1
|
Pascoe M, Byrne E, King A, Cooper D, Foldvary-Schaefer N, Mehra R, Lathia J, Gilbert MR, Armstrong TS. Sleep disorders associated with cranial radiation-A systematic review. Neuro Oncol 2025; 27:63-76. [PMID: 39468721 PMCID: PMC11726243 DOI: 10.1093/neuonc/noae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Radiation is the standard-of-care treatment for primary brain tumors (PBTs) but may have profound effects on sleep that have not yet been fully characterized. This systematic review aims to further our understanding of radiation therapy on the risk of development of sleep disorders in patients with PBTs, as well as potential opportunities for prevention and treatment. METHODS A systematic search of PubMed, Embase, and Web of Science was performed (last Jan 2024) with predefined inclusion (PBT patients, radiation therapy, somnolence/circadian disruption) and exclusion (reviews/abstracts/cases/chapters, non-PBT cancer, lack of radiation) criteria, yielding 267 papers initially and 38 studies included. Data extraction and analysis (descriptive statistics, individual study summary) focused on the incidence of sleep disturbances, radiation types/doses, and pharmacologic interventions. Risk of bias assessment was conducted with the Effective Public Health Practice Project's Quality Assessment Tool for Quantitative Studies. RESULTS The included 38 studies (n = 2948 patients) demonstrated a high incidence of sleep disturbances in patients with PBTs throughout radiation therapy, but primarily from the end of radiation to 6 months after. Sleep symptoms were associated with radiation (dose-dependent), and pharmacotherapies were helpful in patients with formal sleep disorder diagnoses. Terminology and incidence reporting of sleep symptoms are inconsistent, and many studies had a high risk of bias. CONCLUSIONS This systematic review highlights the ongoing challenges with sleep symptoms/disorders related to cranial irradiation treatment in the primary brain tumor population. Further investigations on the interconnectedness of sleep disturbance constructs and possible pharmacotherapies to alleviate symptoms are warranted.
Collapse
Affiliation(s)
- Maeve Pascoe
- Neuro-Oncology Branch, Center for Cancer Research, National Institutes of Health Neuro-oncology Branch, Bethesda, Maryland, USA
| | - Emma Byrne
- Neuro-Oncology Branch, Center for Cancer Research, National Institutes of Health Neuro-oncology Branch, Bethesda, Maryland, USA
| | - Amanda King
- Neuro-Oncology Branch, Center for Cancer Research, National Institutes of Health Neuro-oncology Branch, Bethesda, Maryland, USA
| | - Diane Cooper
- Division of Library Services, National Institutes of Health, National Institutes of Health Library, Bethesda, Maryland, USA
| | - Nancy Foldvary-Schaefer
- Lerner Research Institute and Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reena Mehra
- Lerner Research Institute and Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Justin Lathia
- Lerner Research Institute and Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Institutes of Health Neuro-oncology Branch, Bethesda, Maryland, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Institutes of Health Neuro-oncology Branch, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Jabehdar Maralani P, Stewart J, Hiremath S, Lawrence L, Chan R, Lau A, Chen H, Chan A, Zeng LK, Tseng CL, Myrehaug S, Soliman H, Detsky J, Heyn C, Lim Fat M, Lipsman N, Sahgal A. Relationship between apparent diffusion coefficient and survival as a function of distance from gross tumor volume on radiation planning MRI in newly diagnosed glioblastoma. J Neurooncol 2023; 164:597-605. [PMID: 37707752 DOI: 10.1007/s11060-023-04440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To investigate the changes in apparent diffusion coefficient (ADC) within incrementally-increased margins beyond the gross tumor volume (GTV) on post-operative radiation planning MRI and their prognostic utility in glioblastoma. METHODS Radiation planning MRIs of adult patients with newly diagnosed glioblastoma from 2017 to 2020 were assessed. The ADC values were normalized to contralateral normal white matter (nADC). Using 1 mm isotropic incremental margin increases from the GTV, the nADC values were calculated at each increment. Age, ECOG performance status, extent of resection and MGMT promoter methylation status were obtained from medical records. Using univariate and multivariable Cox regression analysis, association of nADC to progression-free and overall survival (PFS, OS) was assessed at each increment. RESULTS Seventy consecutive patients with mean age of 53.6 ± 10.3 years, were evaluated. The MGMT promoter was methylated in 31 (44.3%), unmethylated in 36 (51.6%) and unknown in 3 (4.3%) patients. 11 (16%) underwent biopsy, 41 (44%) subtotal resection and 18 (26%) gross total resection. For each 1 mm increase in distance from GTV, the nADC decreased by 0.16% (p < 0.0001). At 1-5 mm increment, the nADC was associated with OS (p < 0.01). From 6 to 11 mm increment the nADC was associated with OS with the p-value gradually increasing from 0.018 to 0.046. nADC was not associated with PFS. CONCLUSION The nADC values at 1-11 mm increments from the GTV margin were associated with OS. Future prospective multicenter studies are needed to validate the findings and to pave the way for the utilization of ADC for margin reduction in radiation planning.
