1
|
Ghafarian M, Cao M, Kirby KM, Schneider CW, Deng J, Mellon EA, Kishan AU, Maziero D, Wu TC. Magnetic Resonance Imaging Sequences and Technologies in Adaptive Radiation Therapy. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00384-0. [PMID: 40298856 DOI: 10.1016/j.ijrobp.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
Radiation therapy is essential in both curative and palliative treatments for most cancers. However, traditional radiation therapy workflows using computed tomography (CT) simulation-based planning and cone beam CT image guidance face several technical challenges, including limited tumor visibility and daily fluctuations in tumor size and shape. Magnetic resonance imaging (MRI) guided linear accelerators (MR-Linacs) address these issues by enabling precise visualization of changes in tumor position and morphologic changes, as well as changes in surrounding organs-at-risk. The hybrid MR-Linac systems combine MRI with linear accelerator technology, offering enhanced soft tissue visualization and the potential for adaptive radiation therapy (ART). This narrative review provides a comprehensive introduction to MR guided ART technologies, covering protocol optimization with appropriate pulse sequence selection and parameter adjustment for clinical implementations on various disease sites.
Collapse
Affiliation(s)
- Melissa Ghafarian
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California.
| | - Minsong Cao
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Krystal M Kirby
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana
| | | | - Jie Deng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Eric A Mellon
- Department of Radiation Oncology and Biomedical Engineering, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Coral Gables, Florida
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Danilo Maziero
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Trudy C Wu
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Essers M, Mesch L, Beugeling M, de Wee E, Poorter R, Hamelink R, de Kruijf W. Goodbye face masks! Accurate head and neck radiotherapy using individual dorsal shells and surface guidance. Radiother Oncol 2025; 208:110909. [PMID: 40288690 DOI: 10.1016/j.radonc.2025.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND AND PURPOSE Using surface guided radiotherapy (SGRT), head and neck (H&N) cancer patients may undergo radiotherapy without the discomfort and stress of a restricting face mask. In this study, the patient setup accuracy, number of necessary treatment interrupts, and intrafraction motion for H&N cancer patients positioned using an individual dorsal shell and monitored using SGRT was examined. MATERIAL AND METHODS Twenty-six H&N cancer patients were positioned in a dorsal shell using SGRT. A cone-beam CT (CBCT) was used for online setup correction. SGRT was also used for intrafraction motion monitoring, and repositioning of the patient when an intrafraction motion threshold of 2 mm or 2° (th2) was exceeded. Based on post-treatment CBCT's, the intrafraction motion and resulting CTV-PTV margin were determined. RESULTS For 1.1 % of fractions, the patient had to be repositioned because of motion during/after the CBCT, and for 4.4 % of fractions because of inaccurate patient posture. For 3.5 % of fractions, treatment had to be interrupted for repositioning because intrafraction motion exceeded th2. The CTV-PTV margin for intrafraction motion is 1.1 mm in all directions. A total CTV-PTV margin of 3 mm can be applied. CONCLUSIONS By replacing traditional face masks with SGRT and a dorsal shell, we can offer H&N cancer patients a more comfortable radiotherapy treatment experience without sacrificing the treatment accuracy.
Collapse
Affiliation(s)
- Marion Essers
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands.
| | - Lennart Mesch
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Maaike Beugeling
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Eva de Wee
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Robert Poorter
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Richard Hamelink
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Willy de Kruijf
- Institute Verbeeten, Radiation Oncology, PO Box 90120, 5000 LA Tilburg, the Netherlands
| |
Collapse
|
3
|
Gupta A, McQuaid D, Dunlop A, Barnes H, Mohajer J, Smith G, Nartey J, Morrison K, Herbert T, Alexander S, McNair H, Newbold K, Nutting C, Bhide S, Harrington KJ, Wong KH. Measurement and Incorporation of Laryngeal Motion Using cine-MRI on an MR-Linear Accelerator to Generate Radiation Therapy Plans for Early-stage Squamous Cell Cancers of the Glottis. Adv Radiat Oncol 2024; 9:101490. [PMID: 38681895 PMCID: PMC11046225 DOI: 10.1016/j.adro.2024.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Swallow-related motion of the larynx is most significant in the cranio-caudal directions and of` short duration. Conventional target definition for radical radiation therapy includes coverage of the whole larynx. This study longitudinally examined respiration- and swallow-related laryngeal motions using cine-magnetic resonance imaging. We further analyzed the dosimetry to organs at risk by comparing 3D-conformal radiation therapy (3D-CRT), volumetric modulated arc therapy (VMAT), and intensity modulated radiation therapy (IMRT) techniques. Methods Fifteen patients with T1-2 N0 glottic squamous cell carcinomas were prospectively recruited for up to 3 cine-MRI scans on the Elekta Unity MR-Linear accelerator, at the beginning, middle, and end of a course of radical radiation therapy. Swallow frequency and motion of the hyoid bone, cricoid and thyroid cartilages, and vocal cords were recorded during swallow and rest. Adapted treatment volumes consisted of gross tumor volume + 0.5-1 cm to a clinical target volume with an additional internal target volume (ITV) for personalized resting-motion. Swallow-related motion was deemed infrequent and was not accounted for in the ITV. We compared radiation therapy plans for 3D-CRT (whole larynx), VMAT (whole larynx), and VMAT and IMRT (ITV for resting motion). Results Resting- and swallow-related motions were most prominent in the cranio-caudal plane. There were no significant changes in the magnitude of motion over the course of radiation therapy. There was a trend of a progressive reduction in the frequency of swallow. Treatment of partial larynx volumes with intensity modulated methods significantly reduced the dose to carotid arteries, compared with treatment of whole larynx volumes. Robustness analysis demonstrated that when accounting for intrafraction swallow, the total dose delivered to the ITV/planning target volume was maintained at above 95%. Conclusions Swallow-related motions are infrequent and accounting for resting motion in an ITV is sufficient. VMAT/IMRT techniques that treat more conformal targets can significantly spare critical organs at risk such as the carotid arteries and thyroid gland, potentially reducing the risk of carotid artery stenosis-related complications and other long-term complications.
