)
- Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany.
| | - Kristy K Brock
- Department of Imaging Physics and Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, USA
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre & Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, United Kingdom
| | - Michael G Jameson
- GenesisCare New South Wales, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Australia
| | - Isak Wahlstedt
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800 Kongens Lyngby, Denmark; Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte (HGH), Borgmester Ib Juuls Vej 7, 2730 Herlev, Denmark
| | - Johnson Yuen
- St George Hospital Cancer Care Centre, Kogarah, NSW 2217, Australia; South Western Clinical School, University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Jamie R McClelland
- Centre for Medical Image Computing and Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Dept of Medical Physics and Biomedical Engineering, UCL, United Kingdom
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M20 4BX Manchester, United Kingdom
| |
Collapse
|
13
|
Cao Y, Zhu X, Yu C, Jiang L, Sun Y, Guo X, Zhang H. Dose evaluations of organs at risk and predictions of gastrointestinal toxicity after re-irradiation with stereotactic body radiation therapy for pancreatic cancer by deformable image registration. Front Oncol 2023; 12:1021058. [PMID: 36793343 PMCID: PMC9923872 DOI: 10.3389/fonc.2022.1021058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose Re-irradiation of locally recurrent pancreatic cancer may be an optimal choice as a local ablative therapy. However, dose constraints of organs at risk (OARs) predictive of severe toxicity remain unknown. Therefore, we aim to calculate and identify accumulated dose distributions of OARs correlating with severe adverse effects and determine possible dose constraints regarding re-irradiation. Methods Patients receiving two courses of stereotactic body radiation therapy (SBRT) for the same irradiated regions (the primary tumors) due to local recurrence were included. All doses of the first and second plans were recalculated to an equivalent dose of 2 Gy per fraction (EQD2). Deformable image registration with the workflow "Dose Accumulation-Deformable" of the MIM® System (version: 6.6.8) was performed for dose summations. Dose-volume parameters predictive of grade 2 or more toxicities were identified, and the receiver operating characteristic (ROC) curve was used to determine optimal thresholds of dose constraints. Results Forty patients were included in the analysis. Only the V 10 of the stomach [hazard ratio (HR): 1.02 (95% CI:1.00-1.04), P = 0.035] and D mean of the intestine [HR: 1.78 (95% CI: 1.00-3.18), P = 0.049] correlated with grade 2 or more gastrointestinal toxicity. Hence, the equation of probability of such toxicity was P = 1 1 + e - ( - 4.155 + 0.579 D mean of the intestine + 0.021 V 10 of the stomach ) Additionally, the area under the ROC curve and threshold of dose constraints of V 10 of the stomach and D mean of the intestine were 0.779 and 77.575 cc, 0.769 and 4.22 Gy3 (α/β = 3), respectively. The area under the ROC curve of the equation was 0.821. Conclusion The V 10 of the stomach and D mean of the intestine may be vital parameters to predict grade 2 or more gastrointestinal toxicity, of which the threshold of dose constraints may be beneficial for the practice of re-irradiation of locally relapsed pancreatic cancer.
Collapse
|
14
|
McDonald BA, Zachiu C, Christodouleas J, Naser MA, Ruschin M, Sonke JJ, Thorwarth D, Létourneau D, Tyagi N, Tadic T, Yang J, Li XA, Bernchou U, Hyer DE, Snyder JE, Bubula-Rehm E, Fuller CD, Brock KK. Dose accumulation for MR-guided adaptive radiotherapy: From practical considerations to state-of-the-art clinical implementation. Front Oncol 2023; 12:1086258. [PMID: 36776378 PMCID: PMC9909539 DOI: 10.3389/fonc.2022.1086258] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice in recent years and have enabled MR-guided adaptive radiation therapy (MRgART). However, by accounting for anatomical changes throughout radiation therapy (RT) and delivering different treatment plans at each fraction, adaptive radiation therapy (ART) highlights several challenges in terms of calculating the total delivered dose. Dose accumulation strategies-which typically involve deformable image registration between planning images, deformable dose mapping, and voxel-wise dose summation-can be employed for ART to estimate the delivered dose. In MRgART, plan adaptation on MRI instead of CT necessitates additional considerations in the dose accumulation process because MRI pixel values do not contain the quantitative information used for dose calculation. In this review, we discuss considerations for dose accumulation specific to MRgART and in relation to current MR-linac clinical workflows. We present a general dose accumulation framework for MRgART and discuss relevant quality assurance criteria. Finally, we highlight the clinical importance of dose accumulation in the ART era as well as the possible ways in which dose accumulation can transform clinical practice and improve our ability to deliver personalized RT.
Collapse
Affiliation(s)
- Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Mohamed A. Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark Ruschin
- Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Daniel E. Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Jeffrey E. Snyder
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristy K. Brock
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
15
|
Zhang G, Zhou L, Han Z, Zhao W, Peng H. SWFT-Net: a deep learning framework for efficient fine-tuning spot weights towards adaptive proton therapy. Phys Med Biol 2022; 67. [PMID: 36541496 DOI: 10.1088/1361-6560/aca517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective. One critical task for adaptive proton therapy is how to perform spot weight re-tuning and reoptimize plan, both of which are time-consuming and labor intensive. We proposed a deep learning framework (SWFT-Net) to speed up such a task, a starting point for us to move towards online adaptive proton therapy.Approach. For a H&N patient case, a reference intensity modulated proton therapy plan was generated. For data augmentation, spot weights were modified to generate three datasets (DS10, DS30, DS50), corresponding to different levels of weight adjustment. For each dataset, the samples were split into the training and testing groups at a ratio of 8:2 (6400 for training, 1706 for testing). To ease the difficulty of machine learning, the residuals of dose maps and spot weights (i.e. difference relative to a reference) were used as inputs and outputs, respectively. Quantitative analyses were performed in terms of normalized root mean square error (NRMSE) of spot weights, Gamma passing rate and dose difference within the PTV.Main results. The SWFT-Net is able to generate an adapted plan in less than a second with a NVIDIA GeForce RTX 3090 GPU. For the 1706 samples in the testing dataset, the NRMSE is 0.41% (DS10), 1.05% (DS30) and 2.04% (DS50), respectively. Cold/hot spots in the dose maps after adaptation are observed. The mean relative dose difference is 0.64% (DS10), 0.92% (DS30) and 0.88% (DS50), respectively. For all three datasets, the mean Gamma passing rate is consistently over 95% for both 1 mm/1% and 3 mm/3% settings.Significance. The proposed SWFT-Net is a promising tool to help realize adaptive proton therapy. It can be used as an alternative tool to other spot fine-tuning optimization algorithms, likely demonstrating superior performance in terms of speed, accuracy, robustness and minimum human interaction. This study lays down a foundation for us to move further incorporating other factors such as daily anatomical changes and propagated PTVs, and develop a truly online adaptive workflow in proton therapy.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, 430072, People's Republic of China
| | - Long Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, People's Republic of China
| | - Zeng Han
- Department of Medical Physics, School of Physics and Technology, Wuhan University, 430072, People's Republic of China
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, 100191, People's Republic of China
| | - Hao Peng
- Department of Medical Physics, School of Physics and Technology, Wuhan University, 430072, People's Republic of China.,Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| |
Collapse
|
16
|
Patrick HM, Kildea J. Technical note: rtdsm-An open-source software for radiotherapy dose-surface map generation and analysis. Med Phys 2022; 49:7327-7335. [PMID: 35912447 DOI: 10.1002/mp.15900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dose-outcome studies in radiation oncology have historically excluded spatial information due to dose-volume histograms being the most dominant source of dosimetric information. In recent years, dose-surface maps (DSMs) have become increasingly popular for characterization of spatial dose distributions and identification of radiosensitive subregions for hollow organs. However, methodological variations and lack of open-source, publicly offered code-sharing between research groups have limited reproducibility and wider adoption. PURPOSE This paper presents rtdsm, an open-source software for DSM calculation with the intent to improve the reproducibility of and the access to DSM-based research in medical physics and radiation oncology. METHODS A literature review was conducted to identify essential functionalities and prevailing calculation approaches to guide development. The described software has been designed to calculate DSMs from DICOM data with a high degree of user customizability and to facilitate DSM feature analysis. Core functionalities include DSM calculation, equivalent dose conversions, common DSM feature extraction, and simple DSM accumulation. RESULTS A number of use cases were used to qualitatively and quantitatively demonstrate the use and usefulness of rtdsm. Specifically, two DSM slicing methods, planar and noncoplanar, were implemented and tested, and the effects of method choice on output DSMs were demonstrated. An example comparison of DSMs from two different treatments was used to highlight the use cases of various built-in analysis functions for equivalent dose conversion and DSM feature extraction. CONCLUSIONS We developed and implemented rtdsm as a standalone software that provides all essential functionalities required to perform a DSM-based study. It has been made freely accessible under an open-source license on Github to encourage collaboration and community use.