Collapse
Affiliation(s)
- Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Shivaprakash Hiremath
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Liam Lawrence
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Rachel Chan
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Angus Lau
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Aimee Chan
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Liang K Zeng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - MaryJane Lim Fat
- Division of Neurology, Department of Medicine, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Mendoza MG, Azoulay M, Chang SD, Gibbs IC, Hancock SL, Pollom EL, Adler JR, Harraher C, Li G, Gephart MH, Nagpal S, Thomas RP, Recht LD, Jacobs LR, Modlin LA, Wynne J, Seiger K, Fujimoto D, Usoz M, von Eyben R, Choi CYH, Soltys SG. Patterns of Progression in Patients With Newly Diagnosed Glioblastoma Treated With 5-mm Margins in a Phase 1/2 Trial of 5-Fraction Stereotactic Radiosurgery With Concurrent and Adjuvant Temozolomide. Pract Radiat Oncol 2023; 13:e239-e245. [PMID: 36736621 DOI: 10.1016/j.prro.2023.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE In patients with newly diagnosed glioblastoma (GBM), tumor margins of at least 20 mm are the standard of care. We sought to determine the pattern of tumor progression in patients treated with 5-fraction stereotactic radiosurgery with 5-mm margins. METHODS AND MATERIALS Thirty adult patients with newly diagnosed GBM were treated with 5-fraction stereotactic radiosurgery in escalated doses from 25 to 40 Gy with a 5-mm total treatment margin. Progression was scored as "in-field" if the recurrent tumor was within or contiguous with the 5-mm margin, "marginal" if between 5 and 20 mm, and "distant" if entirely occurring greater than 20 mm. As geometric patterns of progression do not reflect the biologic dose received, we calculated the minimum equi-effective dose in 2 Gy (EQD2) per day at the site of tumor recurrence. Progression was "dosimetrically in-field" if covered by a minimum EQD2 per day of 48 Gy10. RESULTS From 2010 to 2016, 27 patients had progressed. Progression was in-field in 17 (63%), marginal in 3 (11%), and distant in 7 (26%) patients. In the 3 patients with marginal progression, the minimum EQD2 to recurrent tumor were 48 Gy10, 56 Gy10 (both considered dosimetrically in-field), and 7 Gy10 (ie, dosimetrically out-of-field). Median overall survival was 12.1 months for in-field (95% confidence interval [CI], 8.9-17.6), 15.1 months (95% CI, 10.1 to not achieved) for marginal, and 21.4 months (95% CI, 11.2-33.5) for distant progression. Patients with radiation necrosis were less likely to have in-field progression (1 of 7; 14%) compared with those without radiation necrosis (16 of 20; 80%; P = .003); those with necrosis had a median overall survival of 27.2 months (95% CI, 11.2-48.3) compared with 11.7 months (95% CI, 8.9-17.6) for patients with no necrosis (P = .077). CONCLUSIONS In patients with newly diagnosed GBM treated with a 5-mm clinical target volume margin, 3 patients (11%) had marginal progression within 5 to 20 mm; only 1 patient (4%) may have dosimetrically benefitted from conventional 20-mm margins. Radiation necrosis was associated with in-field tumor control.