Collapse
Affiliation(s)
- Amit Gupta
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Dualta McQuaid
- The Joint Department of Physics, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Alex Dunlop
- The Joint Department of Physics, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Helen Barnes
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Jonathan Mohajer
- The Joint Department of Physics, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Gillian Smith
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Jayde Nartey
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Kian Morrison
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Trina Herbert
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Sophie Alexander
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Helen McNair
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Kate Newbold
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Chris Nutting
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Shreerang Bhide
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Kevin Joseph Harrington
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Kee Howe Wong
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
4
|
Chun SJ, Son J, Kang S, Choi CH, Kim JI, Kim YI, Lee JH, Kim JH, Wu HG. Assessment and validation of glottic motion using cone-beam CT and real-time cine MRI. Strahlenther Onkol 2024; 200:418-424. [PMID: 38488899 DOI: 10.1007/s00066-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/14/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE This study aimed to assess the margin for the planning target volume (PTV) using the Van Herk formula. We then validated the proposed margin by real-time magnetic resonance imaging (MRI). METHODS An analysis of cone-beam computed tomography (CBCT) data from early glottic cancer patients was performed to evaluate organ motion. Deformed clinical target volumes (CTV) after rigid registration were acquired using the Velocity program (Varian Medical Systems, Palo Alto, CA, USA). Systematic (Σ) and random errors (σ) were evaluated. The margin for the PTV was defined as 2.5 Σ + 0.7 σ according to the Van Herk formula. To validate this margin, we accrued healthy volunteers. Sagittal real-time cine MRI was conducted using the ViewRay system (ViewRay Inc., Oakwood Village, OH, USA). Within the obtained sagittal images, the vocal cord was delineated. The movement of the vocal cord was summed up and considered as the internal target volume (ITV). We then assessed the degree of overlap between the ITV and the PTV (vocal cord plus margins) by calculating the volume overlap ratio, represented as (ITV∩PTV)/ITV. RESULTS CBCTs of 17 early glottic patients were analyzed. Σ and σ were 0.55 and 0.57 for left-right (LR), 0.70 and 0.60 for anterior-posterior (AP), and 1.84 and 1.04 for superior-inferior (SI), respectively. The calculated margin was 1.8 mm (LR), 2.2 mm (AP), and 5.3 mm (SI). Four healthy volunteers participated for validation. A margin of 3 mm (AP) and 5 mm (SI) was applied to the vocal cord as the PTV. The average volume overlap ratio between ITV and PTV was 0.92 (range 0.85-0.99) without swallowing and 0.77 (range 0.70-0.88) with swallowing. CONCLUSION By evaluating organ motion by using CBCT, the margin was 1.8 (LR), 2.2 (AP), and 5.3 mm (SI). The margin acquired using CBCT fitted well in real-time cine MRI. Given that swallowing during radiotherapy can result in a substantial displacement, it is crucial to consider strategies aimed at minimizing swallowing and related motion.
Collapse
Affiliation(s)
- Seok-Joo Chun
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of)
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of)
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (Republic of)
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
| | - Seonghee Kang
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of)
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (Republic of)
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of)
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (Republic of)
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of)
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of)
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (Republic of)
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of)
| | - Young-Il Kim
- Department of Radiation Oncology, Sejong Chungnam National University Hospital, Sejong, Korea (Republic of)
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of)
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of)
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea (Republic of)
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of)
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of)
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of)
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea (Republic of)
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, 03080, Jongno-gu, Seoul, Korea (Republic of).
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (Republic of).
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea (Republic of).
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea (Republic of).
| |
Collapse
|
5
|
Barten DLJ, van Kesteren Z, Laan JJ, Dassen MG, Westerveld GH, Pieters BR, de Jonge CS, Stoker J, Bel A. Precision assessment of bowel motion quantification using 3D cine-MRI for radiotherapy. Phys Med Biol 2024; 69:04NT01. [PMID: 38232395 DOI: 10.1088/1361-6560/ad1f89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective. The bowel is an important organ at risk for toxicity during pelvic and abdominal radiotherapy. Identifying regions of high and low bowel motion with MRI during radiotherapy may help to understand the development of bowel toxicity, but the acquisition time of MRI is rather long. The aim of this study is to retrospectively evaluate the precision of bowel motion quantification and to estimate the minimum MRI acquisition time.Approach. We included 22 gynaecologic cancer patients receiving definitive radiotherapy with curative intent. The 10 min pre-treatment 3D cine-MRI scan consisted of 160 dynamics with an acquisition time of 3.7 s per volume. Deformable registration of consecutive images generated 159 deformation vector fields (DVFs). We defined two motion metrics, the 50th percentile vector lengths (VL50) of the complete set of DVFs was used to measure median bowel motion. The 95th percentile vector lengths (VL95) was used to quantify high motion of the bowel. The precision of these metrics was assessed by calculating their variation (interquartile range) in three different time frames, defined as subsets of 40, 80, and 120 consecutive images, corresponding to acquisition times of 2.5, 5.0, and 7.5 min, respectively.Main results. For the full 10 min scan, the minimum motion per frame of 50% of the bowel volume (M50%) ranged from 0.6-3.5 mm for the VL50 motion metric and 2.3-9.0 mm for the VL95 motion metric, across all patients. At 7.5 min scan time, the variation in M50% was less than 0.5 mm in 100% (VL50) and 95% (VL95) of the subsets. A scan time of 5.0 and 2.5 min achieved a variation within 0.5 mm in 95.2%/81% and 85.7%/57.1% of the subsets, respectively.Significance. Our 3D cine-MRI technique quantifies bowel loop motion with 95%-100% confidence with a precision of 0.5 mm variation or less, using a 7.5 min scan time.
Collapse
Affiliation(s)
- D L J Barten
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands
| | - Z van Kesteren
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands
| | - J J Laan
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands
| | - M G Dassen
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G H Westerveld
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Radiation Oncology, Rotterdam, The Netherlands
| | - B R Pieters
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - C S de Jonge
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - J Stoker
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - A Bel
- Amsterdam UMC location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands
| |
Collapse
|
6
|
Fast MF, Cao M, Parikh P, Sonke JJ. Intrafraction Motion Management With MR-Guided Radiation Therapy. Semin Radiat Oncol 2024; 34:92-106. [PMID: 38105098 DOI: 10.1016/j.semradonc.2023.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
High quality radiation therapy requires highly accurate and precise dose delivery. MR-guided radiotherapy (MRgRT), integrating an MRI scanner with a linear accelerator, offers excellent quality images in the treatment room without subjecting patient to ionizing radiation. MRgRT therefore provides a powerful tool for intrafraction motion management. This paper summarizes different sources of intrafraction motion for different disease sites and describes the MR imaging techniques available to visualize and quantify intrafraction motion. It provides an overview of MR guided motion management strategies and of the current technical capabilities of the commercially available MRgRT systems. It describes how these motion management capabilities are currently being used in clinical studies, protocols and provides a future outlook.
