1
|
Wu R, Tian G, Zhang S, Zhang P, Lei X. A Comprehensive Review: Versatile Imaging Probe Based on Chemical Materials for Biomedical Applications. Appl Biochem Biotechnol 2025; 197:1301-1328. [PMID: 39215904 DOI: 10.1007/s12010-024-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Imaging probe and contrast agents play significant role in combating cancer. Based on special chemical materials, imaging probe can convert cancer symptoms into information-rich images with high sensitivity and signal amplification, accompanying with detection, diagnosis, drug delivery and treatment. In the paper, some inorganic and organic chemical materials as imaging probe, including Ultrasound imaging (US), Optical imaging (OP), Photoacoustic imaging (PA), X-ray Computed Tomography (CT), Magnetic Resonance imaging (MRI), Radionuclide imaging (RNI) probe, as well as multi-modality imaging probe for diagnosis and therapy of tumour were introduced. The sophisticated and comprehensive chemical materials as imaging probe were highlighted in detail. Meanwhile, the advantages and disadvantages of the imaging probe were compared. In order to provide some reference and help researchers for construction imaging probe for tumour diagnosis and treatment, it attempts to exhaustively cover the whole field. Finally, the prospect and challenge for imaging probe were discussed.
Collapse
Affiliation(s)
- Rui Wu
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| | - Guanghui Tian
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Pengfei Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
2
|
The Role of Glucose Transporters in Oral Squamous Cell Carcinoma. Biomolecules 2021; 11:biom11081070. [PMID: 34439735 PMCID: PMC8392467 DOI: 10.3390/biom11081070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent malignancy associated with a poor prognosis. The Warburg effect can be observed in OSCCs, with tumours requiring a robust glucose supply. Glucose transporters (GLUTs) and sodium-glucose co-transporters (SGLTs) are overexpressed in multiple malignancies, and are correlated with treatment resistance, clinical factors, and poor overall survival (OS). We conducted a systematic review to evaluate the differences in GLUT/SGLT expression between OSCC and normal oral keratinocytes (NOK), as well as their role in the pathophysiology and prognosis of OSCC. A total of 85 studies were included after screening 781 papers. GLUT-1 is regularly expressed in OSCC and was found to be overexpressed in comparison to NOK, with high expression correlated to tumour stage, treatment resistance, and poor prognosis. No clear association was found between GLUT-1 and tumour grade, metastasis, and fluorodeoxyglucose (FDG) uptake. GLUT-3 was less thoroughly studied but could be detected in most samples and is generally overexpressed compared to NOK. GLUT-3 negatively correlated with overall survival (OS), but there was insufficient data for correlations with other clinical factors. Expression of GLUT-2/GLUT-4/GLUT-8/GLUT-13/SGLT-1/SGLT-2 was only evaluated in a small number of studies with no significant differences detected. GLUTs 7 and 14 have never been evaluated in OSCC. In conclusion, the data demonstrates that GLUT-1 and GLUT-3 have a role in the pathophysiology of OSCC and represent valuable biomarkers to aid OSCC diagnosis and prognostication. Other GLUTs are comparatively understudied and should be further analysed because they may hold promise to improve patient care.
Collapse
|
3
|
Brasse D, Burckel H, Marchand P, Rousseau M, Ouadi A, Vanstalle M, Finck C, Laquerriere P, Boisson F. Comparison of the [ 18F]-FDG and [ 18F]-FLT PET Tracers in the Evaluation of the Preclinical Proton Therapy Response in Hepatocellular Carcinoma. Mol Imaging Biol 2021; 23:724-732. [PMID: 33847900 DOI: 10.1007/s11307-021-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The main objective of the present study was to compare the 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) and 3'-[18F]fluoro-3'-deoxythymidine ([18F]-FLT) PET imaging biomarkers for the longitudinal follow-up of small animal proton therapy studies in the context of hepatocellular carcinoma (HCC). PROCEDURES SK-HEP-1 cells were injected into NMRI nude mice to mimic human HCC. The behavior of [18F]-FDG and [18F]-FLT tumor uptake was evaluated after proton therapy procedures. The proton single-fraction doses were 5, 10, and 20 Gy, with a dose rate of 10 Gy/min. The experimental protocol consisted of 8 groups of 10 mice, each group experiencing a particular dose/radiotracer condition. A reference PET exam was performed on each mouse the day before the irradiation procedure, followed by PET exams every 3 days up to 16 days after irradiation. RESULTS [18F]-FDG uptake showed a linear dose-dependent increase in the first days after treatment (37%, p < 0.05), while [18F]-FLT uptake decreased in a dose-dependent manner (e.g., 21% for 5 Gy compared to 10 Gy, p = 1.1e-2). At the later time point, [18F]-FDG normalized activity showed an 85% decrease (p < 0.01) for both 10 and 20 Gy doses and no variation for 5 Gy. Conversely, a significant 61% (p = 0.002) increase was observed for [18F]-FLT normalized activity at 5 Gy and no variation for higher doses. CONCLUSION We showed that the use of the [18F]-FDG and [18F]-FLT radiolabeled molecules can provide useful and complementary information for longitudinal follow-up of small animal proton therapy studies in the context of HCC. [18F]-FDG PET imaging enables a treatment monitoring several days/weeks postirradiation. On the other hand, [18F]-FLT could represent a good candidate to monitor the treatment few days postirradiation, in the context of hypo-fractioned and close irradiation planning. This opens new perspectives in terms of treatment efficacy verification depending on the irradiation scheme.