Collapse
Affiliation(s)
- Maria G Mendoza
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Melissa Azoulay
- Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Steven D Chang
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Iris C Gibbs
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Steven L Hancock
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - John R Adler
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Ciara Harraher
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford University, Stanford, California
| | | | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, California
| | - Reena P Thomas
- Department of Neurology, Stanford University, Stanford, California
| | - Lawrence D Recht
- Department of Neurology, Stanford University, Stanford, California
| | - Lisa R Jacobs
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Leslie A Modlin
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jacob Wynne
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Kira Seiger
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Dylann Fujimoto
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Melissa Usoz
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Clara Y H Choi
- Department of Radiation Oncology, Santa Clara Valley Medical Center, San Jose, California
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
4
|
Martin JA, Hart NH, Bradford N, Naumann F, Pinkham MB, Pinkham EP, Holland JJ. Prevalence and management of sleep disturbance in adults with primary brain tumours and their caregivers: a systematic review. J Neurooncol 2023; 162:25-44. [PMID: 36864318 PMCID: PMC10049936 DOI: 10.1007/s11060-023-04270-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE The aims of this systematic review were to (1) examine the prevalence, severity, manifestations, and clinical associations/risk factors of sleep disturbance in primary brain tumour (PBT) survivors and their caregivers; and (2) determine whether there are any sleep-focused interventons reported in the literature pertaining to people affected by PBT. METHODS This systematic review was registered with the international register for systematic reviews (PROSPERO: CRD42022299332). PubMed, EMBASE, Scopus, PsychINFO, and CINAHL were electronically searched for relevant articles reporting sleep disturbance and/or interventions for managing sleep disturbance published between September 2015 and May 2022. The search strategy included terms focusing on sleep disturbance, primary brain tumours, caregivers of PBT survivors, and interventions. Two reviewers conducted the quality appraisal (JBI Critical Appraisal Tools) independently, with results compared upon completion. RESULTS 34 manuscripts were eligible for inclusion. Sleep disturbance was highly prevalent in PBT survivors with associations between sleep disturbance and some treatments (e.g., surgical resection, radiotherapy, corticosteroid use), as well as other prevalent symptoms (e.g., fatigue, drowsiness, stress, pain). While the current review was unable to find any sleep-targeted interventions, preliminary evidence suggests physical activity may elicit beneficial change on subjectively reported sleep disturbance in PBT survivors. Only one manuscript that discussed caregivers sleep disturbance was identified. CONCLUSIONS Sleep disturbance is a prevalent symptom experienced by PBT survivors, yet there is a distinct lack of sleep-focused interventions in this population. This includes a need for future research to include caregivers, with only one study identified. Future research exploring interventions directly focused on the management of sleep disturbance in the context of PBT is warranted.
Collapse
Affiliation(s)
- Jason A Martin
- Faculty of Health, School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, Australia.
| | - Nicolas H Hart
- Faculty of Health, School of Sport, Exercise and Rehabilitation, University of Technology Sydney (UTS), Sydney, Australia
- Faculty of Health, Cancer and Palliative Care Outcomes Centre, Queensland University of Technology, Brisbane, Australia
- School of Medical and Health Sciences, Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, Australia
- Institute for Health Research, The University of Notre Dame Australia, Perth, Australia
- Faculty of Health, Southern Cross University, Gold Coast, Australia
| | - Natalie Bradford
- Faculty of Health, Cancer and Palliative Care Outcomes Centre, Queensland University of Technology, Brisbane, Australia
| | - Fiona Naumann
- Faculty of Health, Southern Cross University, Gold Coast, Australia
| | - Mark B Pinkham
- Radiation Oncology, Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth P Pinkham
- Physiotherapy, Clinical Support Services, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Health, School of Nursing, Queensland University of Technology, Brisbane, Australia
| | - Justin J Holland
