1
|
Mentzel J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib. Int J Mol Sci 2024; 25:5629. [PMID: 38891817 PMCID: PMC11172136 DOI: 10.3390/ijms25115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies.
Collapse
Affiliation(s)
- Jacob Mentzel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Wächter S, Roth S, Gercke N, Schötz U, Dikomey E, Engenhart-Cabillic R, Maurer E, Bartsch DK, Di Fazio P. Anti-Proliferative Effect of Radiotherapy and Implication of Immunotherapy in Anaplastic Thyroid Cancer Cells. Life (Basel) 2023; 13:1397. [PMID: 37374179 PMCID: PMC10301015 DOI: 10.3390/life13061397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Radiotherapy and immunotherapy have shown promising efficacy for the treatment of solid malignancies. Here, we aim to clarify the potential of a combined application of radiotherapy and programmed cell death-ligand 1 (PD-L1) monoclonal antibody atezolizumab in primary anaplastic thyroid cancer (ATC) cells. The radiation caused a significant reduction in cell proliferation, measured by luminescence, and of the number of colonies. The addition of atezolizumab caused a further reduction in cell proliferation of the irradiated ATC cells. However, the combined treatment did not cause either the exposure of the phosphatidylserine or the necrosis, assessed by luminescence/fluorescence. Additionally, a reduction in both uncleaved and cleaved forms of caspases 8 and 3 proteins was detectable in radiated cells. The DNA damage evidenced the over-expression of TP53, CDKN1A and CDKN1B transcripts detected by RT-qPCR and the increase in the protein level of P-γH2AX and the DNA repair deputed kinases. PD-L1 protein level increased in ATC cells after radiation. Radiotherapy caused the reduction in cell viability and an increase of PD-L1-expression, but not apoptotic cell death in ATC cells. The further combination with the immunotherapeutic atezolizumab could increase the efficacy of radiotherapy in terms of reduction in cell proliferation. Further analysis of the involvement of alternative cell death mechanisms is necessary to clarify their cell demise mechanism of action. Their efficacy represents a promising therapy for patients affected by ATC.
Collapse
Affiliation(s)
- Sabine Wächter
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (S.W.); (S.R.); (N.G.); (E.M.); (D.K.B.)
| | - Silvia Roth
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (S.W.); (S.R.); (N.G.); (E.M.); (D.K.B.)
| | - Norman Gercke
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (S.W.); (S.R.); (N.G.); (E.M.); (D.K.B.)
| | - Ulrike Schötz
- Department of Radiotherapy and Radio Oncology, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (U.S.); (R.E.-C.)
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radio Oncology, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (U.S.); (R.E.-C.)
| | - Elisabeth Maurer
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (S.W.); (S.R.); (N.G.); (E.M.); (D.K.B.)
| | - Detlef K. Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (S.W.); (S.R.); (N.G.); (E.M.); (D.K.B.)
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldigerstrasse, 35043 Marburg, Germany; (S.W.); (S.R.); (N.G.); (E.M.); (D.K.B.)
| |
Collapse
|
3
|
Subtil FSB, Gröbner C, Recknagel N, Parplys AC, Kohl S, Arenz A, Eberle F, Dikomey E, Engenhart-Cabillic R, Schötz U. Dual PI3K/mTOR Inhibitor NVP-BEZ235 Leads to a Synergistic Enhancement of Cisplatin and Radiation in Both HPV-Negative and -Positive HNSCC Cell Lines. Cancers (Basel) 2022; 14:cancers14133160. [PMID: 35804930 PMCID: PMC9265133 DOI: 10.3390/cancers14133160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Head and neck cancers (HNSCCs), especially in the advanced stages, are predominantly treated by radiochemotherapy, including cisplatin. The cure rates are clearly higher for HPV-positive HNSCCs when compared to HPV-negative HNSCCs. For both entities, this treatment is accompanied by serious adverse reactions, mainly due to cisplatin administration. We reported earlier that for both HPV-positive and negative HNSCC cells, the effect of radiotherapy was strongly enhanced when pretreated using the dual PI3K/mTOR inhibitor NVP-BEZ235 (BEZ235). The current study shows that for HPV-positive cells, BEZ235 will strongly enhance the effect of cisplatin alone. More important, preincubation with BEZ235 was found to alter the purely additive effect normally seen when cisplatin is combined with radiation into a strong synergistic enhancement. This tri-modal combination might allow for the enhancement of the effect of radiochemotherapy, even with reduced cisplatin. Abstract The standard of care for advanced head and neck cancers (HNSCCs) is radiochemotherapy, including cisplatin. This treatment results in a cure rate of approximately 85% for oropharyngeal HPV-positive HNSCCs, in contrast to only 50% for HPV-negative HNSCCs, and is accompanied by severe side effects for both entities. Therefore, innovative treatment modalities are required, resulting in a better outcome for HPV-negative HNSCCs, and lowering the adverse effects for both entities. The effect of the dual PI3K/mTOR inhibitor NVP-BEZ235 on a combined treatment with cisplatin and radiation was studied in six HPV-negative and six HPV-positive HNSCC cell lines. Cisplatin alone was slightly more effective in HPV-positive cells. This could be attributed to a defect in homologous recombination, as demonstrated by depleting RAD51. Solely for HPV-positive cells, pretreatment with BEZ235 resulted in enhanced cisplatin sensitivity. For the combination of cisplatin and radiation, additive effects were observed. However, when pretreated with BEZ235, this combination changed into a synergistic interaction, with a slightly stronger enhancement for HPV-positive cells. This increase could be attributed to a diminished degree of DSB repair in G1, as visualized via the detection of γH2AX/53BP1 foci. BEZ235 can be used to enhance the effect of combined treatment with cisplatin and radiation in both HPV-negative and -positive HNSCCs.
Collapse
Affiliation(s)
- Florentine S. B. Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Carolin Gröbner
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Niklas Recknagel
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ann Christin Parplys
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Sibylla Kohl
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Andrea Arenz
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
| | - Ulrike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University, 35043 Marburg, Germany; (F.S.B.S.); (C.G.); (N.R.); (A.C.P.); (S.K.); (A.A.); (F.E.); (E.D.); (R.E.-C.)
