1
|
Jouglar E, de Marzi L, Verrelle P, Créhange G, Ferrand R, Doz F, Prezado Y, Paoletti X. From pre-clinical studies to human treatment with proton-minibeam radiation therapy: adapted Idea, Development, Exploration, Assessment and Long-term evaluation (IDEAL) framework for innovation in radiotherapy. Clin Transl Radiat Oncol 2025; 52:100932. [PMID: 40124645 PMCID: PMC11928333 DOI: 10.1016/j.ctro.2025.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
The implementation and spread of new radiation therapy (RT) techniques are often rushed through before or without high-quality proof of a clinical benefit. The framework for phase 1, 2 and 3 trials, ideally designed for pharmaceutical evaluation, is not always appropriate for RT interventions. The IDEAL framework is a five-step process initially developed to enable the rapid implementation of surgical innovations while limiting risks for patients. IDEAL was subsequently adapted to RT. Proton-minibeam radiation therapy (pMBRT) is an innovative RT approach, using an array of parallel thin beams resulting in an outstanding increase in the therapeutic ratio. Cumulative preclinical evidence showed pMBRT was superior to standard RT regarding brain tolerance and provided equivalent or better local control in several glioblastoma models. We decided to adapt IDEAL to pMBRT to accelerate the implementation of this promising new technique in clinical care and present here some examples of possible upcoming studies.
Collapse
Affiliation(s)
- Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
- Paris-Saclay University, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Ludovic de Marzi
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
- Institut Curie, PSL Research University, Inserm U1288, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| | - Pierre Verrelle
- Institut Curie, PSL Research University, CNRS UMR9187, Inserm U1196, Orsay, France
| | - Gilles Créhange
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
- Institut Curie, PSL Research University, Inserm U1288, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| | - Regis Ferrand
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
| | - François Doz
- SIREDO Centre (Care, Innovation and Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, Paris and University Paris Cité, Paris, France
| | - Yolanda Prezado
- Paris-Saclay University, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Xavier Paoletti
- Institut Curie, PSL Research University, Biostatistic Unit, Paris, France
| |
Collapse
|
2
|
Botti A, Finocchiaro D, Panico N, Trojani V, Paolani G, Iori F, Sghedoni R, Cagni E, Lambertini D, Ciammella P, Iotti C, Iori M. LatticeOpt: An automatic tool for planning optimisation of spatially fractionated stereotactic body radiotherapy. Phys Med 2024; 126:104823. [PMID: 39332099 DOI: 10.1016/j.ejmp.2024.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE Lattice radiotherapy (LRT) is a three dimensional (3D) implementation of spatially fractionated radiation therapy, based on regular spatial distribution of high dose spheres (vertices) inside the target. Due to tumour shape heterogeneity, finding the best lattice arrangement is not trivial. The aim of this study was to develop the LatticeOpt tool to generate the best lattice structures on clinical cases for treatment planning. METHODS Developed in MATLAB, LatticeOpt finds the 3D-spatial configurations that maximize the number of vertices within the gross target volume (GTV). If organs at risk (OARs) are considered, it chooses the solution that minimizes the overlapping volume histograms (OVH). Otherwise, the lattice structure with the minimum Hausdorff distance between vertices and GTV boundary is chosen to avoid unpopulated regions. Different lattice structures were created for 20 patients, with (OVHopt) and without (OVHunopt) OVH minimization. Imported into TPS (Eclipse, Varian), corresponding plans were generated and evaluated in terms of OAR mean and maximum doses, GTV vertex coverage and dose gradients, as well as pre-clinical plan dosimetry. RESULTS Plans based on an optimized lattice structure (OVHopt, OVHunopt) had similar dose distributions in terms of vertex coverage and gradient index score. OAR sparing was observed in all patients, with a 4 % and 9 % difference for mean and max dose (both p-values <0.01), respectively. The best vertices dimensions and their relative distances were patient dependent. CONCLUSIONS LatticeOpt was able to reduce the time-consuming procedures of LRT, as well as to achieve standardized and reproducible results, useful for multicentre studies.
Collapse
Affiliation(s)
- Andrea Botti
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy.