Collapse
Affiliation(s)
- Haley M Patrick
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Vaccarelli MJ, Krafft SP, Briere TM, Svensson S, Han EY. Evaluation of RayStation's delivered dose and accumulated dose features for spine stereotactic radiotherapy. Med Dosim 2022. [DOI: 10.1016/j.meddos.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Dang J, Kong V, Li W, Navarro I, Winter JD, Malkov V, Berlin A, Catton C, Padayachee J, Raman S, Warde P, Chung P. Impact of intrafraction changes in delivered dose of the day for prostate cancer patients treated with stereotactic body radiotherapy via MR-Linac. Tech Innov Patient Support Radiat Oncol 2022; 23:41-46. [PMID: 36105770 PMCID: PMC9464851 DOI: 10.1016/j.tipsro.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Beam on MR acquisition on the MR-Linac can be used to compute DDOTD. Intrafraction motion via volumetric variability of OARs can impact dosimetry. Computation of the DDOTD may help inform prospective fractions for SBRT prostate.
Purpose The purpose of this study is to evaluate the impact of intrafraction pelvic motion by comparing the adapted plan dose (APD) and the computed delivered dose of the day (DDOTD) for patients with prostate cancer (PCa) treated with SBRT on the MR-Linac. Methods Twenty patients with PCa treated with MR-guided adaptive SBRT were included. A 9-field IMRT distribution was adapted based on the anatomy of the day to deliver a total prescription dose of 3000 cGy in 5 fractions to the prostate plus a 5 mm isotropic margin. Prostate, bladder, and rectum were re-contoured on the MR-image acquired during treatment delivery (MRBO). DDOTD was computed by propagating the dose from the daily adapted plan generated during treatment onto the MRBO. Results Target coverage was met for all fractions, however, computed DDOTD was significantly less than the APD (p < 0.05). During an average treatment of 53 min, mean bladder volume increased by 116%, which led to a significant decrease in the DDOTD bladder D40% (p < 0.001). However, DDOTD to bladder 5 cc was significantly higher (p < 0.001) than APD. Rectum intrafraction changes were observed based on a volume change of −20% to 83% and presence of significant dose changes from APD to DDOTD for rectum D20% (p < 0.05) and D1cc (p < 0.0001). Conclusions Intrafraction motion observed during prostate SBRT treatment on the MR-Linac have dosimetric impacts on both the target and organs at risk. Post-treatment computation using DDOTD may inform adaptation beyond anatomic changes in subsequent treatment fractions to best capitalize on MR-Linac technology and widen the therapeutic index of SBRT for PCa.
Collapse
Affiliation(s)
- Jennifer Dang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Corresponding author at: Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, Canada.
| | - Vickie Kong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Inmaculada Navarro
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jeff D. Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Victor Malkov
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Charles Catton
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jerusha Padayachee
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Padraig Warde
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Personalized Dosimetry in the Context of Radioiodine Therapy for Differentiated Thyroid Cancer. Diagnostics (Basel) 2022; 12:diagnostics12071763. [PMID: 35885666 PMCID: PMC9320760 DOI: 10.3390/diagnostics12071763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
The most frequent thyroid cancer is Differentiated Thyroid Cancer (DTC) representing more than 95% of cases. A suitable choice for the treatment of DTC is the systemic administration of 131-sodium or potassium iodide. It is an effective tool used for the irradiation of thyroid remnants, microscopic DTC, other nonresectable or incompletely resectable DTC, or all the cited purposes. Dosimetry represents a valid tool that permits a tailored therapy to be obtained, sparing healthy tissue and so minimizing potential damages to at-risk organs. Absorbed dose represents a reliable indicator of biological response due to its correlation to tissue irradiation effects. The present paper aims to focus attention on iodine therapy for DTC treatment and has developed due to the urgent need for standardization in procedures, since no unique approaches are available. This review aims to summarize new proposals for a dosimetry-based therapy and so explore new alternatives that could provide the possibility to achieve more tailored therapies, minimizing the possible side effects of radioiodine therapy for Differentiated Thyroid Cancer.
Collapse
|
20
|
Chapman JW, Lam D, Cai B, Hugo GD. Robustness and reproducibility of an artificial intelligence-assisted online segmentation and adaptive planning process for online adaptive radiation therapy. J Appl Clin Med Phys 2022; 23:e13702. [PMID: 35801266 PMCID: PMC9359017 DOI: 10.1002/acm2.13702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical implementation of online adaptive radiation therapy requires initial and ongoing performance assessment of the underlying auto‐segmentation and adaptive planning algorithms, although a straightforward and efficient process for this in phantom is lacking. The purpose of this work was to investigate robustness and repeatability of the artificial intelligence‐assisted online segmentation and adaptive planning process on the Varian Ethos adaptive platform, and to develop an end‐to‐end test strategy for online adaptive radiation therapy. Five synthetic deformations were generated and applied to a computed tomography image of an anthropomorphic pelvis phantom, and reference treatment plans were generated from each of the resulting deformed images. The undeformed phantom was repeatedly imaged, and the online adaptive process was performed including auto‐segmentation, review and manual correction of contours, and adaptive plan creation. One adaptive fractions in five different deformation scenarios were performed. The manually corrected contours had a high degree of consistency (> 93% Dice similarity coefficient and < 1.0 mm mean surface distance) across repeated fractions, with no significant variation across the synthetic deformation instance except for bowel (p = 0.026, one‐way ANOVA). Adaptive treatment plans also resulted in highly consistent dose–volume values for targets and organs at risk. A straightforward and efficient process was developed and used to quantify a set of organ specific contouring and dosimetric action levels to help establish uncertainty bounds for an end‐to‐end test on the Varian Ethos system.
Collapse
Affiliation(s)
- John W Chapman
- Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dao Lam
- Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Cai
- Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Geoffrey D Hugo
- Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Lübeck Christiansen R, Dysager L, Rønn Hansen C, Robenhagen Jensen H, Schytte T, Junker Nyborg C, Smedegaard Bertelsen A, Nielsen Agergaard S, Mahmood F, Hansen S, Hansen O, Brink C, Bernchou U. Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiother Oncol 2021; 167:165-171. [PMID: 34923034 DOI: 10.1016/j.radonc.2021.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE With daily, MR-guided online adapted radiotherapy (MRgART) it may be possible to reduce the PTV in pelvic RT. This study investigated the potential reduction in normal tissue complication probability (NTCP) of MRgART compared to standard radiotherapy for high-risk prostate cancer. MATERIALS AND METHODS Twenty patients treated with 78 Gy to the prostate and 56 Gy to elective pelvic lymph nodes were included. VMAT plans were generated with standard clinical PTV margins. Additionally to the planning MR, patients had three MRI scans during treatment to simulate an MRgART. A reference plan with PTV margins determined for MRgART was created per patient and adapted to each of the following MRs. Adapted plans were warped to the planning MR for dose accumulation. The standard plan was rigidly registered to each adaptation MR before it was warped to the planning MR for dose accumulation. Dosimetric impact was compared by DVH analysis and potential clinical effects were assessed by NTCP modeling. RESULTS MRgART yielded statistically significant lower doses for the bladder wall, rectum and peritoneal cavity, compared to the standard RT, which translated into reduced median risks of urine incontinence (ΔNTCP 2.8%), urine voiding pain (ΔNTCP 2.8%) and acute gastrointestinal toxicity (ΔNTCP 17.4%). Mean population accumulated doses were as good or better for all investigated OAR when planned for MRgART as standard RT. CONCLUSION Online adapted radiotherapy may reduce the dose to organs at risk in high-risk prostate cancer patients, due to reduced PTV margins. This potentially translates to significant reductions in the risks of acute and late adverse effects.
