1
|
García-Alvarez JA, Paulson E, Kainz K, Puckett L, Shukla ME, Zhu F, Gore E, Tai A. Radiobiologically equivalent deformable dose mapping for re-irradiation planning: Implementation, robustness, and dosimetric benefits. Radiother Oncol 2025; 205:110741. [PMID: 39855600 DOI: 10.1016/j.radonc.2025.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Re-irradiation in radiotherapy presents complexities that require dedicated tools to generate optimal re-treatment plans. This study presents a robust workflow that considers fractionation size, anatomical variations between treatments, and cumulative bias doses to improve the re-irradiation planning process. METHODS The workflow was automated in MIM® Software and the Elekta© Monaco® treatment planning system. Prior treatment doses are deformably mapped, converted to equivalent dose in 2 Gy fractions (EQD2), and accumulated onto the re-treatment planning CT. Two MIM extensions were developed to estimate voxel-wise dose mapping uncertainties and to convert the cumulative EQD2 into a physical dose distribution equivalent to the re-treatment fractionation size. This dose distribution is used in Monaco as bias to optimize the re-irradiation plan. The workflow was retrospectively tested with data from 14 patients, and the outcomes were compared to the manually optimized plans (MOPs) clinically utilized. RESULTS Bias-dose guided plans (BDGPs) demonstrated a median reduction of the critical organ at risk (OAR) cumulative EQD2 metrics of 240 cGy (range: 1909 cGy, -187 cGy, p = 0.002). BDGPs allowed higher target coverage in cases where the MOP approach implied dose de-escalation of the target. The dose mapping uncertainties resulted in OAR cumulative EQD2 metrics increments ranging from 10 cGy to 730 cGy. CONCLUSIONS We introduced a re-irradiation planning workflow using commercially available software that accounts for anatomic and fraction size variations and improves planning efficiency. Employing voxel-level bias dose guidance demonstrated OAR-sparing benefits while maximizing prescription dose coverage to targets. The workflow's robustness tools aid informed clinical decision-making.
Collapse
Affiliation(s)
- Juan A García-Alvarez
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Kristofer Kainz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Lindsay Puckett
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Monica E Shukla
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Fan Zhu
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Elizabeth Gore
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
2
|
Li Y, Guan X, Hu C. Impact of dose volume parameters and clinical characteristics on radiation-induced acute oral mucositis for head and neck cancer patients treated with carbon-ion radiotherapy dose volume outcome analysis. Strahlenther Onkol 2024; 200:895-902. [PMID: 38926185 DOI: 10.1007/s00066-024-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To assess the predictive value of different dosimetric parameters for acute radiation oral mucositis (ROM) in head and neck cancer (HNCs) patients treated with carbon-ion radiotherapy (CIRT). METHODS 44 patients with HNCs treated with CIRT were evaluated for acute ROM which was defined as severe when the score ≥3 (acute ROM was scored prospectively using the Radiation Therapy Oncology Group (RTOG) score system). Predictive dosimetric factors were identified by using univariate and multivariate analysis. RESULTS Male gender, weight loss >5%, and total dose/fractions were related factors to severe ROM. In multivariate analysis, grade ≥3 ROM was significantly related to the Dmax, D10, D15, and D20 (P < 0.05, respectively). As the receiver operating characteristics (ROC) curve shows, the area under the curve (AUC) for D10 was 0.77 (p = 0.003), and the cutoff value was 51.06 Gy (RBE); The AUC for D15 was 0.75 (p = 0.006), and the cutoff value was 42.82 Gy (RBE); The AUC for D20 was 0.74 (p = 0.009), and the cutoff value was 30.45 Gy (RBE); The AUC for Dmax was 0.81 (p < 0.001), and the cutoff value was 69.33 Gy (RBE). CONCLUSION Male gender, weight loss, and total dose/fractions were significantly association with ROM. Dmax, D10, D15 and D20 were identified as the most valuable predictor and we suggest a Dmax limit of 69.33 Gy (RBE), D10 limit of 51.06 Gy (RBE), D15 limit of 42.82 Gy (RBE), and D20 limit of 30.45 Gy (RBE) and for oral mucosa.
Collapse
Affiliation(s)
- Yujiao Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Xiyin Guan
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Shanghai, China.
- Shanghai Proton and Heavy Ion Center, 4365 Kangxin Rd, Pudong, 201321, Shanghai, China.