| | - Domenico Finocchiaro
- Azienda Ospedaliero-Universitaria di Modena, Medical Physics Unit, Modena, Italy
| | - Nicola Panico
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Valeria Trojani
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Giulia Paolani
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Federico Iori
- Azienda USL-IRCCS di Reggio Emilia, Radiotherapy Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Roberto Sghedoni
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Elisabetta Cagni
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Daniele Lambertini
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Patrizia Ciammella
- Azienda USL-IRCCS di Reggio Emilia, Radiotherapy Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Cinzia Iotti
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Mauro Iori
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| |
Collapse
|
3
|
Zacharaki EI, Breto AL, Algohary A, Wallaengen V, Gaston SM, Punnen S, Castillo P, Pattany PM, Kryvenko ON, Spieler B, Ford JC, Abramowitz MC, Dal Pra A, Pollack A, Stoyanova R. Integrated framework for quantitative T2-weighted MRI analysis following prostate cancer radiotherapy. Phys Imaging Radiat Oncol 2024; 32:100660. [PMID: 39563782 PMCID: PMC11574798 DOI: 10.1016/j.phro.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose The aim of this study is to develop a framework for quantitative analysis of longitudinal T2-weighted MRIs (T2w) following radiotherapy (RT) for prostate cancer. Materials and methods The developed methodology includes: (i) deformable image registration of longitudinal series to pre-RT T2w for automated detection of prostate, peripheral zone (PZ), and gross tumor volume (GTV); and (ii) T2w signal-intensity harmonization based on three reference tissues. The REgistration and HARMonization (REHARM) framework was applied on T2w acquired in a clinical trial consisting of two pre-RT and three post-RT MRI exams. Image registration was assessed by the DICE coefficient between automatic and manual contours, and intensity normalization via inter-patient histogram intersection. Longitudinal consistency was evaluated by the repeatability coefficient and Pearson correlation (r) between the two T2w exams before RT. Results T2w from 107 MRI exams (23 patients) were utilized. Following REHARM, the histogram intersections for prostate, PZ and GTV increased from median = 0.43/0.16/0.13 to 0.66/0.44/0.46. The repeatability in T2w intensity estimation was better for the automatic than the manual contours for all three regions of interest (r = 0.9, p < 0.0001, for GTV). The changes in the tissues' T2w values pre- and post-RT became significant, indicating the measurable quantitative signal related to radiation. Conclusions The developed methodology allows to automate longitudinal analysis reducing data acquisition-related variation and improving consistency. The quantitative characterization of RT-induced changes in T2w will lead to new understanding of radiation effects enabling prediction modeling of RT response.
Collapse
Affiliation(s)
- Evangelia I Zacharaki
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrian L Breto
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ahmad Algohary
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Veronica Wallaengen
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sandra M Gaston
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanoj Punnen
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patricia Castillo
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pradip M Pattany
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oleksandr N Kryvenko
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Spieler
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Studer G, Jeller D, Streller T, Huebner D, Glanzmann C. Time-Related Outcome Following Palliative Spatially Fractionated Stereotactic Radiation Therapy (Lattice) of Large Tumors - A Case Series. Adv Radiat Oncol 2024; 9:101566. [PMID: 39247539 PMCID: PMC11378109 DOI: 10.1016/j.adro.2024.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/08/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Lattice radiation therapy (LRT), a form of spatially fractionated radiation therapy, holds promise for treating large tumors. Despite its introduction in clinical practice around 2010, there remains limited information on its time-related outcomes despite consistently high response rates and tolerability. We assessed the time-related outcome of our palliative LRT cohort. Methods and Materials We conducted an analysis of our LRT program, which involved 45 palliative patients with 56 lesions larger than 7 cm, treated between January 2022 and November 2023. Prospectively defined treatment protocols included delivering 20 to 25 Gy/5 fractions to the tumor with a stereotactic simultaneously integrated boost (SIB) of 60 to 65 Gy to lattice vertices (n = 45/56) or, mainly in preirradiated lesions, single fraction stereotaxy with 1 × 15 to 20 Gy to vertices only (n = 11/56). Follow-up (FU) intervals were determined based on clinical considerations, considering the mostly highly palliative situation of included patients. Outcome assessments focused on subjective benefit and objective radiologic FU response. Results The mean/median FU was 5.5/4.0 months (0.3-21 months). A total of 25/45 (56%) patients died after a mean/median of 3.9/2.0 months (0.3-14 months). Fourteen of 56 lesions (25%) were previously irradiated, with a mean/median of 18/13 months (4-72 months) prior to LRT. The mean/median gross tumor volume (GTV) measured 797/415 cc (54-4027 cc) and 14/13 cm (7-28 cm). Subjective statements at LRT completion were available from 37 symptomatic patients: 32/37 (87%) reported fast symptom relief, and 5/37 felt no change under LRT or at LRT completion. Early tolerance was excellent (G0-1). FU imaging was available from 40/56 lesions (71%): progression in 3/40 at first exam one at 1.5 and 4 months post-LRT, and stable disease (±10%) in 5/40 assessed at 2, 3, 3, and 4 months post-LRT. First measure shrinkage of 48%/30% (10%-100%) was found in 32/40 lesions (80%) after a mean/median of 2.8/3 months (0.3-7 months). Maximum shrinkage over time based on 21 cases with at least 1 FU imaging measured a mean/median of 62%/60% after 6.2/5.5 months. The duration of radiologic response was a mean/median of 7.4/7.0 months (1-21 months). Conclusions Short-course LRT emerged as an effective and well-tolerated palliative option for very large lesions, whether treatment-naïve or previously irradiated. Nearly 90% of symptomatic patients reported significant subjective benefit, and 80% of assessed lesions demonstrated tumor shrinkage ≥10%, with a mean response duration of >6 months.