Collapse
Affiliation(s)
- Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Parag Parikh
- Department of Radiation Oncology, Henry Ford Health - Cancer, Detroit, MI
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Essers M, Mesch L, Beugeling M, Dekker J, de Kruijf W. Setup and intra-fractional motion measurements using surface scanning in head and neck cancer radiotherapy- A feasibility study. Phys Imaging Radiat Oncol 2024; 29:100563. [PMID: 38444887 PMCID: PMC10912619 DOI: 10.1016/j.phro.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Background and purpose Surface-guided radiotherapy (SGRT) is applied to improve patient set-up and to monitor intra-fraction motion. Head and neck cancer (H&N) patients are usually fixated using 5-point thermoplastic masks, that are experienced as uncomfortable or even stressful. Therefore, the feasibility of irradiating H&N patients without a mask by using SGRT was examined. Material and methods Nineteen H&N patients were included in a simulation study. Once a week, before the standard treatment, a maskless treatment was simulated, using SGRT for setup and intrafraction motion monitoring. Initial patient setup accuracy and intrafraction motion was determined using ConeBeam CT (CBCT) images as well as SGRT before and after the (simulated) treatment. The clinical target volume to planning target volume (CTV-PTV) margin for intrafraction motion was calculated. Using patient questionnaires, the patient-friendliness H&N irradiation with and without mask was determined. Results Maskless setup with SGRT and CBCT was as accurate as with a mask. SGRT showed that intrafraction motion was gradual during the treatment. The CTV-PTV margin correcting for intrafraction motion was 1.7 mm for maskless treatment without interventions, and 1.2 mm if corrected for motions > 2 mm. For 19 % of fractions, the intrafraction motion, as detected by both SGRT and CBCT, was larger than 2 mm in at least one direction. Sixteen patients preferred maskless treatment, while 3 worried they would move too much. Conclusions Using SGRT and a standard head rest resulted in a patient-friendly treatment with accurate patient setup and acceptably small intrafraction motion for H&N patients.
Collapse
Affiliation(s)
- Marion Essers
- Institute Verbeeten, Medical Physics & Instrumentation, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Lennart Mesch
- Institute Verbeeten, Radiotherapy, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Maaike Beugeling
- Institute Verbeeten, Radiotherapy, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Janita Dekker
- Institute Verbeeten, Medical Physics & Instrumentation, PO Box 90120, 5000 LA Tilburg, the Netherlands
| | - Willy de Kruijf
- Institute Verbeeten, Medical Physics & Instrumentation, PO Box 90120, 5000 LA Tilburg, the Netherlands
| |
Collapse
|
8
|
Ng Wei Siang K, Both S, Oldehinkel E, Langendijk JA, Wagenaar D. Assessment of residual geometrical errors of clinical target volumes and their impact on dose accumulation for head and neck radiotherapy. Radiother Oncol 2023; 188:109856. [PMID: 37597803 DOI: 10.1016/j.radonc.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE To assess the residual geometrical errors (dr) and their impact on the clinical target volumes (CTV) dose coverage for head and neck cancer (HNC) proton therapy patients. METHODS We analysed 28 HNC patients treated with 70 Gy (RBE) and 54.25 Gy (RBE) to the therapeutic CTV70 and prophylactic CTV54.25, respectively. Daily cone beam CTs were converted to high quality synthetic CTs (sCTs). The CTVs from the nominal CT were propagated to the corresponding sCTs using a hybrid deformable image registration (propagated CTVs) in RayStation 11B. For 11 patients, all propagated CTVs were reviewed by our HNC radiation oncologist (physician corrected CTVs). The residual geometrical error dr was quantified as a function of the daily CTVs volume overlap with the nominal plan CTV. The errors dr(propagated CTVs) and dr(physician corrected CTVs) and the difference in dice similarity coefficients (ΔDSC) were determined. Using clinical plans, dose coverage and the tumor control probability (TCP) for the nominal, accumulated and voxel-wise minimum scenarios were determined. RESULTS The difference in the residual geometrical error dr (propagated CTVs - physician corrected CTVs) and mean DSC (|ΔDSC|mean) were minor: Δdr(CTV70) = 0.16 mm, Δdr(CTV54.25) = 0.26 mm, |ΔDSC|mean < 0.9%. For all 28 patients, dr(CTV70) = 1.91 mm and dr(CTV54.25) = 1.90 mm. However, CTV54.25 above and below the cricoid cartilage differed substantially (1.00 mm c.f. 3.93 mm). The CTV54.25 coverage below the cricoid was then almost always lower, although the TCP of the accumulated dose was higher than the TCP of the voxel-wise minimum dose. CONCLUSIONS Setup uncertainty setting of 2 mm is possible. The feasibility of using propagated CTVs for error determination is demonstrated.
Collapse
Affiliation(s)
- Kelvin Ng Wei Siang
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands; Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands; Holland Proton Therapy Center, Department of Medical Physics & Informatics, Delft, The Netherlands.
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Edwin Oldehinkel
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
9
|
Psarras M, Stasinou D, Stroubinis T, Protopapa M, Zygogianni A, Kouloulias V, Platoni K. Surface-Guided Radiotherapy: Can We Move on from the Era of Three-Point Markers to the New Era of Thousands of Points? Bioengineering (Basel) 2023; 10:1202. [PMID: 37892932 PMCID: PMC10604452 DOI: 10.3390/bioengineering10101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The surface-guided radiotherapy (SGRT) technique improves patient positioning with submillimeter accuracy compared with the conventional positioning technique of lasers using three-point tattoos. SGRT provides solutions to considerations that arise from the conventional setup technique, such as variability in tattoo position and the psychological impact of the tattoos. Moreover, SGRT provides monitoring of intrafractional motion. PURPOSE This literature review covers the basics of SGRT systems and examines whether SGRT can replace the traditional positioning technique. In addition, it investigates SGRT's potential in reducing positioning times, factors affecting SGRT accuracy, the effectiveness of live monitoring, and the impact on patient dosage. MATERIALS AND METHODS This study focused on papers published from 2016 onward that compared SGRT with the traditional positioning technique and investigated factors affecting SGRT accuracy and effectiveness. RESULTS/CONCLUSIONS SGRT provides the same or better results regarding patient positioning. The implementation of SGRT can reduce overall treatment time. It is an effective technique for detecting intrafraction patient motion, improving treatment accuracy and precision, and creating a safe and comfortable environment for the patient during treatment.