| |
Collapse
|
3
|
Hardcastle N, Vasquez Osorio E, Jackson A, Mayo C, Aarberg AE, Ayadi M, Belosi F, Ceylan C, Davey A, Dupuis P, Handley JC, Hemminger T, Hoffmann L, Kelly C, Michailidou C, Muscat S, Murrell DH, Pérez-Alija J, Palmer C, Placidi L, Popovic M, Rønde HS, Selby A, Skopidou T, Solomou N, Stroom J, Thompson C, West NS, Zaila A, Appelt AL. Multi-centre evaluation of variation in cumulative dose assessment in reirradiation scenarios. Radiother Oncol 2024; 194:110184. [PMID: 38453055 DOI: 10.1016/j.radonc.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Safe reirradiation relies on assessment of cumulative doses to organs at risk (OARs) across multiple treatments. Different clinical pathways can result in inconsistent estimates. Here, we quantified the consistency of cumulative dose to OARs across multi-centre clinical pathways. MATERIAL AND METHODS We provided DICOM planning CT, structures and doses for two reirradiation cases: head & neck (HN) and lung. Participants followed their standard pathway to assess the cumulative physical and EQD2 doses (with provided α/β values), and submitted DVH metrics and a description of their pathways. Participants could also submit physical dose distributions from Course 1 mapped onto the CT of Course 2 using their best available tools. To assess isolated impact of image registrations, a single observer accumulated each submitted spatially mapped physical dose for every participating centre. RESULTS Cumulative dose assessment was performed by 24 participants. Pathways included rigid (n = 15), or deformable (n = 5) image registration-based 3D dose summation, visual inspection of isodose line contours (n = 1), or summation of dose metrics extracted from each course (n = 3). Largest variations were observed in near-maximum cumulative doses (25.4 - 41.8 Gy for HN, 2.4 - 33.8 Gy for lung OARs), with lower variations in volume/dose metrics to large organs. A standardised process involving spatial mapping of the first course dose to the second course CT followed by summation improved consistency for most near-maximum dose metrics in both cases. CONCLUSION Large variations highlight the uncertainty in reporting cumulative doses in reirradiation scenarios, with implications for outcome analysis and understanding of published doses. Using a standardised workflow potentially including spatially mapped doses improves consistency in determination of accumulated dose in reirradiation scenarios.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | | | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles Mayo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Myriam Ayadi
- Department of Radiation Oncology, Physics Unit, Centre Léon Bérard, Lyon, France
| | - Francesca Belosi
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Cemile Ceylan
- Department of Radiation Oncology, Istanbul Oncology Hospital, Istanbul, Turkey; Department of Medical Physics, University of Yeditepe, Istanbul, Turkey
| | - Angela Davey
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Pauline Dupuis
- Department of Radiation Oncology, Physics Unit, Centre Léon Bérard, Lyon, France
| | | | | | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Colin Kelly
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | | | - Sarah Muscat
- Department of Medical Physics, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Donna H Murrell
- Department of Oncology, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Jaime Pérez-Alija
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Catherine Palmer
- Department of Radiotherapy Physics, Norfolk and Norwich University Hospitals, NHS Foundation Trust, UK
| | - Lorenzo Placidi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marija Popovic
- Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Heidi S Rønde
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Adam Selby
- South West Wales Cancer Centre, Swansea, Wales, UK
| | | | - Natasa Solomou
- Department of Radiotherapy Physics, Norfolk and Norwich University Hospitals, NHS Foundation Trust, UK
| | - Joep Stroom
- Department of Radiation Oncology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Ali Zaila
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Ane L Appelt
- Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Milano MT, Doucette C, Mavroidis P, Yorke E, Ryckman J, Mahadevan A, Kapitanova I, Kong FMS, Grimm J, Marks LB. Hypofractionated Stereotactic Radiation Therapy Dosimetric Tolerances for the Inferior Aspect of the Brachial Plexus: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 118:931-943. [PMID: 36682981 PMCID: PMC11325459 DOI: 10.1016/j.ijrobp.2022.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 01/22/2023]
Abstract
We sought to systematically review and summarize dosimetric factors associated with radiation-induced brachial plexopathy (RIBP) after stereotactic body radiation therapy (SBRT) or hypofractionated image guided radiation therapy (HIGRT). From published studies identified from searches of PubMed and Embase databases, data quantifying risks of RIBP after 1- to 10-fraction SBRT/HIGRT were extracted and summarized. Published studies have reported <10% risks of RIBP with maximum doses (Dmax) to the inferior aspect of the brachial plexus of 32 Gy in 5 fractions and 25 Gy in 3 fractions. For 10-fraction HIGRT, risks of RIBP appear to be low with Dmax < 40 to 50 Gy. For a given dose value, greater risks are anticipated with point volume-based metrics (ie, D0.03-0.035cc: minimum dose to hottest 0.03-0.035 cc) versus Dmax. With SBRT/HIGRT, there were insufficient published data to predict risks of RIBP relative to brachial plexus dose-volume exposure. Minimizing maximum doses and possibly volume exposure of the brachial plexus can reduce risks of RIBP after SBRT/HIGRT. Further study is needed to better understand the effect of volume exposure on the brachial plexus and whether there are location-specific susceptibilities along or within the brachial plexus structure.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | | | - Panayiotis Mavroidis
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jeff Ryckman
- Department of Radiation Oncology, West Virginia University, Parkersburg, West Virginia
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Irina Kapitanova
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital/Li Ka Shing School of Medicine, Shenzhen/Hong Kong, China