Collapse
Affiliation(s)
- Gabriela Studer
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - David Jeller
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - Tino Streller
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - Dirk Huebner
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - Christoph Glanzmann
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| |
Collapse
|
5
|
Zhang H, Wu X. Which Modality of SFRT Should be Considered First for Bulky Tumor Radiation Therapy, GRID or LATTICE? Semin Radiat Oncol 2024; 34:302-309. [PMID: 38880539 DOI: 10.1016/j.semradonc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially fractionated radiation therapy (SFRT), also known as the GRID and LATTICE radiotherapy (GRT, LRT), the concept of treating tumors by delivering a spatially modulated dose with highly non-uniform dose distributions, is a treatment modality of growing interest in radiation oncology, physics, and radiation biology. Clinical experience in SFRT has suggested that GRID and LATTICE therapy can achieve a high response and low toxicity in the treatment of refractory and bulky tumors. Limited initially to GRID therapy using block collimators, advanced, and versatile multi-leaf collimators, volumetric modulated arc technologies and particle therapy have since increased the capabilities and individualization of SFRT and expanded the clinical investigation of SFRT to various dosing regimens, multiple malignancies, tumor types and sites. As a 3D modulation approach outgrown from traditional 2D GRID, LATTICE therapy aims to reconfigure the traditional SFRT as spatial modulation of the radiation is confined solely to the tumor volume. The distinctively different beam geometries used in LATTICE therapy have led to appreciable variations in dose-volume distributions, compared to GRID therapy. The clinical relevance of the variations in dose-volume distribution between LATTICE and traditional GRID therapies is a crucial factor in determining their adoption in clinical practice. In this Point-Counterpoint contribution, the authors debate the pros and cons of GRID and LATTICE therapy. Both modalities have been used in clinics and their applicability and optimal use have been discussed in this article.
Collapse
Affiliation(s)
- Hualin Zhang
- Executive Medical Physics Associates, Miami, FL..
| | - Xiaodong Wu
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA
| |
Collapse
|
6
|
Parisi S, Sciacca M, Critelli P, Ferrantelli G, Chillari F, Venuti V, Napoli C, Shteiwi I, Siragusa C, Brogna A, Pontoriero A, Ferini G, Santacaterina A, Pergolizzi S. Lattice radiotherapy in inflammatory breast cancer: report of a first case treated with curative aim. Radiat Oncol J 2024; 42:160-165. [PMID: 38946079 PMCID: PMC11215509 DOI: 10.3857/roj.2024.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer characterized by poor prognosis. The treatment requires a multidisciplinary approach, with neoadjuvant chemotherapy, surgery, and radiation therapy (RT). Particularly, high doses of conventional RT have been historically delivered in the adjuvant setting after chemotherapy and mastectomy or as radical treatment in patients ineligible for surgery. Here, we report the case of a 49-year-old woman patient with IBC unsuitable for surgery and treated with a combination of lattice RT and fractionated external beam RT concurrent with trastuzumab, with a curative aim. One year after RT, the patient showed a complete response and tolerable toxicities. This is the first reported case of a not-operable IBC patient treated with this particular kind of RT.
Collapse
Affiliation(s)
- Silvana Parisi
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Miriam Sciacca
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Paola Critelli
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giacomo Ferrantelli
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Federico Chillari
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Valeria Venuti
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Claudio Napoli
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Issa Shteiwi
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Carmelo Siragusa
- Medical Physics Unit, University Hospital of Messina, Messina, Italy
| | - Anna Brogna
- Medical Physics Unit, University Hospital of Messina, Messina, Italy
| | - Antonio Pontoriero
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Stefano Pergolizzi
- Radiotherapy Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol 2024; 69:10TR02. [PMID: 38648789 DOI: 10.1088/1361-6560/ad4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, E-15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology, F-75005, Paris and Orsay Protontherapy Center, F-91400, Orsay, France
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Auto`noma de Barcelona, E-08193, Cerdanyola del Valle`s (Barcelona), Spain
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - Joao Seco
- Division of Biomedical physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sha Chang
- Dept of Radiation Oncology and Department of Biomedical Engineering, University of North Carolina School of Medicine, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolin State University, United States of America
| |
Collapse
|
8
|