- Correspondence: ; Tel.: +49-6421-28-21978
| |
Collapse
|
4
|
Napolitano V, Russo D, Morra F, Merolla F, Varricchio S, Ilardi G, Di Crescenzo RM, Martino F, Mascolo M, Celetti A, Tamagnone L, Staibano S. Neuropilin-1 Expression Associates with Poor Prognosis in HNSCC and Elicits EGFR Activation upon CDDP-Induced Cytotoxic Stress. Cancers (Basel) 2021; 13:3822. [PMID: 34359721 PMCID: PMC8345038 DOI: 10.3390/cancers13153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes a group of aggressive malignancies characterized by the overexpression of the epidermal growth factor receptor (EGFR) in 90% of cases. Neuropilin-1 (NRP-1) acts as an EGFR co-receptor, enhancing, upon ligand stimulation, EGFR signaling in several cellular models. However, NRP-1 remains poorly characterized in HNSCC. By utilizing in vitro cellular models of HNSCC, we report that NRP-1 is involved in the regulation of EGFR signaling. In fact, NRP-1 can lead to cisplatin-induced EGFR phosphorylation, an escape mechanism activated by cancer cells upon cytotoxic stress. Furthermore, we evaluated Neuropilin-1 staining in tissue samples of an HNSCC case series (n = 218), unraveling a prognostic value for the Neuropilin-1 tissue expression. These data suggest a potential role for NRP-1 in HNSCC cancer progression, expanding the repertoire of signaling in which NRP-1 is involved and eliciting the need for further investigations on NRP-1 as a suitable target for HNSCC novel therapeutic approaches.
Collapse
Affiliation(s)
- Virginia Napolitano
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
| | - Daniela Russo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Morra
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Francesco Merolla
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Silvia Varricchio
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Gennaro Ilardi
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Rosa Maria Di Crescenzo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Martino
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Massimo Mascolo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Angela Celetti
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Luca Tamagnone
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
- Fondazione Policlinico “A. Gemelli”, IRCCS, 00168 Roma, Italy
| | - Stefania Staibano
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| |
Collapse
|
5
|
Bußmann L, Hoffer K, von Bargen CM, Droste C, Lange T, Kemmling J, Schröder-Schwarz J, Vu AT, Akingunsade L, Nollau P, Rangarajan S, de Wijn R, Oetting A, Müller C, Böckelmann LC, Zech HB, Berger JC, Möckelmann N, Busch CJ, Böttcher A, Gatzemeier F, Klinghammer K, Simnica D, Binder M, Struve N, Rieckmann T, Schumacher U, Clauditz TS, Betz CS, Petersen C, Rothkamm K, Münscher A, Kriegs M. Analyzing tyrosine kinase activity in head and neck cancer by functional kinomics: Identification of hyperactivated Src family kinases as prognostic markers and potential targets. Int J Cancer 2021; 149:1166-1180. [PMID: 33890294 DOI: 10.1002/ijc.33606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023]
Abstract
Signal transduction via protein kinases is of central importance in cancer biology and treatment. However, the clinical success of kinase inhibitors is often hampered by a lack of robust predictive biomarkers, which is also caused by the discrepancy between kinase expression and activity. Therefore, there is a need for functional tests to identify aberrantly activated kinases in individual patients. Here we present a systematic analysis of the tyrosine kinases in head and neck cancer using such a test-functional kinome profiling. We detected increased tyrosine kinase activity in tumors compared with their corresponding normal tissue. Moreover, we identified members of the family of Src kinases (Src family kinases [SFK]) to be aberrantly activated in the majority of the tumors, which was confirmed by additional methods. We could also show that SFK hyperphosphorylation is associated with poor prognosis, while inhibition of SFK impaired cell proliferation, especially in cells with hyperactive SFK. In summary, functional kinome profiling identified SFK to be frequently hyperactivated in head and neck squamous cell carcinoma. SFK may therefore be potential therapeutic targets. These results furthermore demonstrate how functional tests help to increase our understanding of cancer biology and support the expansion of precision oncology.
Collapse
Affiliation(s)
- Lara Bußmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara Marie von Bargen
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Conrad Droste
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Kemmling
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anh Thu Vu
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Akingunsade
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Nollau
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rik de Wijn
- PamGene International B.V., 's-Hertogenbosch, The Netherlands
| | - Agnes Oetting
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General and Interventional Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Caroline Berger
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chia-Jung Busch
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Sebastian Clauditz
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Marienkrankenhaus Hamburg, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Kummer B, Löck S, Gurtner K, Hermann N, Yaromina A, Eicheler W, Baumann M, Krause M, Jentsch C. Value of functional in-vivo endpoints in preclinical radiation research. Radiother Oncol 2021; 158:155-161. [PMID: 33639191 DOI: 10.1016/j.radonc.2021.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cancer research faces the problem of high rates of clinical failure of new treatment approaches after positive preclinical data. We hypothesize that a major confounding factor to this problem in radiooncology is the choice of the preclinical endpoint. METHODS We present a comprehensive re-evaluation of large-scale preclinical in-vivo data on fractionated irradiation alone or simultaneously with Epidermal Growth Factor Receptor inhibition. Taking the permanent local tumour control assay as a gold standard, we evaluated different tumour volume dependent endpoints that are widely used for preclinical experiments. RESULTS The analysis showed the highest correlations between volume related and local tumour control endpoints after irradiation alone. For combined treatments, wide inter-tumoural variations were observed with reduced correlation between the endpoints. Evaluation of growth delay per Gray (GD/Gy) based on two or more dose levels showed closest correlation with local tumour control dose 50% (TCD50). CONCLUSIONS GD/Gy with at least two dose groups correlates with TCD50, but cannot replace the latter as the goldstandard.