- Faculty of Health, School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
Harat M, Blok M, Miechowicz I, Wiatrowska I, Makarewicz K, Małkowski B. Safety and efficacy of irradiation boost based on 18F-FET-PET in patients with newly diagnosed glioblastoma. Clin Cancer Res 2022; 28:3011-3020. [PMID: 35552391 DOI: 10.1158/1078-0432.ccr-22-0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Dual timepoint FET-PET acquisition (10 and 60 minutes after FET injection) improves the definition of glioblastoma location and shape. Here we evaluated the safety and efficacy of simultaneous integrated boost (SIB) planned using dual FET-PET for postoperative glioblastoma treatment. EXPERIMENTAL DESIGN In this prospective pilot study (March 2017-December 2020), 17 patients qualified for FET-PET-based SIB intensity-modulated radiotherapy after resection. The prescribed dose was 78 and 60 Gy (2.6 and 2.0 Gy per fraction, respectively) for the FET-PET- and MR-based target volumes. Eleven patients had FET-PET within nine months to precisely define biological responses. Progression-free survival (PFS), overall survival (OS), toxicities, and radiation necrosis were evaluated. Six patients (35%) had tumors with MGMT promoter methylation. RESULTS The one- and two-year OS and PFS rates were 73% and 43% and 53% and 13%, respectively. The median OS and PFS were 24 (95%CI 9-26) and 12 (95%CI 6-18) months, respectively. Two patients developed uncontrolled seizures during radiotherapy and could not receive treatment per protocol. In patients treated per protocol, 7/15 presented with new or increased neurological deficits in the first month after irradiation. Radiation necrosis was diagnosed by MRI three months after SIB in five patients and later in another two patients. In two patients, the tumor was larger in FET-PET images after six months. CONCLUSIONS Survival outcomes using our novel dose escalation concept (total 78 Gy) were promising, even within the MGMTunmethylated subgroup. Excessive neurotoxicity was not observed, but radionecrosis was common and must be considered in future trials.
Collapse
Affiliation(s)
- Maciej Harat
- Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Maciej Blok
- Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
6
|
Health-related quality of life of glioblastoma patients receiving post-operative concomitant chemoradiotherapy plus adjuvant chemotherapy: A longitudinal study. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Rahimy E, Dudley SA, von Eyben R, Pollom EL, Seiger K, Modlin L, Wynne J, Fujimoto D, Jacobs LR, Chang SD, Gibbs IC, Hancock SL, Adler JR, Li G, Choi CYH, Soltys SG. Phase I/II Dose-Escalation Trial of 3-Fraction Stereotactic Radiosurgery for Resection Cavities From Large Brain Metastases: Health-related Quality of Life Outcomes. Am J Clin Oncol 2021; 44:588-595. [PMID: 34670228 DOI: 10.1097/coc.0000000000000868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We investigated differences in quality of life (QoL) in patients enrolled on a phase I/II dose-escalation study of 3-fraction resection cavity stereotactic radiosurgery (SRS) for large brain metastases. METHODS Eligible patients had 1 to 4 brain metastases, one of which was a resection cavity 4.2 to 33.5 cm3. European Organization for Research and Treatment of Cancer (EORTC) quality of life questionnaires core-30 (QLQ-30) and brain cancer specific module (QLQ-BN20) were obtained before SRS and at each follow-up. Nine scales were analyzed (global health status; physical, social, and emotional functioning; motor dysfunction, communication deficit, fatigue, insomnia, and future uncertainty). QoL was assessed with mixed effects models. Differences ≥10 points with q-value (adjusted P-value to account for multiplicity of testing) <0.10 were considered significant. RESULTS Between 2009 and 2014, 50 enrolled patients completed 277 QoL questionnaires. Median questionnaire follow-up was 11.8 months. After SRS, insomnia demonstrated significant improvement (q=0.032, -17.7 points at 15 mo post-SRS), and future uncertainty demonstrated significant worsening (q=0.018, +9.9 points at 15 mo post-SRS). Following intracranial progression and salvage SRS, there were no significant QoL changes. The impact of salvage whole brain radiotherapy could not be assessed because of limited data (n=4 patients). In the 28% of patients that had adverse radiation effect, QoL had significant worsening in 3 metrics (physical functioning, q=0.024, emotional functioning q=0.001, and future uncertainty, q=0.004). CONCLUSIONS For patients treated with 3-fraction SRS for large brain metastasis cavities, 8 of 9 QoL metrics were unchanged or improved after initial SRS. Intracranial tumor progression and salvage SRS did not impact QoL. Adverse radiation effect may be associated with at least short-term QoL impairments, but requires further investigation.