Zapatero A, Castro P, Roch M, Carnero PR, Carroceda S, Rosciupchin AES, Hernández SH, Cogorno L, Iturriaga AG, García DB. Functional imaging guided stereotactic ablative body radiotherapy (SABR) with focal dose escalation and bladder trigone sparing for intermediate and high-risk prostate cancer: study protocol for phase II safo trial. Radiat Oncol 2024; 19:54. [PMID: 38702761 PMCID: PMC11069220 DOI: 10.1186/s13014-024-02440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Stereotactic ablative body radiotherapy (SABR) is an emerging treatment alternative for patients with localized low and intermediate risk prostate cancer patients. As already explored by some authors in the context of conventional moderate hypofractionated radiotherapy, focal boost of the index lesion defined by magnetic resonance imaging (MRI) is associated with an improved biochemical outcome. The objective of this phase II trial is to determine the effectiveness (in terms of biochemical, morphological and functional control), the safety and impact on quality of life, of prostate SABR with MRI guided focal dose intensification in males with intermediate and high-risk localized prostate cancer. METHODS Patients with intermediate and high-risk prostate cancer according to NCCN definition will be treated with SABR 36.25 Gy in 5 fractions to the whole prostate gland with MRI guided simultaneous integrated focal boost (SIB) to the index lesion (IL) up to 50 Gy in 5 fractions, using a protocol of bladder trigone and urethra sparing. Intra-fractional motion will be monitored with daily cone beam computed tomography (CBCT) and intra-fractional tracking with intraprostatic gold fiducials. Androgen deprivation therapy (ADT) will be allowed. The primary endpoint will be efficacy in terms of biochemical and local control assessed by Phoenix criteria and post-treatment MRI respectively. The secondary endpoints will encompass acute and late toxicity, quality of life (QoL) and progression-free survival. Finally, the subgroup of high-risk patients will be involved in a prospective study focused on immuno-phenotyping. DISCUSSION To the best of our knowledge, this is the first trial to evaluate the impact of post-treatment MRI on local control among patients with intermediate and high-risk prostate cancer undergoing SABR and MRI guided focal intensification. The results of this trial will enhance our understanding of treatment focal intensification through the employment of the SABR technique within this specific patient subgroup, particularly among those with high-risk disease, and will help to clarify the significance of MRI in monitoring local responses. Hopefully will also help to design more personalized biomarker-based phase III trials in this specific context. Additionally, this trial is expected to be incorporated into a prospective radiomics study focused on localized prostate cancer treated with radiotherapy. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT05919524; Registered 17 July 2023. TRIAL SPONSOR IRAD/SEOR (Instituto de Investigación de Oncología Radioterápica / Sociedad Española de Oncología Radioterápica). STUDY SETTING Clinicaltrials.gov identifier: NCT05919524; Registered 17 July 2023. TRIAL STATUS Protocol version number and date: v. 5/ 17 May-2023. Date of recruitment start: August 8, 2023. Date of recruitment completion: July 1, 2024.
Collapse
Affiliation(s)
- Almudena Zapatero
- Radiation Oncology Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Diego de León 62, 28006, Madrid, Spain.
| | - Pablo Castro
- Medical Physics Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Madrid, Spain
| | - María Roch
- Medical Physics Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Madrid, Spain
| | - Pablo Rodríguez Carnero
- Radiology Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Madrid, Spain
| | - Sara Carroceda
- Radiation Oncology Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Diego de León 62, 28006, Madrid, Spain
| | - Alexandra Elena Stoica Rosciupchin
- Radiation Oncology Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Diego de León 62, 28006, Madrid, Spain
| | - Sergio Honorato Hernández
- Medical Physics Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Madrid, Spain
| | - Leopoldo Cogorno
- Urology Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Madrid, Spain
| | - Alfonso Gómez Iturriaga
- Department of Surgery and Radiology and Physical Medicine, Hospital Universitario Cruces, University of the Basque Country UPV/EHU, Biobizkaia Health Research Institute, Bizkaia, Spain
| | - David Büchser García
- Radiation Oncology Department, Hospital Universitario de la Princesa, Health Research Institute IIS- IP, Diego de León 62, 28006, Madrid, Spain
| |
Collapse
|
9
|
Lukas L, Zhang H, Cheng K, Epstein A. Immune Priming with Spatially Fractionated Radiation Therapy. Curr Oncol Rep 2023; 25:1483-1496. [PMID: 37979032 PMCID: PMC10728252 DOI: 10.1007/s11912-023-01473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current preclinical and clinical evidence of nontargeted immune effects of spatially fractionated radiation therapy (SFRT). We then highlight strategies to augment the immunomodulatory potential of SFRT in combination with immunotherapy (IT). RECENT FINDINGS The response of cancer to IT is limited by primary and acquired immune resistance, and strategies are needed to prime the immune system to increase the efficacy of IT. Radiation therapy can induce immunologic effects and can potentially be used to synergize the effects of IT, although the optimal combination of radiation and IT is largely unknown. SFRT is a novel radiation technique that limits ablative doses to tumor subvolumes, and this highly heterogeneous dose deposition may increase the immune-rich infiltrate within the targeted tumor with enhanced antigen presentation and activated T cells in nonirradiated tumors. The understanding of nontargeted effects of SFRT can contribute to future translational strategies to combine SFRT and IT. Integration of SFRT and IT is an innovative approach to address immune resistance to IT with the overall goal of improving the therapeutic ratio of radiation therapy and increasing the efficacy of IT.