Collapse
Affiliation(s)
- Berit Kummer
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Steffen Löck
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Kristin Gurtner
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Nadine Hermann
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Ala Yaromina
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Wolfgang Eicheler
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Baumann
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Mechthild Krause
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany.
| | - Christina Jentsch
- Department of Radiation Oncology and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| |
Collapse
|
7
|
Degenhardt S, Dreffke K, Schötz U, Petersen C, Engenhart-Cabillic R, Rothkamm K, Dahm-Daphi J, Dikomey E, Mansour WY. Establishment of a Transformation Coupled in vitro End Joining Assay to Estimate Radiosensitivity in Tumor Cells. Front Oncol 2020; 10:1480. [PMID: 32974177 PMCID: PMC7468517 DOI: 10.3389/fonc.2020.01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022] Open
Abstract
Here, we present a modified in vitro end-joining (EJ) assay to quantify EJ capacity, accuracy as well as pathway switch to alternative end-joining (Alt-EJ) or single strand annealing (SSA). A novel transformation assay was established to specifically measure circular repair products, which correlate with classical EJ efficiency. The EJ assay was validated using EJ-deficient mammalian cell lines (Ku80, DNA-PKcs, LigIV, or XRCC4 mutants). A pathway switch to Alt-EJ and SSA was seen exclusively in Ku-deficient cells. Circular EJ product formation correlated with cell survival and DSB repair capacity after X-irradiation. Investigation of 14 HNSCC cell lines revealed differences in the total EJ capacity but a broader variation in the amount of circular repair products. Sequencing of repair junctions in HNSCC cells demonstrated a predominance of high-fidelity EJ and an avoidance of both Alt-EJ and SSA. A significant correlation was observed between the amount of circular repair products, repair of IR-induced DSB and radiosensitivity. Collectively, these data indicate that the presented in vitro-EJ-assay can not only estimate the repair capacity of cancer cells to enable the stratification into radiosensitive or radioresistant, but can also identify repair pathway deregulation such as a switch to Alt-EJ or SSA, which enables tumor targeting.
Collapse
Affiliation(s)
- Sarah Degenhardt
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Dreffke
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Marburg, Germany
| | - Urlike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Marburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Dahm-Daphi
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Marburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Marburg, Germany
| | - Wael Yassin Mansour
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Dobler C, Jost T, Hecht M, Fietkau R, Distel L. Senescence Induction by Combined Ionizing Radiation and DNA Damage Response Inhibitors in Head and Neck Squamous Cell Carcinoma Cells. Cells 2020; 9:cells9092012. [PMID: 32883016 PMCID: PMC7563880 DOI: 10.3390/cells9092012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
DNA damage response inhibitors (DDRi) may selectively enhance the inactivation of tumor cells in combination with ionizing radiation (IR). The induction of senescence may be the key mechanism of tumor cell inactivation in this combinatorial treatment. In the current study the effect of combined IR with DDRi on the induction of senescence was studied in head and neck squamous cell carcinoma (HNSCC) cells with different human papilloma virus (HPV) status. The integrity of homologous recombination (HR) was assessed in two HPV positive, two HPV negative HNSCC, and two healthy fibroblast cell cultures. Cells were treated with the DDRi CC-115 (DNA-dependent protein kinase, DNA-pK; dual mammalian target of rapamycin, mTor), VE-822 (ATR; ataxia telangiectasia and Rad3-related kinase), and AZD0156 (ATM; ataxia telangiectasia mutated kinase) combined with IR. Effects on senescence, apoptosis, necrosis, and cell cycle were analyzed by flow cytometry. The fibroblast cell lines generally tolerated IR or combined treatment better than the tumor cell lines. The ATM and ATR inhibitors were effectively inducing senescence when combined with IR. The DNA-PK inhibitor was not an important inductor of senescence. HPV status and HR activity had a limited influence on the efficacy of DDRi. Induction of senescence and necrosis varied individually among the cell lines due to molecular heterogeneity and the involvement of DNA damage response pathways in senescence induction.
Collapse
Affiliation(s)
| | | | | | | | - Luitpold Distel
- Correspondence: ; Tel.: +49-9131-853-2312; Fax: +49-9131-853-9335
| |
Collapse
|
9
|
Kriegs M, Clauditz TS, Hoffer K, Bartels J, Buhs S, Gerull H, Zech HB, Bußmann L, Struve N, Rieckmann T, Petersen C, Betz CS, Rothkamm K, Nollau P, Münscher A. Analyzing expression and phosphorylation of the EGF receptor in HNSCC. Sci Rep 2019; 9:13564. [PMID: 31537844 PMCID: PMC6753061 DOI: 10.1038/s41598-019-49885-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022] Open
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC) is considered to cause increased EGFR activity, which adds to tumorigenicity and therapy resistance. Since it is still unclear, whether EGFR expression is indeed associated with increased activity in HNSCC, we analyzed the relationship between EGFR expression and auto-phosphorylation as a surrogate marker for activity. We used a tissue micro array, fresh frozen HNSCC tumor and corresponding normal tissue samples and a large panel of HNSCC cell lines. While we observed substantial overexpression only in approximately 20% of HNSCC, we also observed strong discrepancies between EGFR protein expression and auto-phosphorylation in HNSCC cell lines as well as in tumor specimens using Western blot and SH2-profiling; for the majority of HNSCC EGFR expression therefore seems not to be correlated with EGFR auto-phosphorylation. Blocking of EGFR activity by cetuximab and erlotinib points to increased EGFR activity in samples with increased basal auto-phosphorylation. However, we could also identify cells with low basal phosphorylation but relevant EGFR activity. In summary, our data demonstrate that EGFR expression and activity are not well correlated. Therefore EGFR positivity is no reliable surrogate marker for EGFR activity, arguing the need for alternative biomarkers or functional predictive tests.
Collapse
Affiliation(s)
- Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany.
| | - Till Sebastian Clauditz
- Institute of Pathology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Joanna Bartels
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Sophia Buhs
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Helwe Gerull
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Lara Bußmann
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Nina Struve
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Cordula Petersen
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Adrian Münscher
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Kriegs M, Kasten-Pisula U, Riepen B, Hoffer K, Struve N, Myllynen L, Braig F, Binder M, Rieckmann T, Grénman R, Petersen C, Dikomey E, Rothkamm K. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests. Oncotarget 2018; 7:45122-45133. [PMID: 27281611 PMCID: PMC5216710 DOI: 10.18632/oncotarget.9161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.
