1
|
Shu M, Zhang J, Huang H, Chen Y, Shi Y, Zeng H, Shao L. Advances in the Regulation of Hematopoietic Homeostasis by Programmed Cell Death Under Radiation Conditions. Stem Cell Rev Rep 2025; 21:935-952. [PMID: 40056317 DOI: 10.1007/s12015-025-10863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
The application of nuclear energy and the frequent occurrence of nuclear contamination have made radiation safety a major challenge to global public health. As a radiation-sensitive target organ, bone marrow is susceptible to both acute and chronic damage effects of ionizing radiation on the hematopoietic system. Researchers have demonstrated that radiation disrupts hematopoietic homeostasis through direct damage to hematopoietic stem cells, which inhibits hematopoietic regeneration indirectly through damage to hematopoietic progenitor cells and their downstream cell populations. However, the multi-target regulatory mechanism of radiation perturbation of hematopoietic homeostasis remains to be systematically elucidated. Recent studies have revealed that, in addition to the classical apoptotic pathway, non-apoptotic programmed cell death modes (e.g. pyroptosis, necroptosis, and ferroptosis) may be involved in the regulation of radiation-induced hematopoietic injury. A systematic review of the roles of the aforementioned programmed death pathways was presented in radiation-damaged hematopoietic cells, with a view to providing a scientific basis for targeted intervention in radiation-induced myelosuppression.
Collapse
Affiliation(s)
- Manling Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Jinfu Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Haocong Huang
- Department of Medicine, Jinggangshan University, Ji'an, 343000, P.R. China
| | - Yuxin Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Yubing Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- Basic Medical Experiment Center, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China.
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Magkouta S, Markaki E, Evangelou K, Petty R, Verginis P, Gorgoulis V. Decoding T cell senescence in cancer: Is revisiting required? Semin Cancer Biol 2025; 108:33-47. [PMID: 39615809 DOI: 10.1016/j.semcancer.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Senescence is an inherent cellular mechanism triggered as a response to stressful insults. It associates with several aspects of cancer progression and therapy. Senescent cells constitute a highly heterogeneous cellular population and their identification can be very challenging. In fact, the term "senescence" has been often misused. This is also true in the case of immune cells. While several studies indicate the presence of senescent-like features (mainly in T cells), senescent immune cells are poorly described. Under this prism, we herein review the current literature on what has been characterized as T cell senescence and provide insights on how to accurately discriminate senescent cells against exhausted or anergic ones. We also summarize the major metabolic and epigenetic modifications associated with T cell senescence and underline the role of senescent T cells in the tumor microenvironment (TME). Moreover, we discuss how these cells associate with standard clinical therapeutic interventions and how they impact their efficacy. Finally, we underline the importance of precise identification and thorough characterization of "truly" senescent T cells in order to design successful therapeutic manipulations that would delay cancer incidence and maximize efficacy of immunotherapy.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens 10676, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
3
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
4
|
Gies S, Melchior P, Stroeder R, Tänzer T, Theobald L, Pohlers M, Glombitza B, Sester M, Solomayer EF, Walch-Rückheim B. Immune landscape of vulvar cancer patients treated with surgery and adjuvant radiotherapy revealed restricted T cell functionality and increased IL-17 expression associated with cancer relapse. Int J Cancer 2024; 154:343-358. [PMID: 37786948 DOI: 10.1002/ijc.34745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
For vulvar cancers, radiotherapy is targeting cancer cells, but also affects the host immune system. As this may affect treatment outcome, in this prospective study, we characterized the individual T cell immune milieu induced by surgery and adjuvant radio +/- chemotherapy (aRT) systemically in the blood of vulvar cancer patients and found increased frequencies of Interleukin (IL)-17-producing CD4+ and CD8+ T cells after aRT while frequencies of Th1 and perforin-producing CD8+ killer cells were strongly diminished. Phenotypic characterization revealed enhanced expression of the ectonucleotidase CD39 on Th17 and Tc17 cells as well as CD8+ perforin+ cells after aRT. Furthermore, the aRT cohort exhibited increased proportions of Programmed Cell Death Protein (PD-1) expressing cells among Th1 and CD8+ perforin+ cells, but not among Th17 and Tc17 cells. High post-therapeutic levels of Th17 and Tc17 cells and low proportions of Th1 and CD8+ perforin+ cells expressing PD-1 was associated with reduced recurrence free survival on follow-up. In conclusion, our study defines individual therapy-induced changes in the cellular immune milieu of patients and their association with cancer relapse. Our results may help to explain differences in the individual courses of disease of vulvar cancer patients and suggest PD-1 and IL-17 as targets for immunotherapy in vulvar cancer.