Collapse
Affiliation(s)
- Lauren Lukas
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hualin Zhang
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karen Cheng
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Zhang W, Lin Y, Wang F, Badkul R, Chen RC, Gao H. Lattice position optimization for LATTICE therapy. Med Phys 2023; 50:7359-7367. [PMID: 37357825 PMCID: PMC11058082 DOI: 10.1002/mp.16572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND LATTICE radiation therapy delivers 3D heterogenous dose of high peak-to-valley dose ratio (PVDR) to the tumor target, with peak dose at lattice vertices inside the target and valley dose for the rest of the target. Although the lattice vertex positions can impact PVDR inside the target and sparing of organs-at-risk (OAR), they are fixed as constants and not optimized during treatment planning in current clinical practice. PURPOSE This work proposes a new LATTICE plan optimization method that can optimize lattice vertex positions during LATTICE treatment planning, which is the first lattice position optimization study to the best of our knowledge. METHODS The new LATTICE treatment planning method optimizes lattice vertex positions as well as other plan variables (e.g., photon fluences or proton spot weights), with optimization objectives for target PVDR and OAR sparing. To satisfy mathematical differentiability, the lattice vertices are approximated in sigmoid functions. For geometric feasibility, proper geometry constraints are enforced onto lattice vertex positions. The lattice position optimization problem is solved by iterative convex relaxation (ICR) method and alternating direction method of multipliers (ADMM), and lattice vertex positions and photon/proton plan variables are jointly updated via the Quasi-Newton method. RESULTS Both photon and proton LATTICE RT were considered, and the optimal lattice vertex positions in terms of plan objectives were found by solving all possible combinations on given discrete positions via exhaustive searching based on standard IMRT/IMPT, which served as the ground truth for validating the new LATTICE method. The results show that the new method indeed provided the optimal lattice vertex positions with the smallest optimization objective, the largest target PVDR, and the best OAR sparing. CONCLUSIONS A new LATTICE treatment planning method is proposed and validated that can optimize lattice vertex positions as well as other photon or proton plan variables for improving target PVDR and OAR sparing.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Radiation Oncology, University of Kansas Medical Center, Lawrence, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Lawrence, Kansas, USA
| | - Fen Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Lawrence, Kansas, USA
| | - Rajeev Badkul
- Department of Radiation Oncology, University of Kansas Medical Center, Lawrence, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Lawrence, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Lawrence, Kansas, USA
| |
Collapse
|
11
|
Zhao Y, Haworth A, Rowshanfarzad P, Ebert MA. Focal Boost in Prostate Cancer Radiotherapy: A Review of Planning Studies and Clinical Trials. Cancers (Basel) 2023; 15:4888. [PMID: 37835581 PMCID: PMC10572027 DOI: 10.3390/cancers15194888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Focal boost radiotherapy was developed to deliver elevated doses to functional sub-volumes within a target. Such a technique was hypothesized to improve treatment outcomes without increasing toxicity in prostate cancer treatment. PURPOSE To summarize and evaluate the efficacy and variability of focal boost radiotherapy by reviewing focal boost planning studies and clinical trials that have been published in the last ten years. METHODS Published reports of focal boost radiotherapy, that specifically incorporate dose escalation to intra-prostatic lesions (IPLs), were reviewed and summarized. Correlations between acute/late ≥G2 genitourinary (GU) or gastrointestinal (GI) toxicity and clinical factors were determined by a meta-analysis. RESULTS By reviewing and summarizing 34 planning studies and 35 trials, a significant dose escalation to the GTV and thus higher tumor control of focal boost radiotherapy were reported consistently by all reviewed studies. Reviewed trials reported a not significant difference in toxicity between focal boost and conventional radiotherapy. Acute ≥G2 GU and late ≥G2 GI toxicities were reported the most and least prevalent, respectively, and a negative correlation was found between the rate of toxicity and proportion of low-risk or intermediate-risk patients in the cohort. CONCLUSION Focal boost prostate cancer radiotherapy has the potential to be a new standard of care.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA 6000, Australia
| | - Martin A. Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- 5D Clinics, Claremont, WA 6010, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison WI 53706, USA
| |
Collapse
|
12
|
Pedroso Partichelli F, de Arruda Botelho M. Evaluation of the applicability of the lattice radiotherapy technique at the National Cancer Institute - INCA. Med Dosim 2023; 48:245-248. [PMID: 37414713 DOI: 10.1016/j.meddos.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023]
Abstract
Lattice is a 3-dimensional spatially fractionated radiotherapy that uses a distribution of high-doses, similar to spheres at vertices of a 3D network or matrix. These vertices that receive the high-dose are called peaks, while the rest of the target volume that receives a lower dose, is called the valley. This study aims to verify the technical feasibility for Spatially Fractionated Radiation Therapy treatment using the Lattice technique performed with VMAT at the National Cancer Institute José Alencar Gomes da Silva - INCA, Unit I. Ten patient cases were selected, with gross tumor volumes ranging from 90 to 1734 cc. A literature review was carried out to determine the geometry, the distribution of peaks and the peak to valley dose ratio that will be used in the Lattice technique plans. The dose distributions in the targets and organs at risk of the Lattice plans were clinically compared with the plans without the peaks. A configuration of spheres with diameter of 1.2 cm, separated center-to-center by 3 cm and with a prescription of 14 Gy in a single dose at these peaks was estabilished, while the valley had a prescription of 25 Gy in 5 fractions. Despite the increase in the prescribed equivalent dose in 2 Gy fractions from 40 Gy to 79.3 Gy, the median increase in doses to the OARs was 2.7%, with a maximum increase of 14.7%. The quality control of the plans was approved through the gamma analysis of the measurements performed with the Varian EPID. These findings demonstrate the technical feasibility of SFRT using the lattice technique with VMAT, and suggest that it may provide an effective delivery of high radiation therapy doses to tumors while minimizing the damage to surrounding healthy tissues.