Collapse
Affiliation(s)
- Rasmus Lübeck Christiansen
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital.
| | - Lars Dysager
- Department of Oncology, Odense University Hospital
| | - Christian Rønn Hansen
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| | | | - Tine Schytte
- Department of Clinical Research, University of Southern Denmark; Department of Oncology, Odense University Hospital
| | | | | | | | - Faisal Mahmood
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| | | | - Olfred Hansen
- Department of Clinical Research, University of Southern Denmark; Department of Oncology, Odense University Hospital
| | - Carsten Brink
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| | - Uffe Bernchou
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| |
Collapse
|
22
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Bojechko C, Nelson T, Simpson D, Moiseenko V. Assessment of predictive indicators of acute gastrointestinal toxicity using in vivo transmission images. Med Phys 2021; 48:8152-8162. [PMID: 34664718 DOI: 10.1002/mp.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 10/09/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE For pelvic and abdominal treatments, excess dose to the bowel can result in acute toxicities. Current estimates of bowel toxicity are based on pre-treatment dose-volume histogram data. However, the actual dose the bowel receives depends on interfraction variations, such as patient anatomy changes. We propose a method to model bowel toxicities, incorporating in vivo patient information using transit electronic portal imaging device (EPID) images. METHODS AND MATERIALS For 63 patients treated to the lower thorax, abdomen, or pelvis on the Varian Halcyon, weekly chart review was performed to obtain incidences of grade 2 or higher toxicity, RTOG scale. Twenty patients presented with acute gastrointestinal (GI) toxicity. All patients were treated with conventional fractionation. For each treatment plan, the absolute volume dose-volume histogram of the bowel was exported and analyzed. Additionally, for each fraction of treatment, in vivo EPID images were collected and used to estimate the change in radiation transmission during the course of treatment. A logistic model was used to test correlations between acute GI toxicity and bowel dosimetric parameters as well as metrics obtained from in vivo image measurements. After performing the fit to the in vivo EPID data, the bootstrap resampling method was used to create confidence intervals. In vivo EPID image metrics from an additional 42 patients treated to the lower thorax, abdomen, or pelvis were used to validate the logistic model fit. RESULTS The incidence of toxicity versus the volume of 40 Gy to the bowel space was fitted with a logistic function, which was superior to an average model (p < 0.0001) and agrees with previously published models. For the initial in vivo EPID data, the incidence of toxicity versus the sum of in vivo transmission measurements showed marginal significance after 15 fractions (p = 0.10) of treatment and a significance of p = 0.038 is seen at the 20th fraction, when compared to an average model. For the validation data set, the logistic model of the in vivo transmission measurement after 20 fractions was superior to the average model (p = 0.043), with the model falling within the 68% confidence interval of the fit of the initial data set. CONCLUSIONS Dose-volume constraints to reduce the incidence of acute GI toxicity have been validated. The presented novel EPID transmission-based metric can be used to identify GI toxicity as patients progress through treatment.
Collapse
Affiliation(s)
- Casey Bojechko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Tyler Nelson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Daniel Simpson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
24
|
Gong H, Tao S, Gagneur JD, Liu W, Shen J, McCollough CH, Hu Y, Leng S. Implementation and experimental evaluation of Mega-voltage fan-beam CT using a linear accelerator. Radiat Oncol 2021; 16:139. [PMID: 34321029 PMCID: PMC8317342 DOI: 10.1186/s13014-021-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mega-voltage fan-beam Computed Tomography (MV-FBCT) holds potential in accurate determination of relative electron density (RED) and proton stopping power ratio (SPR) but is not widely available. OBJECTIVE To demonstrate the feasibility of MV-FBCT using a medical linear accelerator (LINAC) with a 2.5 MV imaging beam, an electronic portal imaging device (EPID) and multileaf collimators (MLCs). METHODS MLCs were used to collimate MV beam along z direction to enable a 1 cm width fan-beam. Projection data were acquired within one gantry rotation and preprocessed with in-house developed artifact correction algorithms before the reconstruction. MV-FBCT data were acquired at two dose levels: 30 and 60 monitor units (MUs). A Catphan 604 phantom was used to evaluate basic image quality. A head-sized CIRS phantom with three configurations of tissue-mimicking inserts was scanned and MV-FBCT Hounsfield unit (HU) to RED calibration was established for each insert configuration using linear regression. The determination coefficient ([Formula: see text]) was used to gauge the accuracy of HU-RED calibration. Results were compared with baseline single-energy kilo-voltage treatment planning CT (TP-CT) HU-RED calibration which represented the current standard clinical practice. RESULTS The in-house artifact correction algorithms effectively suppressed ring artifact, cupping artifact, and CT number bias in MV-FBCT. Compared to TP-CT, MV-FBCT was able to improve the prediction accuracy of the HU-RED calibration curve for all three configurations of insert materials, with [Formula: see text] > 0.9994 and [Formula: see text] < 0.9990 for MV-FBCT and TP-CT HU-RED calibration curves of soft-tissue inserts, respectively. The measured mean CT numbers of blood-iodine mixture inserts in TP-CT drastically deviated from the fitted values but not in MV-FBCT. Reducing the radiation level from 60 to 30 MU did not decrease the prediction accuracy of the MV-FBCT HU-RED calibration curve. CONCLUSION We demonstrated the feasibility of MV-FBCT and its potential in providing more accurate RED estimation.
Collapse
Affiliation(s)
- Hao Gong
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Justin D Gagneur
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Wei Liu
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Jiajian Shen
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yanle Hu
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA.
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
Ebert MA, Gulliford S, Acosta O, de Crevoisier R, McNutt T, Heemsbergen WD, Witte M, Palma G, Rancati T, Fiorino C. Spatial descriptions of radiotherapy dose: normal tissue complication models and statistical associations. Phys Med Biol 2021; 66:12TR01. [PMID: 34049304 DOI: 10.1088/1361-6560/ac0681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022]
Abstract
For decades, dose-volume information for segmented anatomy has provided the essential data for correlating radiotherapy dosimetry with treatment-induced complications. Dose-volume information has formed the basis for modelling those associations via normal tissue complication probability (NTCP) models and for driving treatment planning. Limitations to this approach have been identified. Many studies have emerged demonstrating that the incorporation of information describing the spatial nature of the dose distribution, and potentially its correlation with anatomy, can provide more robust associations with toxicity and seed more general NTCP models. Such approaches are culminating in the application of computationally intensive processes such as machine learning and the application of neural networks. The opportunities these approaches have for individualising treatment, predicting toxicity and expanding the solution space for radiation therapy are substantial and have clearly widespread and disruptive potential. Impediments to reaching that potential include issues associated with data collection, model generalisation and validation. This review examines the role of spatial models of complication and summarises relevant published studies. Sources of data for these studies, appropriate statistical methodology frameworks for processing spatial dose information and extracting relevant features are described. Spatial complication modelling is consolidated as a pathway to guiding future developments towards effective, complication-free radiotherapy treatment.
Collapse
Affiliation(s)
- Martin A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- 5D Clinics, Claremont, Western Australia, Australia
| | - Sarah Gulliford
- Department of Radiotherapy Physics, University College Hospitals London, United Kingdom
- Department of Medical Physics and Bioengineering, University College London, United Kingdom
| | - Oscar Acosta
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI-UMR 1099, F-35000 Rennes, France
| | | | - Todd McNutt
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Marnix Witte
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Giuseppe Palma
- Institute of Biostructures and Bioimaging, National Research Council, Napoli, Italy
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
26
|
Brack E, Bender S, Wachtel M, Pruschy M, Schäfer BW. Fenretinide Acts as Potent Radiosensitizer for Treatment of Rhabdomyosarcoma Cells. Front Oncol 2021; 11:664462. [PMID: 34211841 PMCID: PMC8239363 DOI: 10.3389/fonc.2021.664462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is a highly aggressive childhood malignancy which is mainly treated by conventional chemotherapy, surgery and radiation therapy. Since radiotherapy is associated with a high burden of late side effects in pediatric patients, addition of radiosensitizers would be beneficial. Here, we thought to assess the role of fenretinide, a potential agent for FP-RMS treatment, as radiosensitizer. Survival of human FP-RMS cells was assessed after combination therapy with fenretinide and ionizing radiation (IR) by cell viability and clonogenicity assays. Indeed, this was found to significantly reduce cell viability compared to single treatments. Mechanistically, this was accompanied by enhanced production of reactive oxygen species, initiation of cell cycle arrest and induction of apoptosis. Interestingly, the combination treatment also triggered a new form of dynamin-dependent macropinocytosis, which was previously described in fenretinide-only treated cells. Our data suggest that fenretinide acts in combination with IR to induce cell death in FP-RMS cells and therefore might represent a novel radiosensitizer for the treatment of this disease.