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Choi JI, McCormick B, Park P, Millar M, Walker K, Tung CC, Huang S, Florio P, Chen CC, Lozano A, Hanlon AL, Fox J, Xu AJ, Zinovoy M, Mueller B, Bakst R, LaPlant Q, Braunstein LZ, Khan AJ, Powell SN, Cahlon O. Comparative Evaluation of Proton Therapy and Volumetric Modulated Arc Therapy for Brachial Plexus Sparing in the Comprehensive Reirradiation of High-Risk Recurrent Breast Cancer. Adv Radiat Oncol 2024; 9:101355. [PMID: 38405315 PMCID: PMC10885571 DOI: 10.1016/j.adro.2023.101355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/07/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Recurrent or new primary breast cancer requiring comprehensive regional nodal irradiation after prior radiation therapy (RT) to the supraclavicular area and upper axilla is challenging due to cumulative brachial plexus (BP) dose tolerance. We assessed BP dose sparing achieved with pencil beam scanning proton therapy (PBS-PT) and photon volumetric modulated arc therapy (VMAT). Methods and Materials In an institutional review board-approved planning study, all patients with ipsilateral recurrent breast cancer treated with PBS-PT re-RT (PBT1) with at least partial BP overlap from prior photon RT were identified. Comparative VMAT plans (XRT1) using matched BP dose constraints were developed. A second pair of proton (PBT2) and VMAT (XRT2) plans using standardized target volumes were created, applying uniform prescription dose of 50.4 per 1.8 Gy and a maximum BP constraint <25 Gy. Incidence of brachial plexopathy was also assessed. Results Ten consecutive patients were identified. Median time between RT courses was 48 months (15-276). Median first, second, and cumulative RT doses were 50.4 Gy (range, 42.6-60.0), 50.4 Gy relative biologic effectiveness (RBE) (45.0-64.4), and 102.4 Gy (RBE) (95.0-120.0), respectively. Median follow-up was 15 months (5-33) and 18 months for living patients (11-33) Mean BP max was 37.5 Gy (RBE) for PBT1 and 36.9 Gy for XRT1. Target volume coverage of V85% (volume receiving 85% of prescription dose), V90%, and V95% were numerically lower for XRT1 versus PBT1. Similarly, axilla I-III and supraclavicular area coverage were significantly higher for PBT2 than XRT2 at dose levels of V55%, V65%, V75%, V85%, and V95%. Only axilla I V55% did not reach significance (P = .06) favoring PBS-PT. Two patients with high cumulative BPmax (95.2 Gy [RBE], 101.6 Gy [RBE]) developed brachial plexopathy symptoms with ulnar nerve distribution neuropathy without pain or weakness (1 of 2 had symptom resolution after 6 months without intervention). Conclusions PBS-PT improved BP sparing and target volume coverage versus VMAT. For patients requiring comprehensive re-RT for high-risk, nonmetastatic breast cancer recurrence with BP overlap and reasonable expectation for prolonged life expectancy, PBT may be the preferred treatment modality.
Collapse
Affiliation(s)
- J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- New York Proton Center, New York, New York
| | - Beryl McCormick
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Park
- New York Proton Center, New York, New York
| | | | - Katherine Walker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Peter Florio
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Alicia Lozano
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, Virginia
| | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, Virginia
| | - Jana Fox
- New York Proton Center, New York, New York
- Department of Radiation Oncology, Montefiore Medical Center
| | - Amy J. Xu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Zinovoy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Boris Mueller
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Bakst
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Mt. Sinai Health System, New York, New York
| | - Quincey LaPlant
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lior Z. Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J. Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Oren Cahlon
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, New York University Langone, New York, New York
| |
Collapse
|
6
|
Niu GM, Gao MM, Wang XF, Dong Y, Zhang YF, Wang HH, Guan Y, Cheng ZY, Zhao SZ, Song YC, Tao Z, Zhao LJ, Meng MB, Spring Kong FM, Yuan ZY. Dosimetric analysis of brachial plexopathy after stereotactic body radiotherapy: Significance of organ delineation. Radiother Oncol 2024; 190:110023. [PMID: 37995850 DOI: 10.1016/j.radonc.2023.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES Examine the significance of contouring the brachial plexus (BP) for toxicity estimation and select metrics for predicting radiation-induced brachial plexopathy (RIBP) after stereotactic body radiotherapy. MATERIALS AND METHODS Patients with planning target volume (PTV) ≤ 2 cm from the BP were eligible. The BP was contoured primarily according to the RTOG 1106 atlas, while subclavian-axillary veins (SAV) were contoured according to RTOG 0236. Apical PTVs were classified as anterior (PTV-A) or posterior (PTV-B) PTVs. Variables predicting grade 2 or higher RIBP (RIBP2) were selected through least absolute shrinkage and selection operator regression and logistic regression. RESULTS Among 137 patients with 140 BPs (median follow-up, 32.1 months), 11 experienced RIBP2. For patients with RIBP2, the maximum physical dose to the BP (BP-Dmax) was 46.5 Gy (median; range, 35.7 to 60.7 Gy). Of these patients, 54.5 % (6/11) satisfied the RTOG limits when using SAV delineation; among them, 83.3 % (5/6) had PTV-B. For patients with PTV-B, the maximum physical dose to SAV (SAV-Dmax) was 11.2 Gy (median) lower than BP-Dmax. Maximum and 0.3 cc biologically effective doses to the BP based on the linear-quadratic-linear model (BP-BEDmax LQL and BP-BED0.3cc LQL, α/β = 3) were selected as predictive variables with thresholds of 118 and 73 Gy, respectively. CONCLUSION Contouring SAV may significantly underestimate the RIBP2 risk in dosimetry, especially for patients with PTV-B. BP contouring indicated BP-BED0.3cc LQL and BP-BEDmax LQL as potential predictors of RIBP2.
Collapse
Affiliation(s)
- Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Miao-Miao Gao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yi-Fan Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Nankai University School of Medicine, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yong Guan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Ze-Yuan Cheng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Shu-Zhou Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yong-Chun Song
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhen Tao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Lu-Jun Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, HKU Shenzhen Hospital, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Shenzhen, Hong Kong, China.