Collapse
Affiliation(s)
| | - Sara A Dudley
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD
| | | | | | - Kira Seiger
- Department of Dermatology, University of California, San Francisco
| | - Leslie Modlin
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NY
| | - Jacob Wynne
- Department of Radiation Oncology, Emory University, Atlanta, GA
| | - Dylann Fujimoto
- University of California, Irvine, School of Medicine, Irvine
| | - Lisa R Jacobs
- Department of Pediatrics, University of California, Los Angeles
| | | | | | | | | | - Gordon Li
- Neurosurgery, Stanford University, Stanford
| | - Clara Y H Choi
- Department of Radiation Oncology, Santa Clara Valley Medical Center, San Jose, CA
| | | |
Collapse
|
8
|
Azoulay M, Chang SD, Gibbs IC, Hancock SL, Pollom EL, Harsh GR, Adler JR, Harraher C, Li G, Hayden Gephart M, Nagpal S, Thomas RP, Recht LD, Jacobs LR, Modlin LA, Wynne J, Seiger K, Fujimoto D, Usoz M, von Eyben R, Choi CYH, Soltys SG. A phase I/II trial of 5-fraction stereotactic radiosurgery with 5-mm margins with concurrent temozolomide in newly diagnosed glioblastoma: primary outcomes. Neuro Oncol 2021; 22:1182-1189. [PMID: 32002547 DOI: 10.1093/neuonc/noaa019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We sought to determine the maximum tolerated dose (MTD) of 5-fraction stereotactic radiosurgery (SRS) with 5-mm margins delivered with concurrent temozolomide in newly diagnosed glioblastoma (GBM). METHODS We enrolled adult patients with newly diagnosed glioblastoma to 5 days of SRS in a 3 + 3 design on 4 escalating dose levels: 25, 30, 35, and 40 Gy. Dose limiting toxicity (DLT) was defined as Common Terminology Criteria for Adverse Events grades 3-5 acute or late CNS toxicity, including adverse radiation effect (ARE), the imaging correlate of radiation necrosis. RESULTS From 2010 to 2015, thirty patients were enrolled. The median age was 66 years (range, 51-86 y). The median target volume was 60 cm3 (range, 14.7-137.3 cm3). DLT occurred in 2 patients: one for posttreatment cerebral edema and progressive disease at 3 weeks (grade 4, dose 40 Gy); another patient died 1.5 weeks following SRS from postoperative complications (grade 5, dose 40 Gy). Late grades 1-2 ARE occurred in 8 patients at a median of 7.6 months (range 3.2-12.6 mo). No grades 3-5 ARE occurred. With a median follow-up of 13.8 months (range 1.7-64.4 mo), the median survival times were: progression-free survival, 8.2 months (95% CI: 4.6-10.5); overall survival, 14.8 months (95% CI: 10.9-19.9); O6-methylguanine-DNA methyltransferase hypermethylated, 19.9 months (95% CI: 10.5-33.5) versus 11.3 months (95% CI: 8.9-17.6) for no/unknown hypermethylation (P = 0.03), and 27.2 months (95% CI: 11.2-48.3) if late ARE occurred versus 11.7 months (95% CI: 8.9-17.6) for no ARE (P = 0.08). CONCLUSIONS The per-protocol MTD of 5-fraction SRS with 5-mm margins with concurrent temozolomide was 40 Gy in 5 fractions. ARE was limited to grades 1-2 and did not statistically impact survival.