Collapse
Affiliation(s)
- Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Ulla Kasten-Pisula
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Britta Riepen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Nina Struve
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Laura Myllynen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Friederike Braig
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Cordula Petersen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Chen Y, Wang Y, Zhao L, Wang P, Sun J, Bao R, Li C, Liu N. EGFR tyrosine kinase inhibitor HS-10182 increases radiation sensitivity in non-small cell lung cancers with EGFR T790M mutation. Cancer Biol Med 2018; 15:39-51. [PMID: 29545967 PMCID: PMC5842333 DOI: 10.20892/j.issn.2095-3941.2017.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: To investigate the potential of HS-10182, a second-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), as a radiosensitizer in non-small cell lung cancer (NSCLC). Methods: Two cell lines of NSCLCs, A549 that possesses wild-type (WT) EGFRs and H1975 that possesses EGFR L858R/T790M double mutations, were treated with HS-10182 at various concentrations, and cell viabilities were determined using the MTS assay. The cells were tested by clonogenic survival assays to identify the radiosensitivity of both groups. Western blot was performed to analyze the expression of phosphorylated EGFR, AKT, DNA-dependent protein kinase, and catalytic subunit (DNA-PKcs) proteins. Immunofluorescence analyses were performed to examine the formation and changes in nuclear γ-H2AX foci. Cell apoptosis was examined by flow cytometry and Western blots for cleaved caspase-3, -8, -9, and cleaved poly ADP-ribose polymerase (PARP). Furthermore, we established xenograft models in mice and the effects of different treatments on tumor growth were then assessed. Results: Clonogenic survival assays revealed that HS-10182 significantly enhanced the radiosensitivity of H1975 cells but not A549 cells [dose enhancement ratios (DERs)=2.36 (P < 0.05) vs. 1.43 (P > 0.05)]. Western blot results showed that HS-10182 increased the levels of cleaved caspase-3, -8, -9, and cleaved PARP in H1975 cells but not in A549 cells. In addition, flow cytometry analysis showed that HS-10182 enhanced irradiation-induced apoptosis in H1975. Immunofluorescence results found that HS-10182 increased the average number of γ-H2AX foci after irradiation in H1975 cells, but not in A549 cells. Combined radiation and HS-10182 treatment increased the expression of DNA-PKcs but this increase was more significant in H1975 cells than in A549 cells. Moreover, HS-10182 suppressed the increased expression of Rad50 in H1975 cells in response to irradiation. In vivo experiments found that the combined therapy significantly inhibited tumor growth.
Conclusions: HS-10182 enhances the radiosensitivity of H1975 cells which is possibly because that HS-10182 could enhance irradiation-induced apoptosis, increase irradiation-induced DNA damage, and cause a delay in DNA damage repair. Our findings suggest that radiotherapy combined HS-10182 is a novel treatment for lung cancer cells which have acquired the T790M mutation. HS-10182 could be brought to the clinic as a radiosensitizer in NSCLCs with the EGFR T790M mutation.
Collapse
Affiliation(s)
- Yang Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Youyou Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jifeng Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rudi Bao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chenghai Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
12
|
De Ruysscher D, Manus MM, Kong FM(S. Patient Selection for Radiotherapy. IASLC THORACIC ONCOLOGY 2018:337-341.e3. [DOI: 10.1016/b978-0-323-52357-8.00036-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Busch CJ, Becker B, Kriegs M, Gatzemeier F, Krüger K, Möckelmann N, Fritz G, Petersen C, Knecht R, Rothkamm K, Rieckmann T. Similar cisplatin sensitivity of HPV-positive and -negative HNSCC cell lines. Oncotarget 2017; 7:35832-35842. [PMID: 27127883 PMCID: PMC5094966 DOI: 10.18632/oncotarget.9028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
Patients with HPV-positive head and neck squamous cell carcinoma (HNSCC) show better survival rates than those with HPV-negative HNSCC. While an enhanced radiosensitivity of HPV-positive tumors is clearly evident from single modality treatment, cisplatin is never administered as monotherapy and therefore its contribution to the enhanced cure rates of HPV-positive HNSCC is not known. Both cisplatin and radiotherapy can cause severe irreversible side effects and therefore various clinical studies are currently testing deintensified regimes for patients with HPV-positive HNSCC. One strategy is to omit cisplatin-based chemotherapy or replace it by less toxic treatments but the risk assessment of these approaches remains difficult. In this study we have compared the cytotoxic effects of cisplatin in a panel of HPV-positive and -negative HNSCC cell lines alone and when combined with radiation. While cisplatin-treated HPV-positive strains showed a slightly stronger inhibition of proliferation, there was no difference regarding colony formation. Cellular responses to the drug, namely cell cycle distribution, apoptosis and γH2AX-induction did not differ between the two entities but assessment of cisplatin-DNA-adducts suggests differences regarding the mechanisms that determine cisplatin sensitivity. Combining cisplatin with radiation, we generally observed an additive but only in a minority of strains from both entities a clear synergistic effect on colony formation. In summary, HPV-positive and -negative HNSCC cells were equally sensitive to cisplatin. Therefore replacing cisplatin may be feasible but the substituting agent should be of similar efficacy in order not to jeopardize the high cure rates for HPV-positive HNSCC.
Collapse
Affiliation(s)
- Chia-Jung Busch
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Benjamin Becker
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Katharina Krüger
- Institute of Toxicology, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Nikolaus Möckelmann
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gerhard Fritz
- Institute of Toxicology, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rainald Knecht
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Sun C, Han C, Jiang Y, Han N, Zhang M, Li G, Qiao Q. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab. PLoS One 2017; 12:e0188932. [PMID: 29232380 PMCID: PMC5726659 DOI: 10.1371/journal.pone.0188932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/15/2017] [Indexed: 01/24/2023] Open
Abstract
The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER) homeostatic state and result in ER stress (ERS), subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB) repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05). Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Chaonan Sun
- Department of Radiotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuyang Han
- Department of Radiotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanjun Jiang
- Department of Urology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Han
- Department of Radiotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Zhang
- Department of Radiotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiao Qiao
- Department of Radiotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
15
|
Koi L, Löck S, Linge A, Thurow C, Hering S, Baumann M, Krause M, Gurtner K. EGFR-amplification plus gene expression profiling predicts response to combined radiotherapy with EGFR-inhibition: A preclinical trial in 10 HNSCC-tumour-xenograft models. Radiother Oncol 2017; 124:496-503. [PMID: 28807520 DOI: 10.1016/j.radonc.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Improvement of the results of radiotherapy by EGFR inhibitors is modest, suggesting significant intertumoural heterogeneity of response. To identify potential biomarkers, a preclinical trial was performed on ten different human squamous cell carcinoma xenografts of the head and neck (HNSCC) studying in vivo and ex vivo the effect of fractionated irradiation and EGFR inhibition. Local tumour control and tumour growth delay were correlated with potential biomarkers, e.g. EGFR gene amplification and radioresponse-associated gene expression profiles. MATERIAL AND METHODS Local tumour control 120days after end of irradiation was determined for fractionated radiotherapy alone (30f, 6weeks) or after simultaneous EGFR-inhibition with cetuximab. The EGFR gene amplification status was determined using FISH. Gene expression analyses were performed using an in-house gene panel. RESULTS Six out of 10 investigated tumour models showed a significant increase in local tumour control for the combined treatment of cetuximab and fractionated radiotherapy compared to irradiation alone. For 3 of the 6 responding tumour models, an amplification of the EGFR gene could be demonstrated. Gene expression profiling of untreated tumours revealed significant differences between amplified and non-amplified tumours as well as between responder and non-responder tumours to combined radiotherapy and cetuximab. CONCLUSION The EGFR amplification status, in combination with gene expression profiling, may serve as a predictive biomarker for personalized interventional strategies regarding combined treatment of cetuximab and fractionated radiotherapy and should, as a next step, be clinically validated.