Collapse
Affiliation(s)
- David Brasse
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France.
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, 67000, Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Marc Rousseau
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Ali Ouadi
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Marie Vanstalle
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Christian Finck
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | | | - Frédéric Boisson
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| |
Collapse
|
4
|
Wilson GD, Wilson TG, Hanna A, Dabjan M, Buelow K, Torma J, Marples B, Galoforo S. Dacomitinib and gedatolisib in combination with fractionated radiation in head and neck cancer. Clin Transl Radiat Oncol 2020; 26:15-23. [PMID: 33251343 PMCID: PMC7677653 DOI: 10.1016/j.ctro.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
We evaluated radiation with dual EGFR and PI3K targeting in head and neck cancer. Dacomitinib, showed an inverse correlation between growth inhibition and EGFR expression. Gedatolisib was effective in each cell line. Neither drug caused radiosensitization in vitro. Gedatolisib was relatively ineffective in vivo in combination with dacomitinib and/or radiation. Dacomitinib was highly effective alone and in combination with radiation and/or gedatolisib. Immunoblotting studies in vivo mirrored the effects seen with growth delay.
Background and purpose There has been little success targeting individual genes in combination with radiation in head and neck cancer. In this study we investigated whether targeting two key pathways simultaneously might be more effective. Materials and methods We studied the effect of combining dacomitinib (pan-HER, irreversible inhibitor) and gedatolisib (dual PI3K/MTOR inhibitor) with radiation in well characterized, low passage xenograft models of HNSCC in vitro and in vivo. Results Dacomitinib showed differential growth inhibition in vitro that correlated to EGFR expression whilst gedatolisib was effective in both cell lines. Neither agent radiosensitized the cell lines in vitro. In vivo studies demonstrated that dacomitinib was an effective agent alone and in combination with radiation whilst the addition of gedatolisib did not enhance the effect of these two modalities despite inhibiting phosphorylation of key genes in the PI3K/MTOR pathway. Conclusions Our results showed that combining two drugs with radiation provided no added benefit compared to the single most active drug. Dacomitinib deserves more investigation as a radiation sensitizing agent in HNSCC.
Collapse
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Alaa Hanna
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Mohamad Dabjan
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Katie Buelow
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - John Torma
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Sandra Galoforo
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| |
Collapse
|
5
|
Yang B, Jiang J, Jiang L, Zheng P, Wang F, Zhou Y, Chen Z, Li M, Lian M, Tang S, Liu X, Peng H, Wang Q. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol 2020; 149:108-115. [PMID: 31987952 DOI: 10.1016/j.ijbiomac.2020.01.222] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
Zedoary turmeric oil (ZTO) has a strong antitumor activity. However, its volatility, insolubility, low bioavailability, and difficulty of medication owing to oily liquid limit its clinical applications. Solid lipid nanoparticles can provide hydrophobic environment to dissolve hydrophobic drug and solidify the oily active composition to decrease the volatility and facilitate the medication. Chitosan has been widely used in pharmaceutics in recent years and coating with chitosan further enhances the internalization of particles by cells due to charge attract. Here, Chitosan (CS)-coated solid lipid nanoparticles (SLN) loaded with ZTO was prepared and characterized using dynamic laser scanner (DLS) and transmission electron microscope (TEM). The uptake and distribution of drug were evaluated in vitro and in vivo. The average sizes of ZTO-SLN and CS-ZTO-SLN were 134.3 ± 3.42 nm and 210.7 ± 4.59 nm, respectively. CS coating inverted the surface charge of particles from -8.93 ± 1.92 mV to +9.12 ± 2.03 mV. The liver accumulation of CS-ZTO-SLN was higher than ZTO-SLN (chitosan-uncoated particles) by analysis of tissue homogenate using HPLC, and the bioavailability of ZTO was also obviously improved. The results suggested that SLN coated with CS improved the features of ZTO formulation and efficiently deliver drug to the liver.
Collapse
Affiliation(s)
- Bo Yang
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Jiaqi Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Lei Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Peiyu Zheng
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Fuling Wang
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Yang Zhou
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Minghui Li
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Shukun Tang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China.