Collapse
Affiliation(s)
- Michalis Psarras
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Despoina Stasinou
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Theodoros Stroubinis
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Maria Protopapa
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| |
Collapse
|
10
|
Lee WJ, Leu YS, Chen JS, Dai KY, Hou TC, Chang CT, Li CJ, Hua KL, Chen YJ. Real-Time Tracking of Laryngeal Motion via the Surface Depth-Sensing Technique for Radiotherapy in Laryngeal Cancer Patients. Bioengineering (Basel) 2023; 10:908. [PMID: 37627793 PMCID: PMC10451758 DOI: 10.3390/bioengineering10080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Radiotherapy (RT) is an important modality for laryngeal cancer treatment to preserve laryngeal function. During beam delivery, laryngeal motion remains uncontrollable and may compromise tumor-targeting efficacy. We aimed to examine real-time laryngeal motion by developing a surface depth-sensing technique with preliminary testing during RT-based treatment of patients with laryngeal cancer. A surface depth-sensing (SDS) camera was set up and integrated into RT simulation procedures. By recording the natural swallowing of patients, SDS calculation was performed using the Pose Estimation Model and deep neural network technique. Seven male patients with laryngeal cancer were enrolled in this prospective study. The calculated motion distances of the laryngeal prominence (mean ± standard deviation) were 1.6 ± 0.8 mm, 21.4 ± 5.1 mm, 6.4 ± 3.3 mm, and 22.7 ± 4.9 mm in the left-right, cranio-caudal, and anterior-posterior directions and for the spatial displacement, respectively. The calculated differences in the 3D margins for generating the planning tumor volume by senior physicians with and without SDS data were -0.7 ± 1.0 mm (-18%), 11.3 ± 6.8 mm (235%), and 1.8 ± 2.6 mm (45%) in the left-right, cranio-caudal, and anterior-posterior directions, respectively. The SDS technique developed for detecting laryngeal motion during swallowing may be a practical guide for individualized RT design in the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Wan-Ju Lee
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104217, Taiwan; (W.-J.L.); (K.-Y.D.); (T.-C.H.); (C.-J.L.)
| | - Yi-Shing Leu
- Department of Otorhinolaryngology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Jing-Sheng Chen
- Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (J.-S.C.); (C.-T.C.)
| | - Kun-Yao Dai
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104217, Taiwan; (W.-J.L.); (K.-Y.D.); (T.-C.H.); (C.-J.L.)
| | - Tien-Chi Hou
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104217, Taiwan; (W.-J.L.); (K.-Y.D.); (T.-C.H.); (C.-J.L.)
| | - Chung-Ting Chang
- Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (J.-S.C.); (C.-T.C.)
| | - Chi-Jung Li
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104217, Taiwan; (W.-J.L.); (K.-Y.D.); (T.-C.H.); (C.-J.L.)
| | - Kai-Lung Hua
- Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (J.-S.C.); (C.-T.C.)
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104217, Taiwan; (W.-J.L.); (K.-Y.D.); (T.-C.H.); (C.-J.L.)
- Department Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| |
Collapse
|
11
|
Lalonde A, Bobić M, Sharp GC, Chamseddine I, Winey B, Paganetti H. Evaluating the effect of setup uncertainty reduction and adaptation to geometric changes on normal tissue complication probability using online adaptive head and neck intensity modulated proton therapy. Phys Med Biol 2023; 68:115018. [PMID: 37164020 PMCID: PMC10351361 DOI: 10.1088/1361-6560/acd433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Objective. To evaluate the impact of setup uncertainty reduction (SUR) and adaptation to geometrical changes (AGC) on normal tissue complication probability (NTCP) when using online adaptive head and neck intensity modulated proton therapy (IMPT).Approach.A cohort of ten retrospective head and neck cancer patients with daily scatter corrected cone-beam CT (CBCT) was studied. For each patient, two IMPT treatment plans were created: one with a 3 mm setup uncertainty robustness setting and one with no explicit setup robustness. Both plans were recalculated on the daily CBCT considering three scenarios: the robust plan without adaptation, the non-robust plan without adaptation and the non-robust plan with daily online adaptation. Online-adaptation was simulated using an in-house developed workflow based on GPU-accelerated Monte Carlo dose calculation and partial spot-intensity re-optimization. Dose distributions associated with each scenario were accumulated on the planning CT, where NTCP models for six toxicities were applied. NTCP values from each scenario were intercompared to quantify the reduction in toxicity risk induced by SUR alone, AGC alone and SUR and AGC combined. Finally, a decision tree was implemented to assess the clinical significance of the toxicity reduction associated with each mechanism.Main results. For most patients, clinically meaningful NTCP reductions were only achieved when SUR and AGC were performed together. In these conditions, total reductions in NTCP of up to 30.48 pp were obtained, with noticeable NTCP reductions for aspiration, dysphagia and xerostomia (mean reductions of 8.25, 5.42 and 5.12 pp respectively). While SUR had a generally larger impact than AGC on NTCP reductions, SUR alone did not induce clinically meaningful toxicity reductions in any patient, compared to only one for AGC alone.SignificanceOnline adaptive head and neck proton therapy can only yield clinically significant reductions in the risk of long-term side effects when combining the benefits of SUR and AGC.
Collapse
Affiliation(s)
- Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- ETH Zürich, Zürich, Switzerland
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Miyazaki K, Fujii Y, Yamada T, Kanehira T, Miyamoto N, Matsuura T, Yasuda K, Uchinami Y, Otsuka M, Aoyama H, Takao S. Deformed dose restoration to account for tumor deformation and position changes for adaptive proton therapy. Med Phys 2023; 50:675-687. [PMID: 36502527 DOI: 10.1002/mp.16149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Online adaptation during intensity-modulated proton therapy (IMPT) can minimize the effect of inter-fractional anatomical changes, but remains challenging because of the complex workflow. One approach for fast and automated online IMPT adaptation is dose restoration, which restores the initial dose distribution on the updated anatomy. However, this method may fail in cases where tumor deformation or position changes occur. PURPOSE To develop a fast and robust IMPT online adaptation method named "deformed dose restoration (DDR)" that can adjust for inter-fractional tumor deformation and position changes. METHODS The DDR method comprises two steps: (1) calculation of the deformed dose distribution, and (2) restoration of the deformed dose distribution. First, the deformable image registration (DIR) between the initial clinical target volume (CTV) and the new CTV were performed to calculate the vector field. To ensure robustness for setup and range uncertainty and the ability to restore the deformed dose distribution, an expanded CTV-based registration to maintain the dose gradient outside the CTV was developed. The deformed dose distribution was obtained by applying the vector field to the initial dose distribution. Then, the voxel-by-voxel dose difference optimization was performed to calculate beam parameters that restore the deformed dose distribution on the updated anatomy. The optimization function was the sum of total dose differences and dose differences of each field to restore the initial dose overlap of each field. This method only requires target contouring, which eliminates the need for organs at risk (OARs) contouring. Six clinical cases wherein the tumor deformation and/or position changed on repeated CTs were selected. DDR feasibility was evaluated by comparing the results with those from three other strategies, namely, not adapted (continuing the initial plan), adapted by previous dose restoration, and fully optimized. RESULTS In all cases, continuing the initial plan was largely distorted on the repeated CTs and the dose-volume histogram (DVH) metrics for the target were reduced due to the tumor deformation or position changes. On the other hand, DDR improved DVH metrics for the target to the same level as the initial dose distribution. Dose increase was seen for some OARs because tumor growth had reduced the relative distance between CTVs and OARs. Robustness evaluation for setup and range uncertainty (3 mm/3.5%) showed that deviation in DVH-bandwidth for CTV D95% from the initial plan was 0.4% ± 0.5% (Mean ± S.D.) for DDR. The calculation time was 8.1 ± 6.4 min. CONCLUSIONS An online adaptation algorithm was developed that improved the treatment quality for inter-fractional anatomical changes and retained robustness for intra-fractional setup and range uncertainty. The main advantage of this method is that it only requires target contouring alone and saves the time for OARs contouring. The fast and robust adaptation method for tumor deformation and position changes described here can reduce the need for offline adaptation and improve treatment efficiency.