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
7
|
Mokhtech M, Knowlton CA. Bilateral Breast Cancer With Contralateral Axillary Metastasis Warrants Aggressive Treatment: Let's Go for It! Int J Radiat Oncol Biol Phys 2023; 117:527-528. [PMID: 37739602 DOI: 10.1016/j.ijrobp.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Meriem Mokhtech
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Christin A Knowlton
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Aristei C, Kaidar-Person O, Boersma L, Leonardi MC, Offersen B, Franco P, Arenas M, Bourgier C, Pfeffer R, Kouloulias V, Bölükbaşı Y, Meattini I, Coles C, Luis AM, Masiello V, Palumbo I, Morganti AG, Perrucci E, Tombolini V, Krengli M, Marazzi F, Trigo L, Borghesi S, Ciabattoni A, Ratoša I, Valentini V, Poortmans P. The 2022 Assisi Think Tank Meeting: White paper on optimising radiation therapy for breast cancer. Crit Rev Oncol Hematol 2023; 187:104035. [PMID: 37244324 DOI: 10.1016/j.critrevonc.2023.104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
The present white paper, referring to the 4th Assisi Think Tank Meeting on breast cancer, reviews state-of-the-art data, on-going studies and research proposals. <70% agreement in an online questionnaire identified the following clinical challenges: 1: Nodal RT in patients who have a) 1-2 positive sentinel nodes without ALND (axillary lymph node dissection); b) cN1 disease transformed into ypN0 by primary systemic therapy and c) 1-3 positive nodes after mastectomy and ALND. 2. The optimal combination of RT and immunotherapy (IT), patient selection, IT-RT timing, and RT optimal dose, fractionation and target volume. Most experts agreed that RT- IT combination does not enhance toxicity. 3: Re-irradiation for local relapse converged on the use of partial breast irradiation after second breast conserving surgery. Hyperthermia aroused support but is not widely available. Further studies are required to finetune best practice, especially given the increasing use of re-irradiation.
Collapse
Affiliation(s)
- C Aristei
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy.
| | - O Kaidar-Person
- Breast Radiation Unit, Radiation Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - L Boersma
- Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M C Leonardi
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - B Offersen
- Department of Experimental Clinical Oncology, Department of Oncology, Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - P Franco
- Depatment of Translational Medicine, University of Eastern Piedmont and Department of Radiation Oncology, 'Maggiore della Carita`' University Hospital, Novara, Italy
| | - M Arenas
- Universitat Rovira I Virgili, Radiation Oncology Department, Hospital Universitari Sant Hoan de Reus, IISPV, Spain
| | - C Bourgier
- Radiation Oncology, ICM-Val d' Aurelle, Univ Montpellier, Montpellier, France
| | - R Pfeffer
- Oncology Institute, Assuta Medical Center, Tel Aviv and Ben Gurion University Medical School, Israel
| | - V Kouloulias
- 2nd Department of Radiology, Radiotherapy Unit, Medical School, National and Kapodistrian University of Athens, Greece
| | - Y Bölükbaşı
- Koc University, Faculty of Medicine, Department of Radiation Oncology, Istanbul, Turkey
| | - I Meattini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence & Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - C Coles
- Department of Oncology, University of Cambridge, UK
| | - A Montero Luis
- Department of Radiation Oncology, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - V Masiello
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - I Palumbo
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - A G Morganti
- DIMES, Alma Mater Studiorum Bologna University, Bologna, Italy; Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum Bologna University, Bologna, Italy
| | - E Perrucci
- Radiation Oncology Section, Perugia General Hospital, Perugia, Italy
| | - V Tombolini
- Radiation Oncology, Department of Radiological, Oncological and Pathological Science, University "La Sapienza", Roma, Italy
| | - M Krengli
- DISCOG, Università di Padova e Istituto Oncologico Veneto - IRCCS, Italy
| | - F Marazzi
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - L Trigo
- Service of Brachytherapy, Department of Image and Radioncology, Instituto Português Oncologia Porto Francisco Gentil E.P.E., Portugal
| | - S Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - A Ciabattoni
- Department of Radiation Oncology, San Filippo Neri Hospital, ASL Rome 1, Rome, Italy
| | - I Ratoša
- Division of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - V Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore e Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - P Poortmans
- University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Department of Radiation Oncology, Iridium Kankernetwerk, Antwerp, Belgium, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
9
|
Kim JK, Hardy-Abeloos C, Purswani JM, Kamen E, Concert CM, Duckworth T, Tam M, Haas J, Rybstein M, Vaezi A, Jacobson A, Hu KS. Repeat re-irradiation with interstitial HDR-brachytherapy for an in-field isolated nodal recurrence in a patient with HPV-positive squamous cell carcinoma of the head and neck. Brachytherapy 2023; 22:503-511. [PMID: 36593130 DOI: 10.1016/j.brachy.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Locoregionally recurrent head and neck cancer is a complex clinical scenario that often requires multimodality treatment. These patients have often previously received definitive treatment with a combination of surgery, radiation therapy, and systemic therapy, which can make further management difficult. A second isolated locoregional failure is rare and clinicians are faced with a challenge to optimize disease control while minimizing treatment-related toxicity. METHODS AND MATERIALS In this report, we present the diagnosis, management, and outcomes of a patient with an isolated locoregional recurrence who was previously treated with two courses of radiation. The patient was treated with a second course of reirradiation using interstitial brachytherapy as well as a discussion regarding patient selection and optimal management for recurrent head and neck cancer. RESULTS Repeat reirradiation using interstitial HDR-brachytherapy with the use of an alloderm spacer was successfully delivered to the patient for an in-field right neck nodal recurrence. He received a total EQD2/BED dose of 127.70/153.24 Gy. At 1-year followup, the patient was without evidence of recurrent disease or new significant side effects. CONCLUSION Recurrent head and neck cancer should be managed with a multidisciplinary approach given the complex clinical scenario. Reirradiation is a commonly used salvage measure for recurrent head and neck cancer that requires careful planning and patient selection due to prior treatment-related effects and dose constraints. We reported a case of a second course of reirradiation using interstitial HDR-brachytherapy for locoregionally recurrent head and neck cancer and showed no recurrence of disease or worsening long term side effects at 1 year.