Collapse
Affiliation(s)
- Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Cedric Thurow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Sandra Hering
- Institute for Legal Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Kristin Gurtner
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany.
| |
Collapse
|
16
|
Epidermal growth factor receptor intron-1 CA repeat polymorphism on protein expression and clinical outcome in Taiwanese oral squamous cell carcinoma. Sci Rep 2017; 7:4963. [PMID: 28694429 PMCID: PMC5504053 DOI: 10.1038/s41598-017-04954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
This study was designed to explore the relationship between epidermal growth factor receptor (EGFR) CA repeats polymorphism and protein expression in oral cavity squamous cell carcinoma (OSCC). A total of 194 OSCCs were examined for EGFR protein overexpression, gene copy number and the length of their CA repeats. The length of the EGFR CA repeats was found not to be associated with EGFR gene copy number or with protein overexpression. To exclude the effect of EGFR gene copy number on protein overexpression, only those OSCC tumors with disomy of the EGFR gene were included in further analysis. In this subgroup, EGFR protein overexpression was significantly associated with poor differentiation of the tumor cells and lymph node metastasis, especially extra-capsular spread. However, EGFR CA repeats were not related to any clinicopathological factor. Interestingly, patients genetically found to have the EGFR CA repeats SS genotype and having tumors with EGFR protein overexpression were found to have a worst prognosis in terms of disease-free survival (DFS) (HR = 2.68; 95% CI, 1.03-6.98) after multivariate adjustment. The present study demonstrates that concurrent overexpression of EGFR protein in the presence genetically of the SS form CA repeats acts as a predictor for poor DFS.
Collapse
|
17
|
Huang X, Liu T, Wang Q, Zhu W, Meng H, Guo L, Wei T, Zhang J. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations. Glycobiology 2017; 27:713-725. [DOI: 10.1093/glycob/cwx046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/29/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
|
18
|
Gracia-Cazaña T, Salazar N, Zamarrón A, Mascaraque M, Lucena S, Juarranz Á. Resistance of Nonmelanoma Skin Cancer to Nonsurgical Treatments. Part II: Photodynamic Therapy, Vismodegib, Cetuximab, Intralesional Methotrexate, and Radiotherapy. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2016.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
19
|
Gracia-Cazaña T, Salazar N, Zamarrón A, Mascaraque M, Lucena SR, Juarranz Á. Resistance of Nonmelanoma Skin Cancer to Nonsurgical Treatments. Part II: Photodynamic Therapy, Vismodegib, Cetuximab, Intralesional Methotrexate, and Radiotherapy. ACTAS DERMO-SIFILIOGRAFICAS 2016; 107:740-750. [PMID: 27436804 DOI: 10.1016/j.ad.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 12/18/2022] Open
Abstract
A wide range of treatments is now available for nonmelanoma skin cancer, including 5-fluorouracil, ingenol mebutate, imiquimod, diclofenac, photodynamic therapy, methotrexate, cetuximab, vismodegib, and radiotherapy. All are associated with high clinical and histologic response rates. However, some tumors do not respond due to resistance, which may be primary or acquired. Study of the resistance processes is a broad area of research that aims to increase our understanding of the nature of each tumor and the biologic features that make it resistant, as well as to facilitate the design of new therapies directed against these tumors. In this second article, having covered the topical treatments of nonmelanoma skin cancer, we review resistance to other nonsurgical treatments, such as monoclonal antibodies against basal and squamous cell carcinomas, intralesional chemotherapy, photodynamic therapy, and radiotherapy.
Collapse
Affiliation(s)
- T Gracia-Cazaña
- Unidad de Dermatología, Hospital de Barbastro, Barbastro, Huesca, España; Instituto Aragonés de Ciencias de la Salud, Zaragoza, España.
| | - N Salazar
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - A Zamarrón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - M Mascaraque
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - S R Lucena
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| | - Á Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
20
|
Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol 2015; 35:180-90. [PMID: 26192967 DOI: 10.1016/j.semcancer.2015.07.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will be discussed.
Collapse
|
21
|
Kriegs M, Gurtner K, Can Y, Brammer I, Rieckmann T, Oertel R, Wysocki M, Dorniok F, Gal A, Grob TJ, Laban S, Kasten-Pisula U, Petersen C, Baumann M, Krause M, Dikomey E. Radiosensitization of NSCLC cells by EGFR inhibition is the result of an enhanced p53-dependent G1 arrest. Radiother Oncol 2015; 115:120-7. [DOI: 10.1016/j.radonc.2015.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 11/30/2022]
|
22
|
Jerhammar F, Johansson AC, Ceder R, Welander J, Jansson A, Grafström RC, Söderkvist P, Roberg K. YAP1 is a potential biomarker for cetuximab resistance in head and neck cancer. Oral Oncol 2014; 50:832-9. [PMID: 24993889 DOI: 10.1016/j.oraloncology.2014.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Targeted therapy against the epidermal growth factor receptor (EGFR) only variably represents a therapeutic advance in head and neck squamous cell carcinoma (HNSCC). This study addresses the need of biomarkers of treatment response to the EGFR-targeting antibody cetuximab (Erbitux®). MATERIALS AND METHODS The intrinsic cetuximab sensitivity of HNSCC cell lines was assessed by a crystal violet assay. Gene copy number analysis of five resistant and five sensitive cell lines was performed using the Affymetrix SNP 6.0 platform. Quantitative real-time PCR was used for verification of selected copy number alterations and assessment of mRNA expression. The functional importance of the findings on the gene and mRNA level was investigated employing siRNA technology. The data was statistically evaluated using Mann-Whitney U-test and Spearman's correlation test. RESULTS Analysis of the intrinsic cetuximab sensitivity of 32 HNSCC cell lines characterized five and nine lines as cetuximab sensitive or resistant, respectively. Gene copy number analysis of five resistant versus five sensitive cell lines identified 39 amplified protein-coding genes, including YAP1, in the genomic regions 11q22.1 or 5p13-15. Assessment using qPCR verified that YAP1 amplification associated with cetuximab resistance. Amplification of YAP1 correlated to higher mRNA levels, and RNA knockdown resulted in increased cetuximab sensitivity. Assessment of several independent clinical data sets in the public domain confirmed YAP1 amplifications in multiple tumor types including HNSCC, along with highly differential expression in a subset of HNSCC patients. CONCLUSION Taken together, we provide evidence that YAP1 could represent a novel biomarker gene of cetuximab resistance in HNSCC cell lines.