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
6
|
Choi J, Gim JA, Oh C, Ha S, Lee H, Choi H, Im HJ. Association of metabolic and genetic heterogeneity in head and neck squamous cell carcinoma with prognostic implications: integration of FDG PET and genomic analysis. EJNMMI Res 2019; 9:97. [PMID: 31754877 PMCID: PMC6872695 DOI: 10.1186/s13550-019-0563-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose The linkage between the genetic and phenotypic heterogeneity of the tumor has not been thoroughly evaluated. Herein, we investigated how the genetic and metabolic heterogeneity features of the tumor are associated with each other in head and neck squamous cell carcinoma (HNSC). We further assessed the prognostic significance of those features. Methods The mutant-allele tumor heterogeneity (MATH) score (n = 508), a genetic heterogeneity feature, and tumor glycolysis feature (GlycoS) (n = 503) were obtained from the HNSC dataset in the cancer genome atlas (TCGA). We identified matching patients (n = 33) who underwent 18F-fluorodeoxyglucose positron emission tomography (FDG PET) from the cancer imaging archive (TCIA) and obtained the following information from the primary tumor: metabolic, metabolic-volumetric, and metabolic heterogeneity features. The association between the genetic and metabolic features and their prognostic values were assessed. Results Tumor metabolic heterogeneity and metabolic-volumetric features showed a mild degree of association with MATH (n = 25, ρ = 0.4~0.5, P < 0.05 for all features). The patients with higher FDG PET features and MATH died sooner. Combination of MATH and tumor metabolic heterogeneity features showed a better stratification of prognosis than MATH. Also, higher MATH and GlycoS were associated with significantly worse overall survival (n = 499, P = 0.002 and 0.0001 for MATH and GlycoS, respectively). Furthermore, both MATH and GlycoS independently predicted overall survival after adjusting for clinicopathologic features and the other (P = 0.015 and 0.006, respectively). Conclusion Both tumor metabolic heterogeneity and metabolic-volumetric features assessed by FDG PET showed a mild degree of association with genetic heterogeneity in HNSC. Both metabolic and genetic heterogeneity features were predictive of survival and there was an additive prognostic value when the metabolic and genetic heterogeneity features were combined. Also, MATH and GlycoS were independent prognostic factors in HNSC; they can be used for precise prognostication once validated.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jeong-An Gim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Chiwoo Oh
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Seunggyun Ha
- Radiation Medicine Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul ST. Mary's Hospital, Seoul, Republic of Korea
| | - Howard Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyung-Jun Im
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Antitumor activity of the dual PI3K/MTOR inhibitor, PF-04691502, in combination with radiation in head and neck cancer. Radiother Oncol 2017; 124:504-512. [PMID: 28823407 DOI: 10.1016/j.radonc.2017.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Head and neck squamous cell carcinoma (HNSCC) remains a clinical challenge where new treatments are required to supplement the current-standard-of care of concurrent chemoradiation. The PI3K/AKT/MTOR pathway has been identified from several next generation DNA sequencing studies to be commonly altered and activated in HNSCC. MATERIAL AND METHODS In this study we investigated the activity of PF-04691502, an orally active ATP-competitive, dual inhibitor of PI3K and mTOR, in combination with a clinically relevant fractionated radiation treatment in two contrasting, well characterized, low passage HNSCC models. RESULTS We found that PF-04691502 combined synergistically with radiation in the UT-SCC-14 model derived from a primary cancer but was ineffective in the UT-SCC-15 model which was derived from a nodal recurrence. Further examination of the status of key signaling pathways combined with next generation DNA sequencing of a panel of 160 cancer-associated genes revealed crucial differences between the two models that could account for the differential effect. The UT-SCC-15 cell line was characterized by a higher mutational burden, an excess of variants in the PI3K/AKT/MTOR pathway, increased constitutive activity of PI3K, AKT1 and 2 and MTOR and an inability to inhibit key phosphorylation events in response to the treatments. CONCLUSION This study clearly highlights the promise of agents such as PF-04691502 in selected HNSCCs but also emphasizes the need for molecular characterization and alternative treatment strategies in non-responsive HNSCCs.
Collapse
|
8
|
Matrka MC, Watanabe M, Muraleedharan R, Lambert PF, Lane AN, Romick-Rosendale LE, Wells SI. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis. PLoS One 2017; 12:e0177952. [PMID: 28558019 PMCID: PMC5448751 DOI: 10.1371/journal.pone.0177952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.
Collapse
Affiliation(s)
- Marie C. Matrka
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Miki Watanabe
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ranjithmenon Muraleedharan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Andrew N. Lane
- Center for Environmental Systems Biochemistry, Dept. Toxicology and Cancer Biology and Markey Cancer Center, Lexington, Kentucky, United States of America
| | - Lindsey E. Romick-Rosendale
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|