Collapse
Affiliation(s)
- Selina Gies
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Russalina Stroeder
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Tanja Tänzer
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Laura Theobald
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Maike Pohlers
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Birgit Glombitza
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Saar, Germany
| | - Erich-Franz Solomayer
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Barbara Walch-Rückheim
- Center of Human and Molecular Biology (ZHMB), Institute of Virology, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
5
|
Hou Y, Li S, Zhu H, Qiao M, Sun X, Li G. Development of the Thymus and Kidney and Effects of Resveratrol on Their Aging in a Short-Lived Fish. J Gerontol A Biol Sci Med Sci 2023; 78:1550-1557. [PMID: 36946539 DOI: 10.1093/gerona/glad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 03/23/2023] Open
Abstract
Annual fishes of the genus Nothobranchius have been widely used in cognitive, behavioral, and genetic studies, and have become an excellent animal model for studying aging. However, the development and degeneration of immune organs in annual fishes and the antagonistic effects of resveratrol remain unclear. In the present study, the development of thymus and kidney was investigated systematically using Nothobranchius guentheri from larvae, juveniles, and young and old fish with hematoxylin and eosin staining. We found that thymus primordium was observed first in the larvae at 2 days after hatching (dah). After the lymphoid cells became evident at 5 dah, the thymus acquired an irregular shape at 7 dah. Then it formed a wedge shape at 15 dah. Thymus looked as homogeneous distribution of lymphocytes at 1 month old, and it differentiated into cortex and medulla approximately in 2-month-old fish. Combined with TUNEL and senescence-associated β-galactosidase (SA-β-gal) staining, it showed the degeneration of the thymus appeared in 4-month-old fish. Kidney primordium appeared on 1 dah, and the glomerulus was visible at 7 dah. The nephrogenic activity was most apparent in 1-month-old fish. A large hematopoietic tissue was arranged in the renal interstitium in 2- and 3-month-old fish. In 6-month-old fish, the kidney structure became less dense. By 12 months, the kidney exhibited the most pronounced histological characteristics of aging. Feeding resveratrol ameliorated renal fibrosis and SA-β-gal staining with age, increased SIRT1 and SIRT3 expression, and decreased the levels of NF-κB and inflammatory factors in thymus and kidney of the fish. We provided basic data for the development and degeneration of immune organs and resveratrol's anti-aging effects in short-lived fish.
Collapse
Affiliation(s)
- Yanhan Hou
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shasha Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongyan Zhu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Mengxue Qiao
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaowen Sun
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
6
|
Ebrahimi HA, Larizadeh MH, Saba M, Jafarzadeh A. Radiotherapy Improves the Disability in Patients with Secondary Progressive Multiple Sclerosis. J Biomed Phys Eng 2023; 13:317-322. [PMID: 37609511 PMCID: PMC10440411 DOI: 10.31661/jbpe.v0i0.2012-1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/28/2021] [Indexed: 08/24/2023]
Abstract
Background Multiple sclerosis (MS) as a complex neurological abnormality is marked with loss of myelin and axons due to chronic inflammatory and autoimmune responses. The modulatory properties of the low dose radiation (LDR) on inflammatory and immune responses have well known. Objective The current research aimed to assess the impacts of LDR on the disability in patients suffering from MS. Material and Methods This experimental pilot study was done on 10 patients with secondary progressive multiple sclerosis (SPMS). After magnetic resonance imaging, the SPMS patients were treated by LDR at a daily dose of 2 Gray for 5 consecutive days (totally 10 Gray dose) using a linear accelerator. The extent of the disability was evaluated one week after the completion of radiotherapy using expanded disability status scale (EDSS). Results After receiving radiotherapy, the patients had a feeling of wellbeing of some sort. The mean of EDSS was significantly reduced after radiotherapy compared with before irradiation (7.4±0.45 vs 6.35±1.18; P<0.017). EDSS more decreased in younger SPMS patients (P=0.0001), and in the women after LDR (P=0.027). Conclusion Radiotherapy can reduce fatigue and EDSS in patients with SPMS. The age and gender of patients may influence the LDR efficacy.
Collapse
Affiliation(s)
- Hossein-Ali Ebrahimi
- Neurology Research Center, Department of Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Hasan Larizadeh
- Neurology Research Center, Department of Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Saba
- Department of Radiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Lapierre A, Bourillon L, Larroque M, Gouveia T, Bourgier C, Ozsahin M, Pèlegrin A, Azria D, Brengues M. Improving Patients' Life Quality after Radiotherapy Treatment by Predicting Late Toxicities. Cancers (Basel) 2022; 14:2097. [PMID: 35565227 PMCID: PMC9099838 DOI: 10.3390/cancers14092097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/26/2022] Open
Abstract
Personalized treatment and precision medicine have become the new standard of care in oncology and radiotherapy. Because treatment outcomes have considerably improved over the last few years, permanent side-effects are becoming an increasingly significant issue for cancer survivors. Five to ten percent of patients will develop severe late toxicity after radiotherapy. Identifying these patients before treatment start would allow for treatment adaptation to minimize definitive side effects that could impair their long-term quality of life. Over the last decades, several tests and biomarkers have been developed to identify these patients. However, out of these, only the Radiation-Induced Lymphocyte Apoptosis (RILA) assay has been prospectively validated in multi-center cohorts. This test, based on a simple blood draught, has been shown to be correlated with late radiation-induced toxicity in breast, prostate, cervical and head and neck cancer. It could therefore greatly improve decision making in precision radiation oncology. This literature review summarizes the development and bases of this assay, as well as its clinical results and compares its results to the other available assays.