Collapse
Affiliation(s)
- Koichi Miyazaki
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Research and Development Group, Hitachi Ltd, Hitachi, Ibaraki, Japan
| | - Yusuke Fujii
- Research and Development Group, Hitachi Ltd, Hitachi, Ibaraki, Japan
| | - Takahiro Yamada
- Research and Development Group, Hitachi Ltd, Hitachi, Ibaraki, Japan
| | - Takahiro Kanehira
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taeko Matsuura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Uchinami
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Manami Otsuka
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
13
|
MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers. Cancers (Basel) 2022; 14:cancers14081909. [PMID: 35454816 PMCID: PMC9028510 DOI: 10.3390/cancers14081909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Normal tissue toxicities in head and neck cancer persist as a cause of decreased quality of life and are associated with poorer treatment outcomes. The aim of this article is to review organ at risk (OAR) sparing approaches available in MR-guided adaptive radiotherapy and present future developments which hope to improve treatment outcomes. Increasing the spatial conformity of dose distributions in radiotherapy is an important first step in reducing normal tissue toxicities, and MR-guided treatment devices presents a new opportunity to use biological information to drive treatment decisions on a personalized basis. Abstract MR-linac devices offer the potential for advancements in radiotherapy (RT) treatment of head and neck cancer (HNC) by using daily MR imaging performed at the time and setup of treatment delivery. This article aims to present a review of current adaptive RT (ART) methods on MR-Linac devices directed towards the sparing of organs at risk (OAR) and a view of future adaptive techniques seeking to improve the therapeutic ratio. This ratio expresses the relationship between the probability of tumor control and the probability of normal tissue damage and is thus an important conceptual metric of success in the sparing of OARs. Increasing spatial conformity of dose distributions to target volume and OARs is an initial step in achieving therapeutic improvements, followed by the use of imaging and clinical biomarkers to inform the clinical decision-making process in an ART paradigm. Pre-clinical and clinical findings support the incorporation of biomarkers into ART protocols and investment into further research to explore imaging biomarkers by taking advantage of the daily MR imaging workflow. A coherent understanding of this road map for RT in HNC is critical for directing future research efforts related to sparing OARs using image-guided radiotherapy (IGRT).
Collapse
|
14
|
Extraction parameter optimized radiomics for neoadjuvant chemotherapy response prognosis in advanced nasopharyngeal carcinoma. Clin Transl Radiat Oncol 2022; 33:37-44. [PMID: 35024463 PMCID: PMC8728047 DOI: 10.1016/j.ctro.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/06/2021] [Accepted: 12/19/2021] [Indexed: 12/24/2022] Open
Abstract
MRI radiomics is promising for NAC early response prediction in NPC patients. Predictive performance could be improved by the optimized strategy. The model could help with NPC individualized treatment.
Background and purpose Neoadjuvant Chemotherapy (NAC) followed by concurrent chemoradiotherapy (CCRT) is promising in improving the survival rate for advanced nasopharyngeal carcinoma (NPC) patients relative to CCRT alone. However, not all patients respond well to NAC. Therefore, we aimed to develop and evaluate a modified radiomics model for the NAC response prognosis in NPC patients. Methods A total of 165 patients with biopsy-proven locally advanced NPC were retrospectively selected from the database of our hospital. 85 out of them were for training and cross-validation, while the other 80 patients were for independent testing. All patients were treated with NAC and underwent MRI inspection, including T1-weighted (T1), T2-weighted (T2), and contrast-enhanced T1-weighted (T1-cs) sequences before and after two cycles of NAC. We classified the patients into the response or non-response groups by the Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1). Radiomics features were extracted from the primary and lymph node gross tumor volume in each sequence. To further improve the predictive performance, the permutation of multiple combinations of extraction parameters has first ever been investigated in the NAC prognosis for NPC patients. The model was constructed by logistic regression and cross-validated by bootstrapping with a resampling number of 1000. Independent testing was also implemented. In addition, we also applied an imbalance-adjusted bootstrap strategy to decrease the bias of small samples. Results For the cross-validation cohort, the resultant AUC, sensitivity, and specificity in terms of 95% confidence interval were 0.948 ± 0.004, 0.849 ± 0.005, and 0.840 ± 0.010. For the independent testing cohort, the model reached an AUC of 0.925, a sensitivity of 0.821, and a specificity of 0.792. There was a significant difference in the estimated radiomics score between the response and non-response groups (P < 0.005). Conclusions An MRI-based radiomics model was developed and demonstrated promising capability for the individual prediction of NAC response in NPC patients. In particular, we have optimized the multiple combinations of texture extraction parameters with the permutation test and observed an encouraging improvement of the prediction performance compared to the previously published studies. The proposed model might provide chances for individualized treatment in NPC patients while retrenching the cost of clinical resources.
Collapse
|
15
|
PTV margin calculation for head and neck patients treated with VMAT: a systematic literature review. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Aim:
The intent of the review was to identify different methodological approaches used to calculate the planning target volume (PTV) margin for head and neck patients treated with volumetric arc therapy (VMAT), and whether the necessary factors to calculate the margin size with the selected formula were used.
Materials and Methods:
A comprehensive, systematic search of related studies was done using the Hydi search engine and different databases: MEDLINE, PubMed, CINAHL, ProQuest (Nursing and Allied Health), Scopus, ScienceDirect and tipsRO. The literature search included studies published between January 2007 and December 2020. Eligibility screening was performed by two reviewers.