Collapse
Affiliation(s)
- Eva Brack
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabine Bender
- Department of Radiology Biology, University Hospital Zurich, Radio-Oncology, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Department of Radiology Biology, University Hospital Zurich, Radio-Oncology, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Doty DG, Chuong MD, Gomez AG, Bryant J, Contreras J, Romaguera T, Alvarez D, Kotecha R, Mehta MP, Gutierrez AN, Mittauer KE. Stereotactic MR-guided online adaptive radiotherapy reirradiation (SMART reRT) for locally recurrent pancreatic adenocarcinoma: A case report. Med Dosim 2021; 46:384-388. [PMID: 34120803 DOI: 10.1016/j.meddos.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Stereotactic MR-guided online adaptive radiation therapy (SMART) has demonstrated a superior radiotherapeutic ratio for pancreatic patients, by enabling dose escalation while minimizing the dose to the proximal gastrointestinal organs at risk through online adaptive radiotherapy. The safe delivery of stereotactic body radiation therapy (SBRT) is of particular importance in the reirradiation setting and has been historically limited to CT-based nonadaptive modalities. Herein, we report the first use of online adaptive radiotherapy in the reirradiation setting, specifically for treatment of locally recurrent pancreatic adenocarcinoma through SMART reirradiation (SMART reRT). CASE DESCRIPTION We describe the treatment of a 68-year-old male who was diagnosed with, unresectable locally advanced pancreatic adenocarcinoma. Initial treatment included FOLFIRINOX followed by 45 Gy in 25 fractions on a helical intensity-modulated radiotherapy (IMRT) device with concurrent capecitabine, followed by a boost of 14.4 Gy in 8 fractions to a on an MR-guided radiotherapy (MRgRT) linac. At approximately 12 months from initial radiotherapy, the patient experienced local progression of the pancreas body/tail and therefore SMART reRT of 50 Gy in 5 fractions was initiated. The technical considerations of cumulative dose for gastrointestinal organs across multiple courses, treatment planning principles, and adaptive radiotherapy details are outlined in this case study. The patient tolerated treatment well with minimal fatigue. CONCLUSIONS The therapeutic ratio of reirradiation may be improved using daily MR guidance with online adaptive replanning, especially for lesions in proximity to critical structures. Future studies are warranted to assess long-term outcomes of dose escalated MR-guided reRT, define OAR dose constraints for reRT, and assess cumulative dose across the adapted SMART reRT fractions and the original RT plan.
Collapse
Affiliation(s)
- Delia G Doty
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; Souther Illinois University, Carbondale, IL, USA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andres G Gomez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - John Bryant
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Jessika Contreras
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Tino Romaguera
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Diane Alvarez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
28
|
Keall PJ, Sawant A, Berbeco RI, Booth JT, Cho B, Cerviño LI, Cirino E, Dieterich S, Fast MF, Greer PB, Munck Af Rosenschöld P, Parikh PJ, Poulsen PR, Santanam L, Sherouse GW, Shi J, Stathakis S. AAPM Task Group 264: The safe clinical implementation of MLC tracking in radiotherapy. Med Phys 2021; 48:e44-e64. [PMID: 33260251 DOI: 10.1002/mp.14625] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
The era of real-time radiotherapy is upon us. Robotic and gimbaled linac tracking are clinically established technologies with the clinical realization of couch tracking in development. Multileaf collimators (MLCs) are a standard equipment for most cancer radiotherapy systems, and therefore MLC tracking is a potentially widely available technology. MLC tracking has been the subject of theoretical and experimental research for decades and was first implemented for patient treatments in 2013. The AAPM Task Group 264 Safe Clinical Implementation of MLC Tracking in Radiotherapy Report was charged to proactively provide the broader radiation oncology community with (a) clinical implementation guidelines including hardware, software, and clinical indications for use, (b) commissioning and quality assurance recommendations based on early user experience, as well as guidelines on Failure Mode and Effects Analysis, and (c) a discussion of potential future developments. The deliverables from this report include: an explanation of MLC tracking and its historical development; terms and definitions relevant to MLC tracking; the clinical benefit of, clinical experience with and clinical implementation guidelines for MLC tracking; quality assurance guidelines, including example quality assurance worksheets; a clinical decision pathway, future outlook and overall recommendations.
Collapse
Affiliation(s)
- Paul J Keall
- ACRF Image X Institute, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, 2006, Australia
| | - Amit Sawant
- Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ross I Berbeco
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeremy T Booth
- Radiation Oncology, Royal North Shore Hospital, St Leonards, 2065, NSW, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Byungchul Cho
- Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Laura I Cerviño
- Radiation Medicine & Applied Sciences, Radiation Oncology PET/CT Center, UC San Diego, LA Jolla, CA, 92093-0865, USA.,Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065-6007, USA
| | - Eileen Cirino
- Lahey Health and Medical Center, Burlington, MA, 01805, USA
| | - Sonja Dieterich
- Department of Radiation Oncology, UC Davis Medical Center, Sacramento, CA, 95618, USA
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Peter B Greer
- Calvary Mater Newcastle, Newcastle, NSW, 2310, Australia
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Parag J Parikh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Per Rugaard Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Lakshmi Santanam
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065-6007, USA
| | | | - Jie Shi
- Sun Nuclear Corp, Melbourne, FL, 32940, USA
| | - Sotirios Stathakis
- University of Texas Health San Antonio Cancer Center, San Antonio, TX, 78229, USA
| |
Collapse
|
29
|
Lydiard, PGDip S, Blanck O, Hugo G, O’Brien R, Keall P. A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities. Int J Radiat Oncol Biol Phys 2021; 109:783-800. [DOI: 10.1016/j.ijrobp.2020.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
|
30
|
Bohoudi O, Bruynzeel AME, Tetar S, Slotman BJ, Palacios MA, Lagerwaard FJ. Dose accumulation for personalized stereotactic MR-guided adaptive radiation therapy in prostate cancer. Radiother Oncol 2021; 157:197-202. [PMID: 33545251 DOI: 10.1016/j.radonc.2021.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Adaptive MR-guided radiotherapy (MRgRT) is an innovative approach for delivering stereotactic body radiotherapy (SBRT) in prostate cancer (PC). Despite the increased clinical use of SBRT for PC, there is limited data on the relation between the actual delivered dose and toxicity. We aimed to identify dose parameters based on the total accumulated delivered bladder dose (DOSEACCTX). Furthermore, for future personalization, we studied whether prospective accumulation of the first 3 of 5 fractions (DOSEACC3FR) could be used as a representative of DOSEACCTX. MATERIALS AND METHODS We deployed a recently validated deformable image registration-based dose accumulation strategy to reconstruct DOSEACCTX and DOSEACC3FR in 101 PC patients treated with stereotactic MRgRT. IPSS scores at baseline, end of MRgRT, at 6 and 12 weeks after treatment were analyzed to identify a clinically relevant increase of acute urinary symptoms. A receiver operator characteristic curve analysis was used to investigate the correlation of an increase in IPSS and bladder DOSEACCTX (range V5-V36.25 Gy, D1cc, D5cc) and DOSEACC3FR (range V6-V21.8 Gy, D1cc, D5cc) parameters. RESULTS A clinically relevant increase in IPSS in the three months following MRgRT was observed in 25 patients. The V20Gy-32Gy from DOSEACCTX and V15Gy-18Gy from DOSEACC3FR showed good correlation with IPSS increase with area under the curve (AUC) values ranging from 0.71 to 0.75. In contrast, baseline dosimetry showed a poor correlation with AUC values between 0.53 and 0.62. CONCLUSION DOSEACCTX was superior to baseline dosimetry in predicting acute urinary symptoms. Because DOSEACC3FR also showed good correlation, this can potentially be used to optimize MRgRT for the remaining fractions.