Collapse
Affiliation(s)
- Fernanda Pedroso Partichelli
- Medical Phisics/Radiotherapy, Medical Physics Resident, National Cancer Institute, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marina de Arruda Botelho
- Medical Phisics/Radiotherapy, Senior Medical Physics, National Cancer Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Wegener E, Samuels J, Sidhom M, Trada Y, Sridharan S, Dickson S, McLeod N, Martin JM. Virtual HDR Boost for Prostate Cancer: Rebooting a Classic Treatment Using Modern Tech. Cancers (Basel) 2023; 15:cancers15072018. [PMID: 37046680 PMCID: PMC10093761 DOI: 10.3390/cancers15072018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Prostate cancer (PC) is the most common malignancy in men. Internal radiotherapy (brachytherapy) has been used to treat PC successfully for over a century. In particular, there is level-one evidence of the benefits of using brachytherapy to escalate the dose of radiotherapy compared with standard external beam radiotherapy approaches. However, the use of PC brachytherapy is declining, despite strong evidence for its improved cancer outcomes. A method using external beam radiotherapy known as virtual high-dose-rate brachytherapy boost (vHDRB) aims to noninvasively mimic a brachytherapy boost radiation dose plan. In this review, we consider the evidence supporting brachytherapy boosts for PC and the continuing evolution of vHDRB approaches, culminating in the current generation of clinical trials, which will help define the role of this emerging modality.
Collapse
Affiliation(s)
- Eric Wegener
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
- GenesisCare, Maitland, NSW 2323, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
- Correspondence:
| | - Justin Samuels
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Mark Sidhom
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Yuvnik Trada
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Swetha Sridharan
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
| | - Samuel Dickson
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Nicholas McLeod
- Department of Urology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Jarad M. Martin
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
- GenesisCare, Maitland, NSW 2323, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
| |
Collapse
|
14
|
Hatoum GF, Temple HT, Garcia SA, Zheng Y, Kfoury F, Kinley J, Wu X. Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma. Cancer Manag Res 2023; 15:113-122. [PMID: 36776730 PMCID: PMC9910204 DOI: 10.2147/cmar.s393934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose To report a case of large extremity soft tissue sarcoma (2933 cc), safely treated with a novel approach of interdigitating high-dose LATTICE radiation therapy (LRT) with standard radiation therapy as a neoadjuvant treatment to surgery. Patients and Methods Four sessions of high-dose LRT were delivered in a weekly interval, interdigitated with standard radiation therapy. The LRT plan consisted of 15 high-dose vertices receiving a dose >12 Gy per session, with 2-3 Gy to the peripheral margin of the tumor. The patient underwent surgical excision 2 months after the new regimen of induction radiation therapy. Results and Discussion The patient tolerated the radiation therapy regimen well. The post-operative assessment revealed a negative surgical margin and over 95% necrosis of the total tumor volume. The post-surgical wound complication was mitigated by outpatient wound care. Interdigitating multiple sessions of high-dose LATTICE radiation treatments with standard neoadjuvant radiation therapy as a neoadjuvant therapy for soft tissue sarcoma was feasible and did not incur additional toxicity in this clinical case. A phase-I/II trial will be conducted to further evaluate the toxicity and efficacy of the new treatment strategy with the intent to increase the rate of pathologic necrosis, which has been shown to positively correlate with the overall survival.
Collapse
Affiliation(s)
- Georges F Hatoum
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
| | - H Thomas Temple
- Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvio A Garcia
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
| | - Yi Zheng
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
- Department of Research and Development, Executive Medical Physics Associates, North Miami Beach, FL, USA
| | - Fouad Kfoury
- Pharmacy Department, South Miami Hospital, South Miami, FL, USA
| | - Jill Kinley
- Department of Clinical Research, HCA Florida JFK Medical Center, Atlantis, FL, USA
| | - Xiaodong Wu
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
- Department of Research and Development, Executive Medical Physics Associates, North Miami Beach, FL, USA
| |
Collapse
|
15
|
Hara D, Tao W, Schmidt RM, Yang YP, Daunert S, Dogan N, Ford JC, Pollack A, Shi J. Boosted Radiation Bystander Effect of PSMA-Targeted Gold Nanoparticles in Prostate Cancer Radiosensitization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4440. [PMID: 36558293 PMCID: PMC9784958 DOI: 10.3390/nano12244440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Metal nanoparticles are effective radiosensitizers that locally enhance radiation doses in targeted cancer cells. Compared with other metal nanoparticles, gold nanoparticles (GNPs) exhibit high biocompatibility, low toxicity, and they increase secondary electron scatter. Herein, we investigated the effects of active-targeting GNPs on the radiation-induced bystander effect (RIBE) in prostate cancer cells. The impact of GNPs on the RIBE presents implications for secondary cancers or spatially fractionated radiotherapy treatments. Anti-prostate-specific membrane antigen (PSMA) antibodies were conjugated with PEGylated GNPs through EDC-NHS chemistry. The media transfer technique was performed to induce the RIBE on the non-irradiated bystander cells. This study focused on the LNCaP cell line, because it can model a wide range of stages relating to prostate cancer progression, including the transition from androgen dependence to castration resistance and bone metastasis. First, LNCaP cells were pretreated with phosphate buffered saline (PBS) or PSMA-targeted GNPs (PGNPs) for 24 h and irradiated with 160 kVp X-rays (0-8 Gy). Following that, the collected culture media were filtered (sterile 0.45 µm polyethersulfone) in order to acquire PBS- and PGNP- conditioned media (CM). Then, PBS- and PGNP-CM were transferred to the bystander cells that were loaded with/without PGNPs. MTT, γ-H2AX, clonogenic assays and reactive oxygen species assessments were performed to compare RIBE responses under different treatments. Compared with 2 Gy-PBS-CM, 8 Gy-PBS-CM demonstrated a much higher RIBE response, thus validating the dose dependence of RIBE in LNCaP cells. Compared with PBS-CM, PGNP-CM exhibited lower cell viability, higher DNA damage, and a smaller survival fraction. In the presence of PBS-CM, bystander cells loaded with PGNPs showed increased cell death compared with cells that did not have PGNPs. These results demonstrate the PGNP-boosted expression and sensitivity of RIBE in prostate cancer cells.