Collapse
Affiliation(s)
- Fredrik Jerhammar
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ann-Charlotte Johansson
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Rebecca Ceder
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Welander
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Agneta Jansson
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Roland C Grafström
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Peter Söderkvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Karin Roberg
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of ENT-Head and Neck Surgery UHL, County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
23
|
Ingargiola M, Runge R, Heldt JM, Freudenberg R, Steinbach J, Cordes N, Baumann M, Kotzerke J, Brockhoff G, Kunz-Schughart LA. Potential of a Cetuximab-based radioimmunotherapy combined with external irradiation manifests in a 3-D cell assay. Int J Cancer 2014; 135:968-80. [PMID: 24615356 DOI: 10.1002/ijc.28735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2013] [Accepted: 01/08/2014] [Indexed: 12/22/2022]
Abstract
Targeting epidermal growth factor receptor (EGFR)-overexpressing tumors with radiolabeled anti-EGFR antibodies is a promising strategy for combination with external radiotherapy. In this study, we evaluated the potential of external plus internal irradiation by [(90) Y]Y-CHX-A″-DTPA-C225 (Y-90-C225) in a 3-D environment using FaDu and SAS head and neck squamous cell carcinoma (HNSCC) spheroid models and clinically relevant endpoints such as spheroid control probability (SCP) and spheroid control dose 50% (SCD50 , external irradiation dose inducing 50% loss of spheroid regrowth). Spheroids were cultured using a standardized platform. Therapy response after treatment with C225, CHX-A"-DTPA-C225 (DTPA-C225), [(90) Y]Y-CHX-A"-DTPA (Y-90-DTPA) and Y-90-C225 alone or in combination with X-ray was evaluated by long-term monitoring (60 days) of spheroid integrity and volume growth. Penetration kinetics into spheroids and EGFR binding capacities on spheroid cells were identical for unconjugated C225 and Y-90-C225. Spheroid-associated radioactivity upon exposure to the antibody-free control conjugate Y-90-DTPA was negligible. Determination of the SCD50 demonstrated higher intrinsic radiosensitivity of FaDu as compared with SAS spheroids. Treatment with unconjugated C225 alone did not affect spheroid growth and cell viability. Also, C225 treatment after external irradiation showed no additive effect. However, the combination of external irradiation with Y-90-C225 (1 µg/ml, 24 hr) resulted in a considerable benefit as reflected by a pronounced reduction of the SCD50 from 16 Gy to 9 Gy for SAS spheroids and a complete loss of regrowth for FaDu spheroids due to the pronounced accumulation of internal dose caused by the continuous exposure to cell-bound radionuclide upon Y-90-C225-EGFR interaction.
Collapse
Affiliation(s)
- M Ingargiola
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany; Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Radiolabeled anti-EGFR-antibody improves local tumor control after external beam radiotherapy and offers theragnostic potential. Radiother Oncol 2014; 110:362-9. [PMID: 24440046 DOI: 10.1016/j.radonc.2013.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/25/2022]
Abstract
PURPOSE The effect of radioimmunotherapy (RIT) using the therapeutic radionuclide Y-90 bound to the anti-EGFR antibody cetuximab combined with external beam irradiation (EBRT) (EBRIT) on permanent local tumor control in vivo was examined. METHODS Growth delay was evaluated in three human squamous cell carcinoma models after RIT with [(90)Y]Y-(CHX-A''-DTPA)₄-cetuximab (Y-90-cetuximab). The EBRT dose required to cure 50% of the tumors (TCD₅₀) for EBRT alone or EBRIT was evaluated in one RIT-responder (FaDu) and one RIT-non-responder (UT-SCC-5). EGFR expression and microenvironmental parameters were evaluated in untreated tumors, bioavailability was visualized by PET using ([(86)Y]Y-(CHX-A''-DTPA)₄-cetuximab (Y-86-cetuximab) and biodistribution using Y-90-cetuximab. RESULTS In UT-SCC-8 and FaDu but not in UT-SCC-5 radiolabeled cetuximab led to significant tumor growth delay. TCD₅₀ after EBRT was significantly decreased by EGFR-targeted RIT in FaDu but not in UT-SCC-5. In contrast to EGFR expression, parameters of the tumor micromilieu and in particular the Y-90-cetuximab biodistribution or Y-86-cetuximab visualization in PET correlated with the responsiveness to RIT or EBRIT. CONCLUSION EGFR-targeted EBRIT can improve permanent local tumor control compared to EBRT alone. PET imaging of bioavailability of labeled cetuximab appears to be a suitable predictor for response to EBRIT. This theragnostic approach should be further explored for clinical translation.