Collapse
Affiliation(s)
- Omar Bohoudi
- Dept. Of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anna M E Bruynzeel
- Dept. Of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Shyama Tetar
- Dept. Of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ben J Slotman
- Dept. Of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Miguel A Palacios
- Dept. Of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frank J Lagerwaard
- Dept. Of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Bae JP, Yoon S, Vania M, Lee D. Spatiotemporal Free-Form Registration Method Assisted by a Minimum Spanning Tree During Discontinuous Transformations. J Digit Imaging 2021; 34:190-203. [PMID: 33483863 DOI: 10.1007/s10278-020-00409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022] Open
Abstract
The sliding motion along the boundaries of discontinuous regions has been actively studied in B-spline free-form deformation framework. This study focusses on the sliding motion for a velocity field-based 3D+t registration. The discontinuity of the tangent direction guides the deformation of the object region, and a separate control of two regions provides a better registration accuracy. The sliding motion under the velocity field-based transformation is conducted under the [Formula: see text]-Rényi entropy estimator using a minimum spanning tree (MST) topology. Moreover, a new topology changing method of the MST is proposed. The topology change is performed as follows: inserting random noise, constructing the MST, and removing random noise while preserving a local connection consistency of the MST. This random noise process (RNP) prevents the [Formula: see text]-Rényi entropy-based registration from degrading in sliding motion, because the RNP creates a small disturbance around special locations. Experiments were performed using two publicly available datasets: the DIR-Lab dataset, which consists of 4D pulmonary computed tomography (CT) images, and a benchmarking framework dataset for cardiac 3D ultrasound. For the 4D pulmonary CT images, RNP produced a significantly improved result for the original MST with sliding motion (p<0.05). For the cardiac 3D ultrasound dataset, only a discontinuity-based registration indicated activity of the RNP. In contrast, the single MST without sliding motion did not show any improvement. These experiments proved the effectiveness of the RNP for sliding motion.
Collapse
Affiliation(s)
- Jang Pyo Bae
- Center for Healthcare Robotics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Korea
| | - Siyeop Yoon
- Center for Healthcare Robotics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Korea.,Division of Bio-medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Korea
| | - Malinda Vania
- Center for Healthcare Robotics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Korea.,Division of Bio-medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Korea
| | - Deukhee Lee
- Center for Healthcare Robotics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Korea. .,Division of Bio-medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Korea.
| |
Collapse
|
32
|
Barber J, Yuen J, Jameson M, Schmidt L, Sykes J, Gray A, Hardcastle N, Choong C, Poder J, Walker A, Yeo A, Archibald‐Heeren B, Harrison K, Haworth A, Thwaites D. Deforming to Best Practice: Key considerations for deformable image registration in radiotherapy. J Med Radiat Sci 2020; 67:318-332. [PMID: 32741090 PMCID: PMC7754021 DOI: 10.1002/jmrs.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Image registration is a process that underlies many new techniques in radiation oncology - from multimodal imaging and contour propagation in treatment planning to dose accumulation throughout treatment. Deformable image registration (DIR) is a subset of image registration subject to high levels of complexity in process and validation. A need for local guidance to assist in high-quality utilisation and best practice was identified within the Australian community, leading to collaborative activity and workshops. This report communicates the current limitations and best practice advice from early adopters to help guide those implementing DIR in the clinic at this early stage. They are based on the state of image registration applications in radiotherapy in Australia and New Zealand (ANZ), and consensus discussions made at the 'Deforming to Best Practice' workshops in 2018. The current status of clinical application use cases is presented, including multimodal imaging, automatic segmentation, adaptive radiotherapy, retreatment, dose accumulation and response assessment, along with uptake, accuracy and limitations. Key areas of concern and preliminary suggestions for commissioning, quality assurance, education and training, and the use of automation are also reported. Many questions remain, and the radiotherapy community will benefit from continued research in this area. However, DIR is available to clinics and this report is intended to aid departments using or about to use DIR tools now.
Collapse
Affiliation(s)
- Jeffrey Barber
- Sydney West Radiation Oncology NetworkBlacktown and WestmeadNSWAustralia
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| | - Johnson Yuen
- St George Cancer Care CentreSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | - Michael Jameson
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | | | - Jonathan Sykes
- Sydney West Radiation Oncology NetworkBlacktown and WestmeadNSWAustralia
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| | - Alison Gray
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | - Nicholas Hardcastle
- Peter MacCallum Cancer CentreVictoriaAustralia
- Physical SciencesPeter MacCallum Cancer CentreVICAustralia
| | - Callie Choong
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
| | - Joel Poder
- St George Cancer Care CentreSydneyNSWAustralia
- Physical SciencesPeter MacCallum Cancer CentreVICAustralia
| | - Amy Walker
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | - Adam Yeo
- Peter MacCallum Cancer CentreVictoriaAustralia
- RMIT UniversityMelbourneVICAustralia
| | | | | | - Annette Haworth
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| | - David Thwaites
- Sydney West Radiation Oncology NetworkBlacktown and WestmeadNSWAustralia
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
33
|
Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, Parker W, Doemer A, Rong Y, Kishan AU, Benedict SH, Li XA, Erickson BA, Sohn JW, Xiao Y, Wuthrick E. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys 2020; 109:1054-1075. [PMID: 33470210 DOI: 10.1016/j.ijrobp.2020.10.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
The integration of adaptive radiation therapy (ART), or modifying the treatment plan during the treatment course, is becoming more widely available in clinical practice. ART offers strong potential for minimizing treatment-related toxicity while escalating or de-escalating target doses based on the dose to organs at risk. Yet, ART workflows add complexity into the radiation therapy planning and delivery process that may introduce additional uncertainties. This work sought to review presently available ART workflows and technological considerations such as image quality, deformable image registration, and dose accumulation. Quality assurance considerations for ART components and minimum recommendations are described. Personnel and workflow efficiency recommendations are provided, as is a summary of currently available clinical evidence supporting the implementation of ART. Finally, to guide future clinical trial protocols, an example ART physician directive and a physics template following standard NRG Oncology protocol is provided.
Collapse
Affiliation(s)
- Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Percy Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam D Yock
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey R Olsen
- Department of Radiation Oncology, University of Colorado- Denver, Denver, Colorado
| | - Minsong Cao
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - William Parker
- Department of Radiation Oncology, McGill University, Montreal, Quebec, Canada
| | - Anthony Doemer
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Yi Rong
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Stanley H Benedict
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason W Sohn
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan Wuthrick
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
34
|
Head and neck IMPT probabilistic dose accumulation: Feasibility of a 2 mm setup uncertainty setting. Radiother Oncol 2020; 154:45-52. [PMID: 32898561 DOI: 10.1016/j.radonc.2020.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To establish optimal robust optimization uncertainty settings for clinical head and neck cancer (HNC) patients undergoing 3D image-guided pencil beam scanning (PBS) proton therapy. METHODS We analyzed ten consecutive HNC patients treated with 70 and 54.25 GyRBE to the primary and prophylactic clinical target volumes (CTV) respectively using intensity-modulated proton therapy (IMPT). Clinical plans were generated using robust optimization with 5 mm/3% setup/range uncertainties (RayStation v6.1). Additional plans were created for 4, 3, 2 and 1 mm setup and 3% range uncertainty and for 3 mm setup and 3%, 2% and 1% range uncertainty. Systematic and random error distributions were determined for setup and range uncertainties based on our quality assurance program. From these, 25 treatment scenarios were sampled for each plan, each consisting of a systematic setup and range error and daily random setup errors. Fraction doses were calculated on the weekly verification CT closest to the date of treatment as this was considered representative of the daily patient anatomy. RESULTS Plans with a 2 mm/3% setup/range uncertainty setting adequately covered the primary and prophylactic CTV (V95 ≥ 99% in 98.8% and 90.8% of the treatment scenarios respectively). The average organ-at-risk dose decreased with 1.1 GyRBE/mm setup uncertainty reduction and 0.5 GyRBE/1% range uncertainty reduction. Normal tissue complication probabilities decreased by 2.0%/mm setup uncertainty reduction and by 0.9%/1% range uncertainty reduction. CONCLUSION The results of this study indicate that margin reduction below 3 mm/3% is possible but requires a larger cohort to substantiate clinical introduction.