Collapse
Affiliation(s)
- Daiki Hara
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ryder M. Schmidt
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - John Chetley Ford
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL 33146, USA
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Junwei Shi
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
16
|
Magnetic Resonance Imaging–guided Focal Boost to Intraprostatic Lesions Using External Beam Radiotherapy for Localized Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2022. [DOI: 10.1016/j.euo.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Algohary A, Alhusseini M, Breto AL, Kwon D, Xu IR, Gaston SM, Castillo P, Punnen S, Spieler B, Abramowitz MC, Dal Pra A, Kryvenko ON, Pollack A, Stoyanova R. Longitudinal Changes and Predictive Value of Multiparametric MRI Features for Prostate Cancer Patients Treated with MRI-Guided Lattice Extreme Ablative Dose (LEAD) Boost Radiotherapy. Cancers (Basel) 2022; 14:cancers14184475. [PMID: 36139635 PMCID: PMC9496901 DOI: 10.3390/cancers14184475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated the longitudinal changes in multiparametric MRI (mpMRI) (T2-weighted, Apparent Diffusion Coefficient (ADC), and Dynamic Contrast Enhanced (DCE-)MRI) of prostate cancer patients receiving Lattice Extreme Ablative Dose (LEAD) radiotherapy (RT) and the capability of their imaging features to predict RT outcome based on endpoint biopsies. Ninety-five mpMRI exams from 25 patients, acquired pre-RT and at 3-, 9-, and 24-months post-RT were analyzed. MRI/Ultrasound-fused biopsies were acquired pre- and at two-years post-RT (endpoint). Five regions of interest (ROIs) were analyzed: Gross tumor volume (GTV), normally-appearing tissue (NAT) and peritumoral volume in both peripheral (PZ) and transition (TZ) zones. Diffusion and perfusion radiomics features were extracted from mpMRI and compared before and after RT using two-tailed Student t-tests. Selected features at the four scan points and their differences (Δ radiomics) were used in multivariate logistic regression models to predict the endpoint biopsy positivity. Baseline ADC values were significantly different between GTV, NAT-PZ, and NAT-TZ (p-values < 0.005). Pharmaco-kinetic features changed significantly in the GTV at 3-month post-RT compared to baseline. Several radiomics features at baseline and three-months post-RT were significantly associated with endpoint biopsy positivity and were used to build models with high predictive power of this endpoint (AUC = 0.98 and 0.89, respectively). Our study characterized the RT-induced changes in perfusion and diffusion. Quantitative imaging features from mpMRI show promise as being predictive of endpoint biopsy positivity.
Collapse
Affiliation(s)
- Ahmad Algohary
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mohammad Alhusseini
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Adrian L. Breto
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Deukwoo Kwon
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isaac R. Xu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra M. Gaston
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Patricia Castillo
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanoj Punnen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Benjamin Spieler
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew C. Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oleksandr N. Kryvenko
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-5856
| |
Collapse
|
18
|
Dincer N, Ugurluer G, Korkmaz L, Serkizyan A, Atalar B, Gungor G, Ozyar E. Magnetic Resonance Imaging-Guided Online Adaptive Lattice Stereotactic Body Radiotherapy in Voluminous Liver Metastasis: Two Case Reports. Cureus 2022; 14:e23980. [PMID: 35541303 PMCID: PMC9084247 DOI: 10.7759/cureus.23980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Lattice Radiotherapy (LRT) is a technique in which heterogeneous doses are delivered to the target so large tumors can have optimal doses of radiation without compromising healthy tissue sparing. To date, case reports and case series documented its application for bulky tumors mainly in the pelvic region. LRT not only provides dosimetric advantages but also promotes tumor control by triggering some radiobiological and immunological pathways. We report two cases of giant liver metastases for whom other treatment options were not suitable. We treated both patients with Magnetic Resonance Image-Guided Radiotherapy (MRgRT) with online adaptive LRT (OALRT) technique. Adaptive plans were generated before each fraction. Tumors were observed to have regressed interfractionally so the location and number of spheres were adapted to tumor size and daily anatomy of the surrounding organs at risk (OAR). Both patients had good treatment compliance without any Grade 3+ side effects. They are both under follow-up and report improvement. By reporting the first application of OALRT by using MRgRT in liver metastases, we show that MRgRT is a promising modality for LRT technique with better target and OAR visualization as well as online adaptive planning before each fraction according to the daily anatomy of the patient.