Collapse
|
25
|
Saki M, Toulany M, Rodemann HP. Acquired resistance to cetuximab is associated with the overexpression of Ras family members and the loss of radiosensitization in head and neck cancer cells. Radiother Oncol 2013; 108:473-8. [PMID: 23891090 DOI: 10.1016/j.radonc.2013.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE Cetuximab in combination with radiation therapy is used to treat patients with head and neck squamous cell carcinoma (HNSCC). In the present study, the mechanism of acquired resistance to cetuximab in HNSCC cells was investigated in vitro. MATERIAL AND METHODS The HNSCC cell lines UT5 and SAS and UT5 cells with acquired resistance to cetuximab (UT5R9) were used. The radiotoxicity potentials of cetuximab and inhibitors of PI3K, MAPK and farnesylation were tested using a clonogenic survival assay. Western blotting was used to evaluate protein expression. The levels of EGFR ligands were detected by ELISA. RESULTS Cetuximab inhibited proliferation and induced radiosensitization in UT5 cells but not in SAS cells. In comparison with UT5 cells, cetuximab-resistant SAS cells markedly overexpressed the K-Ras, H-Ras and N-Ras proteins, as detected by Western blotting. Resistance in UT5R9 cells was associated with the overexpression of the K-Ras, H-Ras and N-Ras proteins as well as an increase in the autocrine production of the EGFR ligands amphiregulin and transforming growth factor α (TGFα). UT5R9 cells were significantly more radioresistant than UT5 cells. Radioresistant UT5R9 cells were not radiosensitized by cetuximab, but knocking down H-RAS and N-RAS with siRNA and targeting Ras farnesylation using the farnesyltransferase inhibitor lonafarnib induced radiosensitization in these cells. Targeting PI3K and MEK revealed that the activation of the PI3K/Akt pathway but not the MAPK/ERK pathway is associated with radioresistance in UT5R9 cells. CONCLUSION Targeting Ras and PI3K activity improves the outcome of irradiation in cetuximab-resistant HNSCC cell lines in vitro.
Collapse
Affiliation(s)
- Mohammad Saki
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany; Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité Campus Mitte, Charité Universitätsmedizin, Berlin, Germany
| | | | | |
Collapse
|
26
|
Nijkamp MM, Span PN, Bussink J, Kaanders JHAM. Interaction of EGFR with the tumour microenvironment: implications for radiation treatment. Radiother Oncol 2013; 108:17-23. [PMID: 23746695 DOI: 10.1016/j.radonc.2013.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/04/2013] [Accepted: 05/12/2013] [Indexed: 12/27/2022]
Abstract
Treatment failure through radioresistance of tumours is associated with activation of the epidermal growth factor receptor (EGFR). Tumour cell proliferation, DNA-repair, hypoxia and metastases-formation are four mechanisms in which EGFR signalling has an important role. In clinical trials, a correlation has been demonstrated between high EGFR expression in tumours and poor outcome after radiotherapy. Inhibition of EGFR signalling pathways improves the effectiveness of radiotherapy of head and neck cancers by overcoming these main mechanisms of radioresistance. The fact that only a minority of the patients respond to EGFR inhibitors reflects the complexity of interactions between EGFR-dependent signalling pathways and the tumour microenvironment. Furthermore, many components of the microenvironment are potential targets for therapeutic interventions. Characterisation of the interaction of EGFR signalling and the tumour microenvironment is therefore necessary to improve the effectiveness of combined modality treatment with radiotherapy and targeted agents. Here, the current status of knowledge is reviewed and directions for future research are discussed.
Collapse
Affiliation(s)
- Monique M Nijkamp
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | |
Collapse
|
27
|
HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother Oncol 2013; 107:242-6. [PMID: 23602369 DOI: 10.1016/j.radonc.2013.03.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE When treated by radiotherapy, patients with squamous cell carcinomas of the head and neck (HNSCC) positive for HPV and p16(INK4a) possess a clearly favorable prognosis as compared to those with HPV-negative HNSCC. The aim of this work was to study whether the better outcomes might be caused by an enhanced cellular radiosensitivity. MATERIALS AND METHODS The radiation response of five HPV/p16(INK4a)-positive and five HPV-negative cell lines was characterized with regard to cellular radiosensitivity by colony formation assay. Furthermore G1- and G2-arrest, apoptosis and residual DNA double-strand breaks (DSB) were analyzed by the colcemid-based G1-efflux assay, propidium iodide staining, the detection of PARP cleavage, the fluorescence-based detection of caspase activity and the immunofluorescence staining of γH2AX and 53BP1 foci. RESULTS On average, the cellular radiosensitivity of the HNSCC cell lines positive for HPV and p16(INK4a) was higher as compared to the sensitivity of a panel of five HPV-negative HNSCC cell lines (SF3=0.2827 vs. 0.4455). The higher sensitivity does not result from increased apoptosis or the execution of a permanent G1-arrest, but is rather associated with both, elevated levels of residual DSBs and extensive G2-arrest. CONCLUSIONS Increased cellular radiosensitivity due to compromised DNA repair capacity is likely to contribute to the improved outcome of patients with HPV/p16(INK4a)-positive tumors when treated by radiotherapy.
Collapse
|
28
|
Saker J, Kriegs M, Zenker M, Heldt JM, Eke I, Pietzsch HJ, Grénman R, Cordes N, Petersen C, Baumann M, Steinbach J, Dikomey E, Kasten-Pisula U. Inactivation of HNSCC Cells by 90Y-Labeled Cetuximab Strictly Depends on the Number of Induced DNA Double-Strand Breaks. J Nucl Med 2013; 54:416-23. [DOI: 10.2967/jnumed.111.101857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
29
|
Tennstedt P, Fresow R, Simon R, Marx A, Terracciano L, Petersen C, Sauter G, Dikomey E, Borgmann K. RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. Int J Cancer 2012; 132:2118-26. [PMID: 23065657 DOI: 10.1002/ijc.27907] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022]
Abstract
RAD51 is the central protein in the homologous recombination pathway and is therefore of great relevance in terms of both therapy resistance as well as genomic stability. By using a tissue microarray analysis of 1,213 biopsies taken from colorectal adenocarcinomas (CRCs), we investigated whether RAD51 expression can be used as a prognostic marker as well as potential associations between this and the expression of other proteins known to be related to CRC. Strong RAD51 expression was observed in 1% of CRC, moderate in 11%, weak in 34% and no expression in 44%. No correlation was found between RAD51 expression and clinicopathological parameters. RAD51 expression correlated significantly (p = 0.001) with overall survival, with a median survival of 11 months for patients with strong, 46 with moderate, 76 with weak and 68 with negative expression. Multivariate analyses revealed that in addition to tumor stage (p < 0.0001) and nodal status (p < 0.0001), RAD51 expression is also an independent prognostic parameter (p = 0.011). Strong RAD51 expression was found to be associated with the loss of the two DNA mismatch repair proteins MSH (p = 0.0003), MLH (p = 0.002) and β-catenin (p = 0.012) as well as with elevated p21 (p = 0.003) and EGFR expression (p = 0.0001). However, a correlation with overall survival could only be found for EGFR expression (p = 0.008), although no added benefit in risk stratification could be determined when evaluated together with RAD51. Overexpression of RAD51 is a predictor of poor outcome in CRC. This finding indicated the promise of future studies using RAD51 as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Pierre Tennstedt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jonsson EL, Nylander K, Hallén L, Laurell G. Effect of radiotherapy on expression of hyaluronan and EGFR and presence of mast cells in squamous cell carcinoma of the head and neck. Oncol Lett 2012. [PMID: 23205115 DOI: 10.3892/ol.2012.907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Head and neck squamous cell carcinoma is a common form of cancer, and despite improvements in treatment during the last decades, survival rates have not significantly increased. There is therefore a need to better understand how these tumours and the adjacent tissues react to radiotherapy, the most common type of treatment for this group of tumours. In order to improve this understanding, the expression of hyaluronan (HA) and epidermal growth factor receptor (EGFR) and the presence of mast cells were mapped before and after radiotherapy using immunohistochemistry. The results showed HA and EGFR to have similar expression patterns in tumour tissue and histologically normal squamous epithelium prior to radiotherapy. Following radiotherapy, EGFR increased in histologically normal epithelium. An increased number of mast cells were also observed as a result of radiotherapy. No expression of EGFR was observed in the connective tissue either prior to or following radiotherapy.