Collapse
Affiliation(s)
- Joseph K Kim
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY.
| | - Camille Hardy-Abeloos
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY
| | - Juhi M Purswani
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY
| | - Emily Kamen
- Department of Otolaryngology- Head and Neck Surgery, NYU Langone Health, New York, NY
| | - Catherine M Concert
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY
| | - Tamara Duckworth
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY
| | - Moses Tam
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY
| | - Jonathan Haas
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY
| | | | - Alec Vaezi
- Department of Otolaryngology- Head and Neck Surgery, NYU Langone Health, New York, NY
| | - Adam Jacobson
- Department of Otolaryngology- Head and Neck Surgery, NYU Langone Health, New York, NY
| | - Kenneth S Hu
- Department of Radiation Oncology, NYU Langone Perlmutter Cancer Center, New York, NY
| |
Collapse
|
10
|
Management of the brachial plexus in head and neck cancer. Curr Opin Otolaryngol Head Neck Surg 2023; 31:105-110. [PMID: 36912222 DOI: 10.1097/moo.0000000000000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW The brachial plexus is an important anatomical structure that is regularly encountered by head and neck surgeons and radiation oncologists. Surgical or radiation-induced brachial plexus injury have great impact on arm function and quality of life. Anatomical variations and management of the brachial plexus in head and neck cancer treatment are discussed. RECENT FINDINGS The brachial plexus consists of spinal roots from C5-C8 and T1. The most prevalent anatomical variations in brachial plexus anatomy include the prefixed brachial plexus (additional contribution from C4) in 11%, the roots of C5 and C6 piercing the belly of the anterior scalene muscle in 6.8%, and presence of the scalenus minimus muscle in 4.1-46%. Due to its location, the brachial plexus is at risk of inadvertent division or neuropraxia during surgical procedures such as neck dissection or robot-assisted transaxillary thyroid surgery (RATS). In case of inadvertent division, nerve reconstruction surgery is warranted and may lead to improved function. The risk of radiation-induced brachial plexus injury is dose-dependent and occurs in approximately 12-22%. Currently, no successful treatment options exist for radiation-induced injury. SUMMARY Knowledge of anatomical variations is important for head and neck surgeons to minimize the risk of brachial plexus injury. Limiting radiation therapy dose to the brachial plexus is desirable to decrease the risk of brachial plexus injury.
Collapse
|
11
|
Janopaul-Naylor JR, Cao Y, McCall NS, Switchenko JM, Tian S, Chen H, Stokes WA, Kesarwala AH, McDonald MW, Shelton JW, Bradley JD, Higgins KA. Definitive intensity modulated proton re-irradiation for lung cancer in the immunotherapy era. Front Oncol 2023; 12:1074675. [PMID: 36733369 PMCID: PMC9888533 DOI: 10.3389/fonc.2022.1074675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction As immunotherapy has improved distant metastasis-free survival (DMFS) in Non-Small Cell Lung Cancer (NSCLC), isolated locoregional recurrences have increased. However, management of locoregional recurrences can be challenging. We report our institutional experience with definitive intent re-irradiation using Intensity Modulated Proton Therapy (IMPT). Method Retrospective cohort study of recurrent or second primary NSCLC or LS-SCLC treated with IMPT. Kaplan-Meier method and log-rank test were used for time-to-event analyses. Results 22 patients were treated from 2019 to 2021. After first course of radiation (median 60 Gy, range 45-70 Gy), 45% received adjuvant immunotherapy. IMPT re-irradiation began a median of 28.2 months (8.8-172.9 months) after initial radiotherapy. The median IMPT dose was 60 GyE (44-60 GyE). 36% received concurrent chemotherapy with IMPT and 18% received immunotherapy after IMPT. The median patient's IMPT lung mean dose was 5.3 GyE (0.9-13.9 GyE) and 5 patients had cumulative esophagus max dose >100 GyE with 1-year overall survival (OS) 68%, 1-year local control 80%, 1-year progression free survival 45%, and 1-year DMFS 60%. Higher IMPT (HR 1.4; 95% CI 1.1-1.7, p=0.01) and initial radiotherapy mean lung doses (HR 1.3; 95% CI 1.0-1.6, p=0.04) were associated with worse OS. Two patients developed Grade 3 pneumonitis or dermatitis, one patient developed Grade 2 pneumonitis, and seven patients developed Grade 1 toxicity. There were no Grade 4 or 5 toxicities. Discussion Definitive IMPT re-irradiation for lung cancer can prolong disease control with limited toxicity, particularly in the immunotherapy era.