Collapse
|
35
|
Nenoff L, Ribeiro CO, Matter M, Hafner L, Josipovic M, Langendijk JA, Persson GF, Walser M, Weber DC, Lomax AJ, Knopf AC, Albertini F, Zhang Y. Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother Oncol 2020; 147:178-185. [DOI: 10.1016/j.radonc.2020.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/25/2022]
|
36
|
Mittauer KE, Hill PM, Bassetti MF, Bayouth JE. Validation of an MR-guided online adaptive radiotherapy (MRgoART) program: Deformation accuracy in a heterogeneous, deformable, anthropomorphic phantom. Radiother Oncol 2020; 146:97-109. [DOI: 10.1016/j.radonc.2020.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 01/11/2023]
|
37
|
Rigaud B, Cazoulat G, Vedam S, Venkatesan AM, Peterson CB, Taku N, Klopp AH, Brock KK. Modeling Complex Deformations of the Sigmoid Colon Between External Beam Radiation Therapy and Brachytherapy Images of Cervical Cancer. Int J Radiat Oncol Biol Phys 2020; 106:1084-1094. [PMID: 32029345 DOI: 10.1016/j.ijrobp.2019.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE In this study, we investigated registration methods for estimating the large interfractional sigmoid deformations that occur between external beam radiation therapy (EBRT) and brachytherapy (BT) for cervical cancer. METHODS AND MATERIALS Sixty-three patients were retrospectively analyzed. The sigmoid colon was delineated on 2 computed tomography images acquired during EBRT (without applicator) and BT (with applicator) for each patient. Five registration approaches were compared to propagate the contour of the sigmoid from BT to EBRT anatomies: rigid registration, commercial hybrid (ANAtomically CONstrained Deformation Algorithm), controlling ROI surface projection of RayStation, and the classical and constrained symmetrical thin-plate spline robust point matching (sTPS-RPM) methods. Deformation of the sigmoid due to insertion of the BT applicator was reported. Registration performance was compared by using the Dice similarity coefficient (DSC), distance to agreement, and Hausdorff distance. The 2 sTPS-RPM methods were compared by using surface triangle quality criteria between deformed surfaces. Using the deformable approaches, the BT dose of the sigmoid was deformed toward the EBRT anatomy. The displacement and discrepancy between the deformable methods to propagate the planned D1cm3 and D2cm3 of the sigmoid from BT to EBRT anatomies were reported for 55 patients. RESULTS Large and complex deformations of the sigmoid were observed for each patient. Rigid registration resulted in poor sigmoid alignment with a mean DSC of 0.26. Using the contour to drive the deformation, ANAtomically CONstrained Deformation Algorithm was able to slightly improve the alignment of the sigmoid with a mean DSC of 0.57. Using only the sigmoid surface as controlling ROI, the mean DSC was improved to 0.79. The classical and constrained sTPS-RPM methods provided mean DSCs of 0.95 and 0.96, respectively, with an average inverse consistency error <1 mm. The constrained sTPS-RPM provided more realistic deformations and better surface topology of the deformed sigmoids. The planned mean (range) D1cm3 and D2cm3 of the sigmoid were 13.4 Gy (1-24.1) and 12.2 Gy (1-21.5) on the BT anatomy, respectively. Using the constrained sTPS-RPM to deform the sigmoid from BT to EBRT anatomies, these hotspots had a mean (range) displacement of 27.1 mm (6.8-81). CONCLUSIONS Large deformations of the sigmoid were observed between the EBRT and BT anatomies, suggesting that the D1cm3 and D2cm3 of the sigmoid would unlikely to be at the same position throughout treatment. The proposed constrained sTPS-RPM seems to be the preferred approach to manage the large deformation due to BT applicator insertion. Such an approach could be used to map the EBRT dose to the BT anatomy for personalized BT planning optimization.
Collapse
Affiliation(s)
- Bastien Rigaud
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sastry Vedam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aradhana M Venkatesan
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicolette Taku
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
38
|
Shelley LEA, Sutcliffe MPF, Thomas SJ, Noble DJ, Romanchikova M, Harrison K, Bates AM, Burnet NG, Jena R. Associations between voxel-level accumulated dose and rectal toxicity in prostate radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 14:87-94. [PMID: 32582869 PMCID: PMC7301619 DOI: 10.1016/j.phro.2020.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Background and Purpose Associations between dose and rectal toxicity in prostate radiotherapy are generally poorly understood. Evaluating spatial dose distributions to the rectal wall (RW) may lead to improvements in dose-toxicity modelling by incorporating geometric information, masked by dose-volume histograms. Furthermore, predictive power may be strengthened by incorporating the effects of interfraction motion into delivered dose calculations.Here we interrogate 3D dose distributions for patients with and without toxicity to identify rectal subregions at risk (SRR), and compare the discriminatory ability of planned and delivered dose. Material and Methods Daily delivered dose to the rectum was calculated using image guidance scans, and accumulated at the voxel level using biomechanical finite element modelling. SRRs were statistically determined for rectal bleeding, proctitis, faecal incontinence and stool frequency from a training set (n = 139), and tested on a validation set (n = 47). Results SRR patterns differed per endpoint. Analysing dose to SRRs improved discriminative ability with respect to the full RW for three of four endpoints. Training set AUC and OR analysis produced stronger toxicity associations from accumulated dose than planned dose. For rectal bleeding in particular, accumulated dose to the SRR (AUC 0.76) improved upon dose-toxicity associations derived from planned dose to the RW (AUC 0.63). However, validation results could not be considered significant. Conclusions Voxel-level analysis of dose to the RW revealed SRRs associated with rectal toxicity, suggesting non-homogeneous intra-organ radiosensitivity. Incorporating spatial features of accumulated delivered dose improved dose-toxicity associations. This may be an important tool for adaptive radiotherapy in the future.
Collapse
Affiliation(s)
- Leila E A Shelley
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Edinburgh Cancer Centre, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.,Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB21PZ, United Kingdom
| | - Michael P F Sutcliffe
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB21PZ, United Kingdom
| | - Simon J Thomas
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Medical Physics and Clinical Engineering, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - David J Noble
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Marina Romanchikova
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,National Physical Laboratory, Teddington TW11 0JE, United Kingdom
| | - Karl Harrison
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Amy M Bates
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Neil G Burnet
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Raj Jena
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
39
|
Keall P, Nguyen DT, O'Brien R, Hewson E, Ball H, Poulsen P, Booth J, Greer P, Hunter P, Wilton L, Bromley R, Kipritidis J, Eade T, Kneebone A, Hruby G, Moodie T, Hayden A, Turner S, Arumugam S, Sidhom M, Hardcastle N, Siva S, Tai KH, Gebski V, Martin J. Real-Time Image Guided Ablative Prostate Cancer Radiation Therapy: Results From the TROG 15.01 SPARK Trial. Int J Radiat Oncol Biol Phys 2020; 107:530-538. [PMID: 32234553 DOI: 10.1016/j.ijrobp.2020.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/28/2023]
Abstract
PURPOSE Kilovoltage intrafraction monitoring (KIM) is a novel software platform implemented on standard radiation therapy systems and enabling real-time image guided radiation therapy (IGRT). In a multi-institutional prospective trial, we investigated whether real-time IGRT improved the accuracy of the dose patients with prostate cancer received during radiation therapy. METHODS AND MATERIALS Forty-eight patients with prostate cancer were treated with KIM-guided SABR with 36.25 Gy in 5 fractions. During KIM-guided treatment, the prostate motion was corrected for by either beam gating with couch shifts or multileaf collimator tracking. A dose reconstruction method was used to evaluate the dose delivered to the target and organs at risk with and without real-time IGRT. Primary outcome was the effect of real-time IGRT on dose distributions. Secondary outcomes included patient-reported outcomes and toxicity. RESULTS Motion correction occurred in ≥1 treatment for 88% of patients (42 of 48) and 51% of treatments (121 of 235). With real-time IGRT, no treatments had prostate clinical target volume (CTV) D98% dose 5% less than planned. Without real-time IGRT, 13 treatments (5.5%) had prostate CTV D98% doses 5% less than planned. The prostate CTV D98% dose with real-time IGRT was closer to the plan by an average of 1.0% (range, -2.8% to 20.3%). Patient outcomes showed no change in the 12-month patient-reported outcomes compared with baseline and no grade ≥3 genitourinary or gastrointestinal toxicities. CONCLUSIONS Real-time IGRT is clinically effective for prostate cancer SABR.