Results:
A total of seven studies were found. All the reviewed studies used the Van Herk formula to measure the PTV margin. None of the studies incorporated the systematic errors of target volume delineation in the PTV equation. Inter-fraction translational errors were assessed in all the studies, whilst intra-fraction errors were only included in the margin equation for two studies. The studies showed great heterogeneity in the key characteristics, aims and methods.
Findings:
Since systemic errors from target volume delineation were not considered and not all studies assess intra-fraction errors, PTV margins may be underestimated. The recommendations are that studies need to determine the effect of target volume variance on PTV margins. It is also recommended to compare PTV margin results using various formulas.
Collapse
|
16
|
Gupta A, Wong KH, Newbold K, Bhide S, Nutting C, Harrington KJ. Early-Stage Glottic Squamous Cell Carcinoma in the Era of Image-Guided Radiotherapy. Front Oncol 2021; 11:753908. [PMID: 34616688 PMCID: PMC8488425 DOI: 10.3389/fonc.2021.753908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Early-stage squamous cell cancer (SCC) of the glottis has a good prognosis. Therefore, patients have long survival outcomes and may potentially suffer from late toxicities of radiotherapy. Radiotherapy with a conventional parallel-opposed-pair or anterior-oblique beam arrangements for stage 1 and 2 glottic SCC have field borders that traditionally cover the entire larynx, exposing organs-at-risk (e.g. carotid arteries, contralateral vocal cord, contralateral arytenoid and inferior pharyngeal constrictor muscles) to high radiation doses. The potential long-term risk of cerebrovascular events has attracted much attention to the dose that carotid arteries receive. Swallow and respiratory motion of laryngeal structures has been an important factor that previously limited reduction of the radiation treatment volume. Motion has been evaluated using multiple imaging modalities and this information has been used to calculate PTV margins for generation of more limited target volumes. This review discusses the current literature surrounding dose-effect relationships for various organs-at-risk and the late toxicities that are associated with them. This article also reviews the currently available data and effects of laryngeal motions on dosimetry to the primary target. We also review the current limitations and benefits of a more targeted approach of radiotherapy for early-stage glottic SCCs and the evolution of CT-based IGRT and MR-guided radiotherapy techniques that may facilitate a shift away from a conventional 3D-conformal radiotherapy approach.
Collapse
Affiliation(s)
- Amit Gupta
- Radiotherapy and Imaging, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Kee Howe Wong
- Head and Neck Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kate Newbold
- Head and Neck Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Shreerang Bhide
- Radiotherapy and Imaging, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Chris Nutting
- Radiotherapy and Imaging, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Kevin Joseph Harrington
- Radiotherapy and Imaging, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
17
|
Varnava M, Sumida I, Oda M, Kurosu K, Isohashi F, Seo Y, Otani K, Ogawa K. Dosimetric comparison between volumetric modulated arc therapy planning techniques for prostate cancer in the presence of intrafractional organ deformation. JOURNAL OF RADIATION RESEARCH 2021; 62:309-318. [PMID: 33341880 PMCID: PMC7948894 DOI: 10.1093/jrr/rraa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to compare single-arc (SA) and double-arc (DA) treatment plans, which are planning techniques often used in prostate cancer volumetric modulated arc therapy (VMAT), in the presence of intrafractional deformation (ID) to determine which technique is superior in terms of target dose coverage and sparing of the organs at risk (OARs). SA and DA plans were created for 27 patients with localized prostate cancer. ID was introduced to the clinical target volume (CTV), rectum and bladder to obtain blurred dose distributions using an in-house software. ID was based on the motion probability function of each structure voxel and the intrafractional motion of the respective organs. From the resultant blurred dose distributions of SA and DA plans, various parameters, including the tumor control probability, normal tissue complication probability, homogeneity index, conformity index, modulation complexity score for VMAT, dose-volume indices and monitor units (MUs), were evaluated to compare the two techniques. Statistical analysis showed that most CTV and rectum parameters were significantly larger for SA plans than for DA plans (P < 0.05). Furthermore, SA plans had fewer MUs and were less complex (P < 0.05). The significant differences observed had no clinical significance, indicating that both plans are comparable in terms of target and OAR dosimetry when ID is considered. The use of SA plans is recommended for prostate cancer VMAT because they can be delivered in shorter treatment times than DA plans, and therefore benefit the patients.
Collapse
Affiliation(s)
- Maria Varnava
- Corresponding author. Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan. Tel: +81-6-6879-3482; Fax: +81-6-6879-3489;
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michio Oda
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keita Kurosu
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Hoegen P, Spindeldreier CK, Buchele C, Rippke C, Regnery S, Weykamp F, Klüter S, Debus J, Hörner-Rieber J. [Magnetic-resonance-guided radiotherapy : The beginning of a new era in radiation oncology?]. Radiologe 2021; 61:13-20. [PMID: 33052442 DOI: 10.1007/s00117-020-00761-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CLINICAL ISSUE Image-guided radiotherapy (IGRT) using X‑rays and cone-beam computed tomography (CT) has fostered precision radiotherapy. However, inter- and intrafractional variations of target volume position and organs at risk still limit target volume dose and sparing of radiosensitive organs at risk. METHODOLOGICAL INNOVATIONS Hybrid machines directly combining linear accelerators and magnetic resonance (MR) imaging allow for live imaging during radiotherapy. PERFORMANCE Besides highly improved soft tissue contrast, MR-linacs enable online, on-table adaptive radiotherapy. Thus, adaptation of the treatment plan to the anatomy of the day, dose escalation and superior sparing of organs at risk become possible. ACHIEVEMENTS This article summarizes the underlying intention for the development of MR-guided radiotherapy, technical innovations and challenges as well as the current state-of-the-art. Potential clinical benefits and future developments are discussed. PRACTICAL RECOMMENDATIONS Increasing availability of MR imaging at linear accelerators calls for the ability to review and interpret MR images. Therefore, close collaborations of diagnostic radiologists and radiation oncologists are mandatory to foster this fascinating technique.