Collapse
Affiliation(s)
- James R. Janopaul-Naylor
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yichun Cao
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Neal S. McCall
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jeffrey M. Switchenko
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Rollins School of Public Health, Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States
| | - Sibo Tian
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Haijian Chen
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - William A. Stokes
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Aparna H. Kesarwala
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark W. McDonald
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph W. Shelton
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jeffrey D. Bradley
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kristin A. Higgins
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Mitchell MP. High Reward and Low Risk. Int J Radiat Oncol Biol Phys 2022; 114:183. [PMID: 36055316 DOI: 10.1016/j.ijrobp.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 11/26/2022]
|
13
|
Dunne EM. Don't Forget the Value of a Good History. Int J Radiat Oncol Biol Phys 2022; 114:184. [PMID: 36055317 DOI: 10.1016/j.ijrobp.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Emma Maria Dunne
- Department of Radiation Oncology, British Columba Cancer Agency, Vancouver Centre, British Columbia, Canada
| |
Collapse
|
14
|
[Radiation induced brachial plexopathy: Diagnosis, risk factors, principles of care]. Cancer Radiother 2022; 27:163-169. [PMID: 35995719 DOI: 10.1016/j.canrad.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
Radiation plexitis, also known as radiation-induced brachial neuropathy is a rare toxicity following axillary, breast, cervical or thoracic radiotherapy, first described in 1966 by Stoll and Andrew. Although improvements in radiotherapy techniques have greatly reduced its risk over the past seventy years, its severe form remains a dreaded complication that is difficult to manage in patients with increased life expectancy. This article summarizes the epidemiological elements, risk factors, diagnostic methods, doses and constraints to be respected in radiotherapy and the treatment strategies of radiation plexitis.
Collapse
|
15
|
Ward MC, Koyfman SA, Bakst RL, Margalit DN, Beadle BM, Beitler JJ, Chang SSW, Cooper JS, Galloway TJ, Ridge JA, Robbins JR, Sacco AG, Tsai CJ, Yom SS, Siddiqui F. Retreatment of Recurrent or Second Primary Head and Neck Cancer After Prior Radiation: Executive Summary of the American Radium Society® (ARS) Appropriate Use Criteria (AUC): Expert Panel on Radiation Oncology - Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2022; 113:759-786. [PMID: 35398456 DOI: 10.1016/j.ijrobp.2022.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Re-treatment of recurrent or second primary head and neck cancers occurring in a previously irradiated field is complex. Few guidelines exist to support practice. METHODS We performed an updated literature search of peer-reviewed journals in a systematic fashion. Search terms, key questions, and associated clinical case variants were formed by panel consensus. The literature search informed the committee during a blinded vote on the appropriateness of treatment options via the modified Delphi method. RESULTS The final number of citations retained for review was 274. These informed five key questions, which focused on patient selection, adjuvant re-irradiation, definitive re-irradiation, stereotactic body radiation (SBRT), and re-irradiation to treat non-squamous cancer. Results of the consensus voting are presented along with discussion of the most current evidence. CONCLUSIONS This provides updated evidence-based recommendations and guidelines for the re-treatment of recurrent or second primary cancer of the head and neck.
Collapse
Affiliation(s)
- Matthew C Ward
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina.
| | | | | | - Danielle N Margalit
- Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Beth M Beadle
- Stanford University School of Medicine, Palo Alto, California
| | | | | | | | | | - John A Ridge
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jared R Robbins
- University of Arizona College of Medicine Tucson, Tucson, Arizona
| | - Assuntina G Sacco
- University of California San Diego Moores Cancer Center, La Jolla, California
| | - C Jillian Tsai
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sue S Yom
- University of California, San Francisco, California
| | | |
Collapse
|
16
|
Beddok A, Calugaru V, de Marzi L, Graff P, Dumas JL, Goudjil F, Dendale R, Minsat M, Verrelle P, Buvat I, Créhange G. Clinical and technical challenges of cancer reirradiation: Words of wisdom. Crit Rev Oncol Hematol 2022; 174:103655. [PMID: 35398521 DOI: 10.1016/j.critrevonc.2022.103655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
Since the development of new radiotherapy techniques that have improved healthy tissue sparing, reirradiation (reRT) has become possible. The selection of patients eligible for reRT is complex given that it can induce severe or even fatal side effects. The first step should therefore be to assess, in the context of multidisciplinary staff meeting, the patient's physical status, the presence of sequelae resulting from the first irradiation and the best treatment option available. ReRT can be performed either curatively or palliatively to treat a cancer-related symptom that is detrimental to the patient's quality of life. The selected techniques for reRT should provide the best protection of healthy tissue. The construction of target volumes and the evaluation of constraints regarding the doses that can be used in this context have not yet been fully codified. These points raised in the literature suggest that randomized studies should be undertaken to answer pending questions.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France.