Collapse
Affiliation(s)
- Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney, Australia.
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney, Australia; School of Biomedical Engineering, University of Technology, Sydney, Sydney, Australia
| | - Ricky O'Brien
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| | - Emily Hewson
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| | - Helen Ball
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| | - Per Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia
| | - Peter Greer
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia; University of Newcastle, Newcastle, Australia
| | - Perry Hunter
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia
| | - Lee Wilton
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia
| | - Regina Bromley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - John Kipritidis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, University of Sydney, Sydney, Australia
| | - Andrew Kneebone
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, University of Sydney, Sydney, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, University of Sydney, Sydney, Australia
| | - Trevor Moodie
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Amy Hayden
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Sandra Turner
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool Hospital, Sydney, Australia
| | - Mark Sidhom
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool Hospital, Sydney, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Australia
| | - Keen-Hun Tai
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Jarad Martin
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia; University of Newcastle, Newcastle, Australia
| |
Collapse
|
40
|
Albertini F, Matter M, Nenoff L, Zhang Y, Lomax A. Online daily adaptive proton therapy. Br J Radiol 2020; 93:20190594. [PMID: 31647313 PMCID: PMC7066958 DOI: 10.1259/bjr.20190594] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
It is recognized that the use of a single plan calculated on an image acquired some time before the treatment is generally insufficient to accurately represent the daily dose to the target and to the organs at risk. This is particularly true for protons, due to the physical finite range. Although this characteristic enables the generation of steep dose gradients, which is essential for highly conformal radiotherapy, it also tightens the dependency of the delivered dose to the range accuracy. In particular, the use of an outdated patient anatomy is one of the most significant sources of range inaccuracy, thus affecting the quality of the planned dose distribution. A plan should be ideally adapted as soon as anatomical variations occur, ideally online. In this review, we describe in detail the different steps of the adaptive workflow and discuss the challenges and corresponding state-of-the art developments in particular for an online adaptive strategy.
Collapse
Affiliation(s)
| | | | | | - Ye Zhang
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland
| | | |
Collapse
|
41
|
Lowther NJ, Marsh SH, Louwe RJW. Quantifying the dose accumulation uncertainty after deformable image registration in head-and-neck radiotherapy. Radiother Oncol 2020; 143:117-125. [PMID: 32063377 DOI: 10.1016/j.radonc.2019.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Deformable image registration (DIR) facilitated dose reconstruction and accumulation can be applied to assess delivered dose and verify the validity of the treatment plan during treatment. This retrospective study used in silico deformations based on clinically observed anatomical changes as ground truth to investigate the uncertainty of reconstructed and accumulated dose in head-and-neck radiotherapy (HNRT). MATERIALS AND METHODS A planning CT (pCT), cone beam CT (CBCT) from week one of treatment and three later CBCTs were selected for 12 HNRT patients. These images were used to generate in silico reference CBCTs and deformation vector fields (DVFs) as ground truth with B-spline DIR. Inverse consistency (IC) of voxels was assessed by determining their net displacement after successive application of the forward and backward DVF. The reconstructed dose based on demons DIR was compared to the ground truth to assess the structure-specific uncertainties of this DIR algorithm for inverse consistent and inverse inconsistent voxels. RESULTS Overall, 98.5% of voxels were inverse consistent with the 95% level of confidence range for dose reconstruction of a single fraction equal to [-2.3%; +2.1%], [-10.2%; +15.2%] and [-9.5%; +12.5%] relative to their planned dose for target structures, critical organs at risk (OARs) and non-critical OARs, respectively. Inverse inconsistent voxels generally showed a higher level of uncertainty. CONCLUSION The uncertainty in accumulated dose using DIR can be accurately quantified and incorporated in dose-volume histograms (DVHs). This method can be used to prospectively assess the adequacy of target coverage during treatment in an objective manner.
Collapse
Affiliation(s)
- Nicholas J Lowther
- Wellington Blood and Cancer Centre, Department of Radiation Oncology, Wellington, New Zealand; University of Canterbury, School of Physical and Chemical Sciences, Christchurch, New Zealand
| | - Steven H Marsh
- University of Canterbury, School of Physical and Chemical Sciences, Christchurch, New Zealand
| | - Robert J W Louwe
- Wellington Blood and Cancer Centre, Department of Radiation Oncology, Wellington, New Zealand.
| |
Collapse
|
42
|
Wagner A, Brou Boni K, Rault E, Crop F, Lacornerie T, Van Gestel D, Reynaert N. Integration of the M6 Cyberknife in the Moderato Monte Carlo platform and prediction of beam parameters using machine learning. Phys Med 2020; 70:123-132. [PMID: 32007601 DOI: 10.1016/j.ejmp.2020.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This work describes the integration of the M6 Cyberknife in the Moderato Monte Carlo platform, and introduces a machine learning method to accelerate the modelling of a linac. METHODS The MLC-equipped M6 Cyberknife was modelled and integrated in Moderato, our in-house platform offering independent verification of radiotherapy dose distributions. The model was validated by comparing TPS dose distributions with Moderato and by film measurements. Using this model, a machine learning algorithm was trained to find electron beam parameters for other M6 devices, by simulating dose curves with varying spot size and energy. The algorithm was optimized using cross-validation and tested with measurements from other institutions equipped with a M6 Cyberknife. RESULTS Optimal agreement in the Monte Carlo model was reached for a monoenergetic electron beam of 6.75 MeV with Gaussian spatial distribution of 2.4 mm FWHM. Clinical plan dose distributions from Moderato agreed within 2% with the TPS, and film measurements confirmed the accuracy of the model. Cross-validation of the prediction algorithm produced mean absolute errors of 0.1 MeV and 0.3 mm for beam energy and spot size respectively. Prediction-based simulated dose curves for other centres agreed within 3% with measurements, except for one device where differences up to 6% were detected. CONCLUSIONS The M6 Cyberknife was integrated in Moderato and validated through dose re-calculations and film measurements. The prediction algorithm was successfully applied to obtain electron beam parameters for other M6 devices. This method would prove useful to speed up modelling of new machines in Monte Carlo systems.
Collapse
Affiliation(s)
- A Wagner
- Department of Medical Physics, Centre Oscar Lambret, Lille, France; Faculty of Biomedical Sciences, University of Brussels ULB, Belgium.