Collapse
Affiliation(s)
- Ariane Lapierre
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
- Department of Radiotherapy-Oncology, Lyon-Sud Hospital Center, 69310 Pierre-Bénite, France
| | - Laura Bourillon
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Marion Larroque
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Tiphany Gouveia
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| |
Collapse
|
8
|
Theobald L, Stroeder R, Melchior P, Iordache II, Tänzer T, Port M, Glombitza B, Marx S, Schub D, Herr C, Hart M, Ludwig N, Meese E, Kim YJ, Bohle RM, Smola S, Rübe C, Solomayer EF, Walch-Rückheim B. Chemoradiotherapy-induced increase in Th17 cell frequency in cervical cancer patients is associated with therapy resistance and early relapse. Mol Oncol 2021; 15:3559-3577. [PMID: 34469022 PMCID: PMC8637579 DOI: 10.1002/1878-0261.13095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer therapy is still a major clinical challenge, as patients substantially differ in their response to standard treatments, including chemoradiotherapy (CRT). During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients and are associated with poor prognosis. In this prospective study, we find increased Th17 frequencies in the blood of patients after chemoradiotherapy and a post-therapeutic ratio of Th17/CD4+ T cells > 8% was associated with early recurrence. Furthermore, Th17 cells promote resistance of cervical cancer cells toward CRT, which was dependent on the AKT signaling pathway. Consistently, patients with high Th17 frequencies in pretherapeutic biopsies exhibit lower response to primary CRT. This work reveals a key role of Th17 cells in CRT resistance and elevated Th17 frequencies in the blood after CRT correspond with early recurrence. Our results may help to explain individual treatment responses of cervical cancer patients and suggest evaluation of Th17 cells as a novel predictive biomarker for chemoradiotherapy responses and as a potential target for immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Laura Theobald
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Russalina Stroeder
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ioan Iulian Iordache
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tanja Tänzer
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Meike Port
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Birgit Glombitza
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, Homburg/Saar, Germany
| | - David Schub
- Department of Transplant and Infection Immunology, Saarland University, Homburg/Saar, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Hart
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Nicole Ludwig
- Institute of Human Genetics and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Yoo-Jin Kim
- Institute of Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Rainer Maria Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Sigrun Smola
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Erich Franz Solomayer
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
9
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
10
|
Subedi P, Gomolka M, Moertl S, Dietz A. Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: A Systematic Review. J Pers Med 2021; 11:jpm11020140. [PMID: 33669522 PMCID: PMC7922485 DOI: 10.3390/jpm11020140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background and objectives: Exposure to ionizing radiation (IR) has increased immensely over the past years, owing to diagnostic and therapeutic reasons. However, certain radiosensitive individuals show toxic enhanced reaction to IR, and it is necessary to specifically protect them from unwanted exposure. Although predicting radiosensitivity is the way forward in the field of personalised medicine, there is limited information on the potential biomarkers. The aim of this systematic review is to identify evidence from a range of literature in order to present the status quo of our knowledge of IR-induced changes in protein expression in normal tissues, which can be correlated to radiosensitivity. Methods: Studies were searched in NCBI Pubmed and in ISI Web of Science databases and field experts were consulted for relevant studies. Primary peer-reviewed studies in English language within the time-frame of 2011 to 2020 were considered. Human non-tumour tissues and human-derived non-tumour model systems that have been exposed to IR were considered if they reported changes in protein levels, which could be correlated to radiosensitivity. At least two reviewers screened the titles, keywords, and abstracts of the studies against the eligibility criteria at the first phase and full texts of potential studies at the second phase. Similarly, at least two reviewers manually extracted the data and accessed the risk of bias (National Toxicology Program/Office for Health Assessment and Translation—NTP/OHAT) for the included studies. Finally, the data were synthesised narratively in accordance to synthesis without meta analyses (SWiM) method. Results: In total, 28 studies were included in this review. Most of the records (16) demonstrated increased residual DNA damage in radiosensitive individuals compared to normo-sensitive individuals based on γH2AX and TP53BP1. Overall, 15 studies included proteins other than DNA repair foci, of which five proteins were selected, Vascular endothelial growth factor (VEGF), Caspase 3, p16INK4A (Cyclin-dependent kinase inhibitor 2A, CDKN2A), Interleukin-6, and Interleukin-1β, that were connected to radiosensitivity in normal tissue and were reported at least in two independent studies. Conclusions and implication of key findings: A majority of studies used repair foci as a tool to predict radiosensitivity. However, its correlation to outcome parameters such as repair deficient cell lines and patients, as well as an association to moderate and severe clinical radiation reactions, still remain contradictory. When IR-induced proteins reported in at least two studies were considered, a protein network was discovered, which provides a direction for further studies to elucidate the mechanisms of radiosensitivity. Although the identification of only a few of the commonly reported proteins might raise a concern, this could be because (i) our eligibility criteria were strict and (ii) radiosensitivity is influenced by multiple factors. Registration: PROSPERO (CRD42020220064).