Collapse
Affiliation(s)
- P Hoegen
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland.,Clinical Cooperation Unit Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| | - C K Spindeldreier
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - C Buchele
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - C Rippke
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - S Regnery
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland
| | - F Weykamp
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland
| | - S Klüter
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland
| | - J Debus
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland.,Clinical Cooperation Unit Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.,Heidelberger Ionenstrahl-Therapiezentrum (HIT), Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland.,Standort Heidelberg, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Deutschland
| | - J Hörner-Rieber
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland. .,Heidelberger Institut für Radiooncology (HIRO), Heidelberg, Deutschland. .,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland. .,Clinical Cooperation Unit Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.
| |
Collapse
|
19
|
Surface guided motion management in glottic larynx stereotactic body radiation therapy. Radiother Oncol 2020; 153:236-242. [DOI: 10.1016/j.radonc.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
|
20
|
Haraldsson A, Ceberg S, Ceberg C, Bäck S, Engelholm S, Engström PE. Surface-guided tomotherapy improves positioning and reduces treatment time: A retrospective analysis of 16 835 treatment fractions. J Appl Clin Med Phys 2020; 21:139-148. [PMID: 32592288 PMCID: PMC7484821 DOI: 10.1002/acm2.12936] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE In this study, we have quantified the setup deviation and time gain when using fast surface scanning for daily setup/positioning with weekly megavoltage computed tomography (MVCT) and compared it to daily MVCT. METHODS A total of 16 835 treatment fractions were analyzed, treated, and positioned using our TomoTherapy HD (Accuray Inc., Madison, USA) installed with a Sentinel optical surface scanning system (C-RAD Positioning AB, Uppsala, Sweden). Patients were positioned using in-room lasers, surface scanning and MVCT for the first three fractions. For the remaining fractions, in-room laser was used for setup followed by daily surface scanning with MVCT once weekly. The three-dimensional (3D) setup correction for surface scanning was evaluated from the registration between MVCT and the planning CT. The setup correction vector for the in-room lasers was assessed from the surface scanning and the MVCT to planning CT registration. The imaging time was evaluated as the time from imaging start to beam-on. RESULTS We analyzed 894 TomoTherapy treatment plans from 2012 to 2018. Of all the treatment fractions performed with surface scanning, 90 % of the residual errors were within 2.3 mm for CNS (N = 284), 2.9 mm for H&N (N = 254), 8.7 mm for thorax (N = 144) and 10.9 for abdomen (N = 134) patients. The difference in residual error between surface scanning and positioning with in-room lasers was significant (P < 0.005) for all sites. The imaging time was assessed as total imaging time per treatment plan, modality, and treatment site and found that surface scanning significantly reduced patient on-couch time compared to MVCT for all treatment sites (P < 0.005). CONCLUSIONS The results indicate that daily surface scanning with weekly MVCT can be used with the current target margins for H&N, CNS, and thorax, with reduced imaging time.
Collapse
Affiliation(s)
- André Haraldsson
- Department Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sofie Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sven Bäck
- Department Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Silke Engelholm
- Department Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Per E Engström
- Department Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
21
|
Green M, Van Nest SJ, Soisson E, Huber K, Liao Y, McBride W, Dominello MM, Burmeister J, Joiner MC. Three discipline collaborative radiation therapy (3DCRT) special debate: We should treat all cancer patients with hypofractionation. J Appl Clin Med Phys 2020; 21:7-14. [PMID: 32602186 PMCID: PMC7324689 DOI: 10.1002/acm2.12954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Michael Green
- Department of Radiation OncologyUniversity of MichiganAnn ArborMIUSA
| | | | - Emilie Soisson
- Department of RadiologyUniversity of VermontBurlingtonVTUSA
| | - Kathryn Huber
- Department of Radiation OncologyTufts Medical CenterBostonMAUSA
| | - Yixiang Liao
- Department of Radiation OncologyRush University Medical CenterChicagoILUSA
| | - William McBride
- Department of Radiation OncologyUniversity of California at Los Angeles (UCLA)Los AngelesCAUSA
| | | | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
22
|
Wei W, Ioannides PJ, Sehgal V, Daroui P. Quantifying the impact of optical surface guidance in the treatment of cancers of the head and neck. J Appl Clin Med Phys 2020; 21:73-82. [PMID: 32250046 PMCID: PMC7324691 DOI: 10.1002/acm2.12867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/08/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
Abstract
Surface guided radiation therapy (SGRT) is increasingly being adopted for use in radiation treatment delivery for Head and Neck (H&N) cancer patients. This study investigated the improvement of patient setup accuracy and reduction of setup time for SGRT compared to a conventional setup. A total of 60 H&N cancer patients were retrospectively included. Patients were categorized into three groups: oral cavity, oropharynx and nasopharynx/sinonasal sites with 20 patients in each group. They were further separated into two (2) subgroups, depending on whether they were set up with the aid of SGRT. The Align‐RT™ system was used for SGRT in this work. Positioning was confirmed by daily kV‐kV imaging in conjunction with weekly CBCT scans. Translational and rotational couch shifts along with patient setup times were recorded. Imaging setup time, which was defined as the elapsed time from the acquisition of the first image set to the end of the last image set, was recorded. Average translational shifts were larger in the non‐SGRT group. Vertical shifts showed the most significant reduction in the SGRT group for both oropharynx and oral cavity groups. Pitch corrections were significantly higher in the SGRT group for oropharynx patients and higher pitch corrections were also observed in the SGRT groups of oral cavity and nasopharynx/sinonasal patients. The average setup time when SGRT guidance was employed was shorter for all three treatment sites although this did not reach statistical significance. The largest time reduction between the SGRT and non‐SGRT groups was seen in the nasopharynx/sinonasal group. This study suggests that the use of SGRT decreases the magnitude of translational couch shifts during patient setup. However, the rotational corrections needed were generally higher with SGRT group. When SGRT was employed, a definite reduction in patient setup time was observed for nasopharynx/sinonasal and hypopharynx cancer patients.
Collapse
Affiliation(s)
- Wenbo Wei
- Department of Radiation Oncology University of California Irvine Orange CA USA
| | | | - Varun Sehgal
- Department of Radiation Oncology University of California Irvine Orange CA USA
| | - Parima Daroui
- Department of Radiation Oncology The Permanente Medical Group Santa Clara CA USA
| |
Collapse
|
23
|
Kamperis E, Kodona C, Hatziioannou K, Giannouzakos V. Complexity in Radiation Therapy: It's Complicated. Int J Radiat Oncol Biol Phys 2020; 106:182-184. [DOI: 10.1016/j.ijrobp.2019.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
|
24
|
Chatterjee S, Mallick I, Chakraborty S, Prasath S, Arunsingh M, Achari RB, Arun B, Nallathambi C, Pattatheyil A, Sen S. Helical Radiotherapy in Early Laryngeal Cancers Could Lead to Excess Local Recurrence: Lessons From a Phase II Prospective Study. Clin Oncol (R Coll Radiol) 2019; 32:e67-e75. [PMID: 31704170 DOI: 10.1016/j.clon.2019.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
AIMS A prospective study was conducted to investigate the feasibility and efficacy of carotid-sparing intensity-modulated radiotherapy (CSIMRT) in early glottic cancers (EGC). MATERIALS AND METHODS Eighteen patients underwent CSIMRT using helical tomotherapy to a dose of 55 Gy/20 fractions/4 weeks. Carotid intimal thickness (CIT) at prespecified carotid levels was measured using B-mode ultrasound at 6, 18 and 36 months. Serial changes in CIT were also measured in a control prospective cohort of 18 patients with head and neck cancers receiving bilateral neck nodal radiation over the same time period (54-60 Gy/30 fraction/6 weeks). The outcomes of 18 patients undergoing CSIMRT were compared against a retrospective consecutive cohort of 41 patients with EGC to confirm comparable local control. RESULTS No significant CIT differences were identified between patients undergoing CSIMRT versus the control group. However, four patients in the CSIMRT group had a local recurrence between 8 and 39 months. In all patients the epicentre of the recurrence was noted at the anterior part of the larynx. The 5-year local recurrence-free survival was 75.1% (95% confidence interval 56.6-99.7%). By contrast, in the group of EGC patients treated without carotid sparing, local recurrence was noted only in a single patient (patient treated with helical tomotherapy) and the 5-year local recurrence-free survival was 97.1% (95% confidence interval 91.8-100%) (Log-rank P = 0.01). CONCLUSION We failed to show the safety of CSIMRT using helical tomotherapy in this population of EGC patients. Use of CSIMRT also did not translate into a substantial reduction in CIT until 36 months. Use of CSIMRT using rotational arc techniques such as helical tomotherapy may be associated with a greater risk of local recurrence due to intrafractional motion interplay effects.