| | - Valentin Calugaru
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Ludovic de Marzi
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Pierre Graff
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Jean-Luc Dumas
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Farid Goudjil
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Rémi Dendale
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Mathieu Minsat
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Pierre Verrelle
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France
| | - Gilles Créhange
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| |
Collapse
|
17
|
Gabrys D, Kulik R, Namysł-Kaletka A. Re-irradiation for intra-thoracic tumours and extra-thoracic breast cancer: dose accumulation, evaluation of efficacy and toxicity based on a literature review. Br J Radiol 2022; 95:20201292. [PMID: 34826226 PMCID: PMC9153724 DOI: 10.1259/bjr.20201292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The improvement seen in the diagnostic procedures and treatment of thoracic tumours means that patients have an increased chance of longer overall survival. Nevertheless, we can still find those who have had a recurrence or developed a secondary cancer in the previously treated area. These patients require retreatment including re-irradiation. We have reviewed the published data on thoracic re-irradiation, which shows that some specific healthy tissues can tolerate a significant dose of irradiation and these patients benefit from aggressive treatment; however, there is a risk of damage to normal tissue under these circumstances. We analysed the literature data on re-irradiation in the areas of vertebral bodies, spinal cord, breast, lung and oesophagus. We evaluated the doses of primary and secondary radiotherapy, the treatment techniques, as well as the local control and median or overall survival in patients treated with re-radiation. The longest OS is reported in the case of re-irradiation after second breast-conserving therapy where the 5-year OS range is 81 to 100% and is shorter in patients with loco-reginal re-irradiation where the 5-y OS range is 18 to 60%. 2-year OS in patients re-irradiated for lung cancer and oesophagus cancer range from 13 to 74% and 18 to 42%, respectively. Majority grade ≥3 toxicity after second breast-conserving therapy was fibrosis up to 35%. For loco-regional breast cancer recurrences, early toxicity occurred in up to 33% of patients resulting in mostly desquamation, while late toxicity was recorded in up to 23% of patients and were mostly ulcerations. Early grade ≥3 lung toxicity developed in up to 39% of patients and up to 20% of Grade 5 hemoptysis. The most frequently observed early toxicity grade ≥3 in oesophageal cancer was oesophagitis recorded in up to 57% of patients, followed by hematological complications which was recorded in up to 50% of patients. The most common late complications included dysphagia, recorded in up to 16.7% of patients. We have shown that thoracic re-irradiation is feasible and effective in achieving local control in some patients. Re-irradiation should be performed with maximum accuracy and care using the best available treatment methods with a highly conformal, image-guided approach. Due to tremendous technological progress in the field of radiotherapy, we can deliver radiation precisely, shorten the overall treatment time and potentially reduce treatment-related toxicities.
Collapse
Affiliation(s)
- Dorota Gabrys
- Radiotherapy Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| | - Roland Kulik
- Radiotherapy Planning Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| | - Agnieszka Namysł-Kaletka
- Radiotherapy Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| |
Collapse
|
18
|
Chen K, Ding L, Shui H, Liang Y, Zhang X, Wang T, Li L, Liu S, Wu H. MiR-615 Agomir Encapsulated in Pluronic F-127 Alleviates Neuron Damage and Facilitates Function Recovery After Brachial Plexus Avulsion. J Mol Neurosci 2021; 72:136-148. [PMID: 34569008 PMCID: PMC8755699 DOI: 10.1007/s12031-021-01916-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Brachial plexus avulsion (BPA) is a devastating traumatic peripheral nerve injury complicated with paralysis of the upper extremity. We previously reported that leucine-rich repeat and immunoglobulin-like domain-containing NOGO receptor-interacting protein 1 (LINGO-1) has a potent role in inhibiting neuron survival and axonal regeneration after the central nervous system (CNS) damage and miR-615 is a potential microRNA (miRNA) negatively regulated LINGO-1. However, the effect of miR-615 in BPA remains to be elucidated. Accumulating evidence indicates that pluronic F-127 (PF-127) hydrogel could serve as a promising vehicle for miRNA encapsulation. Thus, to further explore the potential role of hydrogel-miR-615 in BPA-reimplantation, the present study established the BPA rat model and injected miR-615 agomir encapsulated by PF-127 hydrogel into the reimplantation site using a microsyringe. In this study, results indicated that hydrogel-miR-615 agomir effectively alleviated motoneuron loss by LINGO-1 inhibition, promoted musculocutaneous nerve regeneration and myelination, reduced astrocytes activation, promoted angiogenesis and attenuated peripheral amyotrophy, leading to improved motor functional rehabilitation of the upper extremity. In conclusion, our findings demonstrate that miR-615-loaded PF-127 hydrogel may represent a novel therapeutic strategy for BPA treatment.
Collapse
Affiliation(s)
- Kangzhen Chen
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Lu Ding
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hua Shui
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
| | - Yinru Liang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaomin Zhang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, 528318, China
| | - Linke Li
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Shuxian Liu
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China.
| | - Hongfu Wu
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
19
|
Hunter B, Crockett C, Faivre-Finn C, Hiley C, Salem A. Re-Irradiation of Recurrent Non-Small Cell Lung Cancer. Semin Radiat Oncol 2021; 31:124-132. [PMID: 33610269 DOI: 10.1016/j.semradonc.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Locoregional recurrence occurs in 10%-30% of non-small cell lung cancer (NSCLC) after treatment with definitive (chemo)radiotherapy. Re-irradiation is the main curative-intent treatment option for these patients; however, it represents a therapeutic challenge for thoracic radiation oncologists. Re-irradiation practices are variable worldwide with lack of agreement on the optimal dose or the cumulative maximum dose acceptable for critical organs. The role of re-irradiation in NSCLC is also not clearly defined in the era of immunotherapy. In this review, we will present published and on-going re-irradiation studies for recurrent NSCLC. We will appraise available evidence for critical organ dose constraints and provide a framework for future therapeutic approaches and trials.