Collapse
|
11
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Baskara I, Kerbrat S, Dagouassat M, Nguyen HQ, Guillot-Delost M, Surenaud M, Baillou C, Lemoine FM, Morin D, Boczkowski J, Le Gouvello S. Cigarette smoking induces human CCR6 +Th17 lymphocytes senescence and VEGF-A secretion. Sci Rep 2020; 10:6488. [PMID: 32300208 PMCID: PMC7162978 DOI: 10.1038/s41598-020-63613-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to environmental pollutants is often associated with systemic inflammation. As such, cigarette smoking contributes to inflammation and lung diseases by inducing senescence of pulmonary cells such as pneumocytes, fibroblasts, and endothelial cells. Yet, how smoking worsens evolution of chronic inflammatory disorders associated with Th17 lymphocytes, such as rheumatoid arthritis, psoriasis, Crohn’s disease, and multiple sclerosis, is largely unknown. Results from human studies show an increase in inflammatory CD4+ Th17 lymphocytes at blood- and pulmonary level in smokers. The aim of the study was to evaluate the sensitivity of CD4+ Th17 lymphocytes to cigarette smoke-induced senescence. Mucosa-homing CCR6+ Th17- were compared to CCR6neg -and regulatory T peripheral lymphocytes after exposure to cigarette smoke extract (CSE). Senescence sensitivity of CSE-exposed cells was assessed by determination of various senescence biomarkers (β-galactosidase activity, p16Ink4a- and p21 expression) and cytokines production. CCR6+ Th17 cells showed a higher sensitivity to CSE-induced senescence compared to controls, which is associated to oxidative stress and higher VEGFα secretion. Pharmacological targeting of ROS- and ERK1/2 signalling pathways prevented CSE-induced senescence of CCR6+Th17 lymphocytes as well as VEGFα secretion. Altogether, these results identify mechanisms by which pro-oxidant environmental pollutants contribute to pro-angiogenic and pathogenic CCR6+Th17 cells, therefore potential targets for therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara
- Université Paris-Est, Créteil, 94000, France.,Inserm, UMR 955, équipe 4, Créteil, F-94010, France
| | - Stéphane Kerbrat
- Université Paris-Est, Créteil, 94000, France.,Inserm, UMR 955, équipe 4, Créteil, F-94010, France
| | - Maylis Dagouassat
- Université Paris-Est, Créteil, 94000, France.,Inserm, UMR 955, équipe 4, Créteil, F-94010, France
| | - Hoang Quy Nguyen
- Université Paris-Est, Créteil, 94000, France.,Inserm, UMR 955, équipe 7, Créteil, F-94010, France
| | - Maude Guillot-Delost
- Institut Curie, PSL Research University, Paris, France.,Inserm, UMR 932, F-75005, Paris, France
| | | | - Claude Baillou
- Sorbonne Université, UPMC Univ-Paris 06, CIMI-Paris- INSERM UMR U 1135, Paris, France
| | - François M Lemoine
- Sorbonne Université, UPMC Univ-Paris 06, CIMI-Paris- INSERM UMR U 1135, Paris, France
| | - Didier Morin
- Université Paris-Est, Créteil, 94000, France.,Inserm, UMR 955, équipe 3, Créteil, F-94010, France
| | - Jorge Boczkowski
- Université Paris-Est, Créteil, 94000, France.,Inserm, UMR 955, équipe 4, Créteil, F-94010, France
| | - Sabine Le Gouvello
- Université Paris-Est, Créteil, 94000, France. .,Inserm, UMR 955, équipe 4, Créteil, F-94010, France. .,AP-HP, Hôpital H. Mondor- A. Chenevier, Pôle de Biologie-Pathologie, Créteil, 94000, France.
| |
Collapse
|
13
|
In Regard to Miyake et al. Int J Radiat Oncol Biol Phys 2020; 106:649-650. [PMID: 32014153 DOI: 10.1016/j.ijrobp.2019.11.404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/07/2019] [Indexed: 11/21/2022]
|