Collapse
Affiliation(s)
- S Chatterjee
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India.
| | - I Mallick
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - S Chakraborty
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - S Prasath
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - M Arunsingh
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - R B Achari
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - B Arun
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - C Nallathambi
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - A Pattatheyil
- Department of Surgical Oncology, Tata Medical Center, Kolkata, India
| | - S Sen
- Department of Radiology, Tata Medical Center, Kolkata, India
| |
Collapse
|
25
|
Kim SH, Oh SA, Yea JW, Park JW. Prospective assessment of inter- or intra-fractional variation according to body weight or volume change in patients with head and neck cancer undergoing radiotherapy. PLoS One 2019; 14:e0216655. [PMID: 31095583 PMCID: PMC6522006 DOI: 10.1371/journal.pone.0216655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/25/2019] [Indexed: 12/25/2022] Open
Abstract
This study aimed to prospectively investigate the association between body weight (ΔBW) or body volume variations (ΔBV) and inter- or intra-fractional variations (Δ(inter) or Δ(intra)) in patients with head and neck cancer (HNC) undergoing radiotherapy (RT). This study enrolled patients with HNC from December 2015 to December 2017. All patients underwent curative intensity-modulated RT (IMRT) either as definitive or adjuvant treatment. Six-dimensional inter- and intra-fractional variations (Δ(inter) and Δ(intra)) were obtained with ExacTrac (BrainLAB, Feldkirchen, Germany) system. BV was measured 7.5 cm cranio-caudally from the centre using cone beam computed tomography. The BW, BV, and Δ(inter) were calculated based on the value obtained on the first treatment day after each simulation. Both Δ(inter) and Δ(intra) were considered in calculating the optimal margins for planning target volume (PTV), which was calculated using van Herk’s formula. In total, 678 fractions with 39 simulations in 22 patients were analysed. The average ΔBW and ΔBV was -0.43±1.90 kg (range, -7.3 to 5.0) and -24.34±69.0 cc (range, -247.15 to 214.88), respectively. In correlation analysis, Δ(intra) was more associated with ΔBW or ΔBV than Δ(inter). Receiver operating characteristic analysis showed Δ(intra) could differentiate ΔBW from ΔBV, while Δ(inter) could not. The optimal margins for PTV considering both Δ(inter) and Δ(intra) were 3.70 mm, 4.52 mm, and 5.12 mm for the right-left, superior-inferior, and anterior-posterior directions, respectively. In conclusion, the PTV margin of 6 mm for anterior-posterior direction and 5 mm for the other directions were needed. ΔBW or ΔBV correlated with Δ(intra) rather than Δ(inter). Therefore, ΔBW or ΔBV should be assessed for accurate IMRT in patients with HNC.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Department of Radiation Oncology, Yeungnam University College of Medicine, Nam-gu, Daegu, South Korea
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
| | - Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Nam-gu, Daegu, South Korea
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
| | - Jae Won Park
- Department of Radiation Oncology, Yeungnam University College of Medicine, Nam-gu, Daegu, South Korea
- Department of Radiation Oncology, Yeungnam University Medical Center, Nam-gu, Daegu, South Korea
- * E-mail:
| |
Collapse
|
26
|
Zhou Y, Yuan J, Wong OL, Fung WWK, Cheng KF, Cheung KY, Yu SK. Assessment of positional reproducibility in the head and neck on a 1.5-T MR simulator for an offline MR-guided radiotherapy solution. Quant Imaging Med Surg 2018; 8:925-935. [PMID: 30505721 PMCID: PMC6218207 DOI: 10.21037/qims.2018.10.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/03/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Recently, a shuttle-based offline magnetic resonance-guided radiotherapy (MRgRT) approach was proposed. This study aims to evaluate the positional reproducibility in the immobilized head and neck using a 1.5-T MR-simulator (MR-sim) on healthy volunteers. METHODS A total of 159 scans of 14 healthy volunteers were conducted on a 1.5-T MR-sim with thermoplastic mask immobilization. MR images with isotropic 1.053 mm3 voxel size were rigidly registered to the first scan based on fiducial, anatomical and gross positions. Mean and standard deviation of positional displacements in translation and rotation were assessed. Systematic error and random errors of positioning in the head and neck on the MR-sim were determined in the translation of, and in the rotation of roll, pitch and yaw. RESULTS The systematic error (Σ) of translation in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) direction was 0.57, 0.22 and 0.26 mm for fiducial displacement, 0.28, 0.10 and 0.52 mm for anatomical displacement, and 0.53, 0.22 and 0.49 mm for gross displacement, respectively. The random error (σ) in corresponding translation direction was 2.07, 0.54 and 1.32 mm for fiducial displacement, 1.34, 0.73 and 2.04 mm for anatomical displacement, and 2.24, 0.86 and 2.61 mm for gross displacement. The systematic error and random error of rotation were generally smaller than 1°. CONCLUSIONS Our results suggested that high gross positional reproducibility (<1 mm translational and <1° rotational systematic error) could be achieved on an MR-sim for the proposed offline MRgRT.
Collapse
Affiliation(s)
- Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Winky Wing Ki Fung
- Department of Radiotherapy, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Ka Fai Cheng
- Department of Radiotherapy, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Kin Yin Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Siu Ki Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| |
Collapse
|