Collapse
Affiliation(s)
- Melissa Azoulay
- Department of Radiation Oncology, Stanford University, Stanford, California, USA.,Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Steven D Chang
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Iris C Gibbs
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Steven L Hancock
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Griffith R Harsh
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - John R Adler
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Ciara Harraher
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | | | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Reena P Thomas
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Lawrence D Recht
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Lisa R Jacobs
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Leslie A Modlin
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Jacob Wynne
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Kira Seiger
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dylann Fujimoto
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Melissa Usoz
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Clara Y H Choi
- Department of Radiation Oncology, Stanford University, Stanford, California, USA.,Department of Radiation Oncology, Santa Clara Valley Medical Center, San Jose, California, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Hainfeld JF, Ridwan SM, Stanishevskiy FY, Smilowitz HM. Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci Rep 2020; 10:15627. [PMID: 32973267 PMCID: PMC7515899 DOI: 10.1038/s41598-020-72268-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of breast cancers metastasize to the brain; those widely disseminated are fatal typically in 3-4 months, even with the best available treatments, including surgery, drugs, and radiotherapy. To address this dire situation, we have developed iodine nanoparticles (INPs) that target brain tumors after intravenous (IV) injection. The iodine then absorbs X-rays during radiotherapy (RT), creating free radicals and local tumor damage, effectively boosting the local RT dose at the tumor. Efficacy was tested using the very aggressive human triple negative breast cancer (TNBC, MDA-MB-231 cells) growing in the brains of athymic nude mice. With a well-tolerated non-toxic IV dose of the INPs (7 g iodine/kg body weight), tumors showed a heavily iodinated rim surrounding the tumor having an average uptake of 2.9% iodine by weight, with uptake peaks at 4.5%. This is calculated to provide a dose enhancement factor of approximately 5.5 (peaks at 8.0), the highest ever reported for any radiation-enhancing agents. With RT alone (15 Gy, single dose), all animals died by 72 days; INP pretreatment resulted in longer-term remissions with 40% of mice surviving 150 days and 30% surviving > 280 days.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc., 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | | | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| |
Collapse
|
10
|
Repolarized macrophages, induced by intermediate stereotactic dose radiotherapy and immune checkpoint blockade, contribute to long-term survival in glioma-bearing mice. J Neurooncol 2020; 147:547-555. [PMID: 32215786 DOI: 10.1007/s11060-020-03459-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is a deadly brain tumor with a short expected median survival, despite current standard-of-care treatment. We explored the combination of intermediate stereotactic dose radiation therapy and immune checkpoint inhibitor therapy as a novel treatment strategy for GBM. METHODS Glioma xenograft-bearing mice were exposed to high dose brain-directed radiation (10 Gy single exposure) as well as mouse anti-PD-1 antibody. The tumor-bearing animals were randomized to four groups: no treatment, radiation alone, anti-PD-1 alone, and radiation + anti-PD-1. Survival was followed, and tumor growth was monitored using MRI. Immunohistochemistry, gene expression arrays, and flow cytometry were used to characterize the treatment-induced effects. Pharmacologic inhibitors of T-lymphocytes, bone marrow derived macrophages, and microglia were used to assess the respective roles of different immune populations in observed treatment effects. RESULTS We found the combined treatment with high dose radiation and immunotherapy to be highly effective with a 75% complete pathologic response and dramatically improved survival outcomes. We found both CD8+ T-cells and macrophages to be necessary for the full effect of combined therapy, with T lymphocytes appearing to play a role early on and macrophages mediating a later phase of the combined treatment effect. Radiation treatment appeared to trigger macrophage repolarization, increasing M1/M2 ratio. CONCLUSIONS These findings point to a novel immunologic mechanism underlying the interaction between radiotherapy and immunotherapy. They also provide the basis for clinical investigation of immunogenic dose radiation in combination with immune checkpoint blockade as a potential treatment approach for newly diagnosed high grade gliomas.