| | - K Brou Boni
- Department of Medical Physics, Centre Oscar Lambret, Lille, France; University of Lille, CNRS, CRIStAL, Centrale Lille, France
| | - E Rault
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | - F Crop
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | - T Lacornerie
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | - D Van Gestel
- Faculty of Biomedical Sciences, University of Brussels ULB, Belgium; Department of Radiation Therapy, Institut Jules Bordet, Brussels, Belgium
| | - N Reynaert
- Department of Medical Physics, Centre Oscar Lambret, Lille, France; Faculty of Biomedical Sciences, University of Brussels ULB, Belgium; Department of Medical Physics, Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
43
|
Chen JLY, Wang MC, Huang YS, Huang CY, Pan CK, Hsu CY, Lan KH, Kuo SH. Extended-field bone marrow sparing radiotherapy for primary chemoradiotherapy in cervical cancer patients with para-aortic lymphadenopathy: Volumetric-modulated arc therapy versus helical tomotherapy. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:111-124. [PMID: 31904003 DOI: 10.3233/xst-190593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Extended-field (EF) bone marrow-sparing (BMS) radiotherapy is attracting interest for cervical cancer patients with para-aortic lymphadenopathy. OBJECTIVE To compare dosimetric quality of volumetric-modulated arc therapy (VMAT) vs. helical tomotherapy (HT) during EF BMS radiotherapy. METHODS HT dose-volume histogram parameters including (1) coverage, homogeneity, and conformity of target volumes, (2) sparing of organs-at-risk, (3) monitor units, and (4) estimated treatment time were compared with those of VMAT in 20 cervical cancer patients who underwent EF BMS radiotherapy. The pelvic and para-aortic regions received 45-Gy dose (25 fractions), with simultaneous integrated boost of 55 Gy (25 fractions) for pelvic and para-aortic lymphadenopathy, followed by a parametrial boost of 9 Gy (5 fractions). RESULTS The HT-based and VMAT techniques achieved adequate and similar target volume coverage with good dose homogeneity and conformity, while sparing all organs-at-risk, including the rectum, bladder, bowel, bone marrow, femoral head, kidney, and spinal cord. The HT treatment plan had significantly higher monitor units (p < 0.001) and longer estimated treatment times (p < 0.001). CONCLUSIONS VMAT and HT plans are suitable for EF BMS radiotherapy, which can achieve adequate target volume coverage while sufficiently sparing normal tissue. In addition, VMAT, compared to HT planning, yielded shorter estimated treatment times.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Miao-Ci Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Sen Huang
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Yuan Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Kai Pan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Che-Yu Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Keng-Hsueh Lan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Bohoudi O, Lagerwaard FJ, Bruynzeel AM, Niebuhr NI, Johnen W, Senan S, Slotman BJ, Pfaffenberger A, Palacios MA. End-to-end empirical validation of dose accumulation in MRI-guided adaptive radiotherapy for prostate cancer using an anthropomorphic deformable pelvis phantom. Radiother Oncol 2019; 141:200-207. [DOI: 10.1016/j.radonc.2019.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
|
45
|
Wilson C, Moseshvili E, Tacey M, Quin I, Lawrentschuk N, Bolton D, Joon DL, Chao M, Dunshea T, Kron T, Foroudi F. Assessment of Intrafraction Motion of the Urinary Bladder Using Magnetic Resonance Imaging (cineMRI). Clin Oncol (R Coll Radiol) 2019; 32:101-109. [PMID: 31607612 DOI: 10.1016/j.clon.2019.09.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022]
Abstract
AIM To assess the intrafraction motion of the urinary bladder and delineate the appropriate margin size for radiotherapy planning, for both the full and empty bladder. MATERIALS AND METHODS This was a single-site, single-arm study of 20 patients planned to undergo radical cystectomy for histologically confirmed muscle-invasive bladder cancer. Patients underwent magnetic resonance imaging (cineMRI) of the entire pelvis using a 3-Tesla system, prior to cystectomy. Patients first underwent a cineMRI with a full bladder, then voided and underwent a second MRI with an empty bladder. All MRI sequences were acquired over 18 min. We assessed the differences in bladder filling and subsequent bladder wall displacement, between the empty and full bladder, during a time period consistent with radiotherapy treatment delivery. RESULTS Twenty patients underwent cineMRI of the entire pelvis. The maximum mean directional displacements of the bladder walls over the 18 min duration of the scan for the empty bladders were 9.8 mm superiorly, 1.1 mm inferiorly, 2.39 mm anteriorly, 3.73 mm posteriorly, 2.74 mm to the left and 2.48 mm to the right. The maximal mean displacements for the full bladders were 9.2 mm superiorly, 1.1 mm inferiorly, 2.28 mm anteriorly, 1.08 mm posteriorly, 1.85 mm to the left and 1.73 mm to the right. Statistically significant differences were seen in the posterior, left and right displacements but were quantitatively small. CONCLUSIONS Intrafractional motion secondary to bladder filling showed minimal variation between the full and empty bladder. Similar clinical target volume to planning target volume margins can be applied for the delivery of radiotherapy for a full and empty bladder.
Collapse
Affiliation(s)
- C Wilson
- Austin Health, Heidelberg, Victoria, Australia.
| | | | - M Tacey
- Austin Health, Heidelberg, Victoria, Australia; Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - I Quin
- GenesisCare, Wembley, Western Australia, Australia
| | | | - D Bolton
- Austin Health, Heidelberg, Victoria, Australia
| | - D L Joon
- Austin Health, Heidelberg, Victoria, Australia
| | - M Chao
- Austin Health, Heidelberg, Victoria, Australia
| | - T Dunshea
- Austin Health, Heidelberg, Victoria, Australia; MIA Radiology, Heidelberg, Victoria, Australia
| | - T Kron
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - F Foroudi
- Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
46
|
Casares-Magaz O, Bülow S, Pettersson NJ, Moiseenko V, Pedersen J, Thor M, Einck J, Hopper A, Knopp R, Muren LP. High accumulated doses to the inferior rectum are associated with late gastro-intestinal toxicity in a case-control study of prostate cancer patients treated with radiotherapy. Acta Oncol 2019; 58:1543-1546. [PMID: 31364905 DOI: 10.1080/0284186x.2019.1632476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Steffen Bülow
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Niclas J. Pettersson
- Department of Medical Physics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jesper Pedersen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - John Einck
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Austin Hopper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rick Knopp
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ludvig Paul Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Astaburuaga R, Gabryś HS, Sánchez-Nieto B, Floca RO, Klüter S, Schubert K, Hauswald H, Bangert M. Incorporation of Dosimetric Gradients and Parotid Gland Migration Into Xerostomia Prediction. Front Oncol 2019; 9:697. [PMID: 31417872 PMCID: PMC6684756 DOI: 10.3389/fonc.2019.00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose: Due to the sharp gradients of intensity-modulated radiotherapy (IMRT) dose distributions, treatment uncertainties may induce substantial deviations from the planned dose during irradiation. Here, we investigate if the planned mean dose to parotid glands in combination with the dose gradient and information about anatomical changes during the treatment improves xerostomia prediction in head and neck cancer patients. Materials and methods: Eighty eight patients were retrospectively analyzed. Three features of the contralateral parotid gland were studied in terms of their association with the outcome, i.e., grade ≥ 2 (G2) xerostomia between 6 months and 2 years after radiotherapy (RT): planned mean dose (MD), average lateral dose gradient (GRADX), and parotid gland migration toward medial (PGM). PGM was estimated using daily megavoltage computed tomography (MVCT) images. Three logistic regression models where analyzed: based on (1) MD only, (2) MD and GRADX, and (3) MD, GRADX, and PGM. Additionally, the cohort was stratified based on the median value of GRADX, and a univariate analysis was performed to study the association of the MD with the outcome for patients in low- and high-GRADX domains. Results: The planned MD failed to recognize G2 xerostomia patients (AUC = 0.57). By adding the information of GRADX (second model), the model performance increased to AUC = 0.72. The addition of PGM (third model) led to further improvement in the recognition of the outcome (AUC = 0.79). Remarkably, xerostomia patients in the low-GRADX domain were successfully identified (AUC = 0.88) by the MD alone. Conclusions: Our results indicate that GRADX and PGM, which together serve as a proxy of dosimetric changes, provide valuable information for xerostomia prediction.
Collapse
Affiliation(s)
- Rosario Astaburuaga
- Department of Medical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Medical Faculty of Heidelberg, Universität Heidelberg, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hubert S Gabryś
- Department of Medical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Medical Faculty of Heidelberg, Universität Heidelberg, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | | | - Ralf O Floca
- Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Medical Image Computing, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Klüter
- Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Schubert
- Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Henrik Hauswald
- Heidelberg Institute for Radiation Oncology, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Mark Bangert
- Department of Medical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| |
Collapse
|
48
|
Composite minimax robust optimization of VMAT improves target coverage and reduces non-target dose in head and neck cancer patients. Radiother Oncol 2019; 136:71-77. [DOI: 10.1016/j.radonc.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/15/2019] [Accepted: 03/20/2019] [Indexed: 11/21/2022]
|
49
|
Affiliation(s)
- Kristy K Brock
- Department of Imaging Physics, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center.
| |
Collapse
|
50
|
Abstract
As deformable image registration makes its way into the clinical routine, the summation of doses from fractionated treatment regimens to evaluate cumulative doses to targets and healthy tissues is also becoming a frequently utilized tool in the context of image-guided adaptive radiotherapy. Accounting for daily geometric changes using deformable image registration and dose accumulation potentially enables a better understanding of dose-volume-effect relationships, with the goal of translation of this knowledge to personalization of treatment, to further enhance treatment outcomes. Treatment adaptation involving image deformation requires patient-specific quality assurance of the image registration and dose accumulation processes, to ensure that uncertainties in the 3D dose distributions are identified and appreciated from a clinical relevance perspective. While much research has been devoted to identifying and managing the uncertainties associated with deformable image registration and dose accumulation approaches, there are still many unanswered questions. Here, we provide a review of current deformable image registration and dose accumulation techniques, and related clinical application. We also discuss salient issues that need to be deliberated when applying deformable algorithms for dose mapping and accumulation in the context of adaptive radiotherapy and response assessment.
Collapse
|