Collapse
Affiliation(s)
| | - Cathryn Crockett
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Corrinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Crispin Hiley
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, Faculty of Medical Sciences, University College London, University College London Hospital, London, UK
| | - Ahmed Salem
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
20
|
Ng WT, Tsang RKY, Beitler JJ, de Bree R, Coca-Pelaz A, Eisbruch A, Guntinas-Lichius O, Lee AWM, Mäkitie AA, Mendenhall WM, Nuyts S, Rinaldo A, Robbins KT, Rodrigo JP, Silver CE, Simo R, Smee R, Strojan P, Takes RP, Ferlito A. Contemporary management of the neck in nasopharyngeal carcinoma. Head Neck 2021; 43:1949-1963. [PMID: 33780074 DOI: 10.1002/hed.26685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/12/2022] Open
Abstract
Up to 85% of the patients with nasopharyngeal carcinoma present with regional nodal metastasis. Although excellent nodal control is achieved with radiotherapy, a thorough understanding of the current TNM staging criteria and pattern of nodal spread is essential to optimize target delineation and minimize unnecessary irradiation to adjacent normal tissue. Selective nodal irradiation with sparing of the lower neck and submandibular region according to individual nodal risk is now emerging as the preferred treatment option. There has also been continual refinement in staging classification by incorporating relevant adverse nodal features. As for the uncommon occurrence of recurrent nodal metastasis after radiotherapy, surgery remains the standard of care.
Collapse
Affiliation(s)
- Wai Tong Ng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond K Y Tsang
- Department of Otorhinolaryngology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jonathan J Beitler
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA.,Department of Otolaryngology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA.,Department of Hematology/Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrés Coca-Pelaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, CIBERONC, Oviedo, Spain
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, Michigan, USA
| | | | - Anne W M Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sandra Nuyts
- Department of Radiation Oncology, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Alessandra Rinaldo
- Department of Otolaryngology, University of Udine School of Medicine, Udine, Italy
| | - K Thomas Robbins
- Department of Otolaryngology-Head and Neck Surgery, Southern Illinois University Medical School, Springfield, Illinois, USA
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, CIBERONC, Oviedo, Spain
| | - Carl E Silver
- Department of Surgery, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Ricard Simo
- Departement of Otorhinolaryngology, Head and Neck Surgery, Head and Neck and Thyroid Oncology Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, New South Wales, Australia
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Robert P Takes
- Department of Otolaryngology/Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
21
|
Nieder C, Grosu AL. Radiate Once More. Int J Radiat Oncol Biol Phys 2021; 109:314-315. [PMID: 33422272 DOI: 10.1016/j.ijrobp.2019.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
An International Expert Survey on the Indications and Practice of Radical Thoracic Reirradiation for Non-Small Cell Lung Cancer. Adv Radiat Oncol 2021; 6:100653. [PMID: 33851065 PMCID: PMC8022147 DOI: 10.1016/j.adro.2021.100653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/09/2020] [Accepted: 01/09/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Thoracic reirradiation for non-small cell lung cancer with curative intent is potentially associated with severe toxicity. There are limited prospective data on the best method to deliver this treatment. We sought to develop expert consensus guidance on the safe practice of treating non-small cell lung cancer with radiation therapy in the setting of prior thoracic irradiation. Methods and Materials Twenty-one thoracic radiation oncologists were invited to participate in an international Delphi consensus process. Guideline statements were developed and refined during 4 rounds on the definition of reirradiation, selection of appropriate patients, pretreatment assessments, planning of radiation therapy, and cumulative dose constraints. Consensus was achieved once ≥75% of respondents agreed with a statement. Statements that did not reach consensus in the initial survey rounds were revised based on respondents’ comments and re-presented in subsequent rounds. Results Fifteen radiation oncologists participated in the 4 surveys between September 2019 and March 2020. The first 3 rounds had a 100% response rate, and the final round was completed by 93% of participants. Thirty-three out of 77 statements across all rounds achieved consensus. Key recommendations are as follows: (1) appropriate patients should have a good performance status and can have locally relapsed disease or second primary cancers, and there are no absolute lung function values that preclude reirradiation; (2) a full diagnostic workup should be performed in patients with suspected local recurrence and; (3) any reirradiation should be delivered using optimal image guidance and highly conformal techniques. In addition, consensus cumulative dose for the organs at risk in the thorax are described. Conclusions These consensus statements provide practical guidance on appropriate patient selection for reirradiation, appropriate radiation therapy techniques, and cumulative dose constraints.
Collapse
|
23
|
Balancing Fractionation and Advanced Technology in Consideration of Reirradiation. Semin Radiat Oncol 2020; 30:201-203. [DOI: 10.1016/j.semradonc.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Nieder C. Second re-irradiation: A delicate balance between safety and efficacy. Phys Med 2019; 58:155-158. [DOI: 10.1016/j.ejmp.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022] Open
|