Collapse
|
11
|
Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities besides Surgery. J Cancer 2019; 10:4793-4806. [PMID: 31598150 PMCID: PMC6775524 DOI: 10.7150/jca.32475] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is commonly known as the most aggressive primary CNS tumor in adults. The mean survival of it is 14 to 15 months, following the standard therapy from surgery, chemotherapy, to radiotherapy. Efforts in recent decades have brought many novel therapies to light, however, with limitations. In this paper, authors reviewed current treatments for GBM besides surgery. In the past decades, only radiotherapy, temozolomide (TMZ), and tumor treating field (TTF) were approved by FDA. Though promising in preclinical experiments, therapeutic effects of other novel treatments including BNCT, anti-angiogenic therapy, immunotherapy, epigenetic therapy, oncolytic virus therapy, and gene therapy are still either uncertain or discouraging in clinical results. In this review, we went through current clinical trials, underlying causes, and future therapy designs to present neurosurgeons and researchers a sketch of this field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ruizhe Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuanqiang Yu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tianmeng Luo
- Department of Medical Affairs, Xiangya Hospital, Central South University, Chang Sha, Hunan Province, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University Changsha, China
| |
Collapse
|
12
|
Kosztyla R, Raman S, Moiseenko V, Reinsberg SA, Toyota B, Nichol A. Dose-painted volumetric modulated arc therapy of high-grade glioma using 3,4-dihydroxy-6-[ 18F]fluoro-L-phenylalanine positron emission tomography. Br J Radiol 2019; 92:20180901. [PMID: 31017449 DOI: 10.1259/bjr.20180901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To determine whether dose painting with volumetric modulated arc therapy for high-grade gliomas using 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-FDOPA) positron emission tomography (PET) could achieve dose-escalated coverage of biological target volumes (BTVs) without increasing the dose to cranial organs at risk (OARs). METHODS 10 patients with high-grade gliomas underwent CT, MRI, and 18F-FDOPA PET/CT images for post-operative radiation therapy planning. Two volumetric modulated arc therapy plans were retrospectively generated for each patient: a conventional plan with 60 Gy in 30 fractions to the planning target volume delineated on MRI and a dose-escalated plan with a maximum dose of 80 Gy in 30 fractions to BTVs. BTVs were created by thresholding 18F-FDOPA PET/CT uptake using a linear quadratic model that assumed tracer uptake was linearly related to tumour cell density. The maximum doses and equivalent uniform doses of OARs were compared. RESULTS The median volume of the planning target volume receiving at least 95% of the prescribed dose (V 95%) was 99.6% with and 99.5% without dose painting. The median V 95% was >99.2% for BTVs. The maximum doses and equivalent uniform doses to the OARs did not differ significantly between the conventional and dose-painted plans. CONCLUSION Using commercially available treatment planning software, dose painting for high-grade gliomas was feasible with good BTV coverage and no significant change in the dose to OARs. ADVANCES IN KNOWLEDGE A novel treatment planning strategy was used to achieve dose painting for gliomas with BTVs obtained from 18F-FDOPA PET/CT using a radiobiological model.
Collapse
Affiliation(s)
- Robert Kosztyla
- 1 Department of Medical Physics, BC Cancer - Vancouver , Vancouver, British Columbia , Canada.,2 Department of Physics and Astronomy, University of British Columbia , Vancouver, British Columbia , Canada
| | - Srinivas Raman
- 3 Department of Radiation Oncology, BC Cancer - Vancouver , Vancouver, British Columbia , Canada
| | - Vitali Moiseenko
- 4 Department of Radiation Medicine and Applied Sciences, University of California San Diego , La Jolla, California , US
| | - Stefan A Reinsberg
- 2 Department of Physics and Astronomy, University of British Columbia , Vancouver, British Columbia , Canada
| | - Brian Toyota
- 5 Division of Neurosurgery, University of British Columbia , Vancouver, British Columbia , Canada
| | - Alan Nichol
- 3 Department of Radiation Oncology, BC Cancer - Vancouver , Vancouver, British Columbia , Canada
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with a median survival of less than 2 years despite the standard of care treatment of 6 weeks of chemoradiotherapy. We review the data investigating hypofractionated radiotherapy (HFRT) in the treatment of newly diagnosed GBM. RECENT FINDINGS Investigators have explored alternative radiotherapy strategies that shorten treatment duration with the goal of similar or improved survival while minimizing toxicity. HFRT over 1-3 weeks is already a standard of care for patients with advanced age or poor performance status. For young patients with good performance status, HFRT holds the promise of radiobiologically escalating the dose and potentially improving local control while maintaining quality of life. Through the use of shorter radiotherapy fractionation regimens coupled with novel systemic agents, improved outcomes for patients with GBM may be achieved.
Collapse
|