Collapse
|
31
|
Dikomey E, Dahm-Daphi J, Distel L. Prädiktion von Normal- und Tumorreaktion nach Strahlentherapie. Strahlenther Onkol 2012; 188 Suppl 3:304-7. [DOI: 10.1007/s00066-012-0204-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Zhao L, Bode AM, Cao Y, Dong Z. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis 2012; 33:2220-7. [PMID: 22798379 PMCID: PMC3483015 DOI: 10.1093/carcin/bgs235] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miRNA) influences carcinogenesis at multiple stages and it can effectively control tumor radiosensitivity by affecting DNA damage repair, cell cycle checkpoint, apoptosis, radio-related signal transduction pathways and tumor microenvironment. MiRNA also efficiently modulates tumor radiosensitivity at multiple levels by blocking the two essential non-homologous end-joining repair and homologous recombination repair pathways in the DNA damage response. It interferes with four radio-related pathways in ionizing radiation, including the PI3-K/Akt, NF-κB, MAPK and TGFβ signaling pathways. Moreover, the regulatory effect of miRNA in radiosensitivity can be enhanced when interacting with various key molecules, including H2AX, BRCA1, ATM, DNA-PK, RAD51, Chk1, Cdc25A, p53, PLK1, HIF-1 and VEGF, which are involved in these processes. Therefore, thoroughly understanding the mechanism of miRNA in tumor radiosensitivity could assist in finding novel targets to improve the radiotherapeutic effects and provide new clinical perspectives and insights for developing effective cancer treatments.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University Changsha 410078, China
| | | | | | | |
Collapse
|
33
|
Thariat J, Etienne-Grimaldi MC, Grall D, Bensadoun RJ, Cayre A, Penault-Llorca F, Veracini L, Francoual M, Formento JL, Dassonville O, De Raucourt D, Geoffrois L, Giraud P, Racadot S, Morinière S, Milano G, Van Obberghen-Schilling E. Epidermal growth factor receptor protein detection in head and neck cancer patients: a many-faceted picture. Clin Cancer Res 2012; 18:1313-22. [PMID: 22228639 DOI: 10.1158/1078-0432.ccr-11-2339] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epidermal growth factor receptor (EGFR) overexpression is associated with poor prognosis in head and neck squamous cell carcinoma (HNSCC). Despite intensive biomarker studies, a consensual method for assessing EGFR protein expression is still lacking. Here we set out to compare three EGFR detection methods in tumor specimens from HNSCC patients. EXPERIMENTAL DESIGN Tumors were prospectively excised from a series of 79 high-risk HNSCC patients enrolled in a GORTEC-sponsored clinical trial. EGFR expression was determined using a ligand-binding assay on membranes, Western blotting (WB) on membranes and total homogenates, and immunohistochemistry (IHC) on tissue microarrays. In addition, phosphorylated EGFR (pEGFR) was measured by WB on membranes. RESULTS Distributions and ranges of tumor EGFR expression were method dependent. Moderate positive correlations (Spearman coefficient r ≈ 0.50) were observed between EGFR expression measured by the binding assay and WB or IHC. pEGFR levels positively and significantly correlated with total EGFR expression measured by WB or ligand binding, but not by IHC. The highest correlation (r = 0.85) was observed between EGFR and pEGFR levels, both measured by WB on membranes. Interestingly, the fraction of phosphorylated receptor (pEGFR/EGFR both measured by WB on membranes) significantly declined with increasing tumor EGFR expression, by all assessment methods used. CONCLUSION This study shows significant correlations between EGFR detection methods. The observed relationships between EGFR and pEGFR indicate that high-throughput pEGFR/EGFR analyses merit further investigations and consideration for routine use in patient samples.
Collapse
|
34
|
Gurtner K, Deuse Y, Bütof R, Schaal K, Eicheler W, Oertel R, Grenman R, Thames H, Yaromina A, Baumann M, Krause M. Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression. Radiother Oncol 2011; 99:323-30. [PMID: 21665304 DOI: 10.1016/j.radonc.2011.05.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/19/2022]
Abstract
PURPOSE To compare functional effects of combined irradiation and EGFR inhibition in different HNSCC tumour models in vivo with the results of molecular evaluations, aiming to set a basis for the development of potential biomarkers for local tumour control. MATERIAL AND METHODS In five HNSCC tumour models, all wild-type for EGFR and KRAS, the effect of radiotherapy alone (30 fractions/6 weeks) and with simultaneous cetuximab or erlotinib treatment on local tumour control were evaluated and compared with molecular data on western blot, immunohistochemistry and fluorescence-in situ-hybridisation (FISH). RESULTS Erlotinib and cetuximab alone significantly prolonged tumour growth time in 4/5 tumour models. Combined irradiation and cetuximab treatment significantly improved local tumour control in 3/5 tumour models, whereas erlotinib did not alter local tumour control in any of the tumour models. The amount of the cetuximab-effect on local tumour control significantly correlated with the EGFR/CEP-7 ratios obtained by FISH. CONCLUSION Both drugs prolonged growth time in most tumour models, but only application of cetuximab during irradiation significantly improved local tumour control in 3/5 tumour models. The significant correlation of this curative effect with the genetic EGFR expression measured by FISH will be further validated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Kristin Gurtner
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|