Collapse
Affiliation(s)
- Neris Dincer
- Radiation Oncology, Acibadem University, Istanbul, TUR
| | | | - Latif Korkmaz
- Radiation Oncology, Acibadem Maslak Hospital, Istanbul, TUR
| | | | - Banu Atalar
- Radiation Oncology, Acibadem University, Istanbul, TUR
| | - Gorkem Gungor
- Radiation Oncology, Acibadem Maslak Hospital, Istanbul, TUR
| | - Enis Ozyar
- Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, TUR.,Radiation Oncology, Acibadem Hospital, Istanbul, TUR
| |
Collapse
|
19
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
20
|
LITE SABR M1: Planning design and dosimetric endpoints for a phase I trial of lattice SBRT. Radiother Oncol 2021; 167:172-178. [PMID: 34896459 DOI: 10.1016/j.radonc.2021.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Lattice stereotactic body radiation therapy (SBRT) is a form of spatially fractionated radiation therapy (SFRT) using SBRT methods. This study reports clinical dosimetric endpoints achieved for Lattice SBRT plans delivering 20 Gy in 5 fractions to the periphery of a tumor with a simultaneous integrated boost (SIB) of 66.7 Gy, as part of a prospective Phase I clinical trial (NCT04133415). Additionally, it updates previously reported planning and delivery techniques based on extended experience with a broader patient population. METHODS Patients were enrolled on a single-arm phase I trial conducted between November 2019 and August 2020. Eligibility was restricted to tumors >4.5 cm in the largest dimension. Characteristic SFRT dose gradients were achieved using a lattice of 1.5 cm diameter spheres spaced within the GTV in a regular pattern, with peak-to-valley dose varying from 66.7 Gy to 20 Gy within 1.5 cm. Organ-at-risk (OAR) sparing followed AAPM TG101 recommendations for 5-fraction SBRT. RESULTS Twenty patients (22 plans) were enrolled on study, with one additional plan treated off study. All OAR and target coverage planning objectives were achieved, with the exception of a single small bronchus. Conformity of the 20 Gy isodose line significantly improved over the course of the study. The majority (85.2%) of treatment fractions were delivered in a 30 minutes timeslot, with 4 (3.5%) exceeding a total treatment time of 40 minutes. CONCLUSION Lattice SBRT planning techniques produce consistent and efficient treatment plans. Refined techniques described here further improve the quality of the planning technique.
Collapse
|
21
|
Li M, Zhang Q, Yang K. Role of MRI-Based Functional Imaging in Improving the Therapeutic Index of Radiotherapy in Cancer Treatment. Front Oncol 2021; 11:645177. [PMID: 34513659 PMCID: PMC8429950 DOI: 10.3389/fonc.2021.645177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/30/2021] [Indexed: 02/05/2023] Open
Abstract
Advances in radiation technology, such as intensity-modulated radiation therapy (IMRT), have largely enabled a biological dose escalation of the target volume (TV) and reduce the dose to adjacent tissues or organs at risk (OARs). However, the risk of radiation-induced injury increases as more radiation dose utilized during radiation therapy (RT), which predominantly limits further increases in TV dose distribution and reduces the local control rate. Thus, the accurate target delineation is crucial. Recently, technological improvements for precise target delineation have obtained more attention in the field of RT. The addition of functional imaging to RT can provide a more accurate anatomy of the tumor and normal tissues (such as location and size), along with biological information that aids to optimize the therapeutic index (TI) of RT. In this review, we discuss the application of some common MRI-based functional imaging techniques in clinical practice. In addition, we summarize the main challenges and prospects of these imaging technologies, expecting more inspiring developments and more productive research paths in the near future.
Collapse
Affiliation(s)
- Mei Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixuan Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers (Basel) 2021; 13:cancers13133290. [PMID: 34209192 PMCID: PMC8268715 DOI: 10.3390/cancers13133290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
Palliative radiotherapy has a great role in the treatment of large tumor masses. However, treating a bulky disease could be difficult, especially in critical anatomical areas. In daily clinical practice, short course hypofractionated radiotherapy is delivered in order to control the symptomatic disease. Radiation fields generally encompass the entire tumor mass, which is homogeneously irradiated. Recent technological advances enable delivering a higher radiation dose in small areas within a large mass. This goal, previously achieved thanks to the GRID approach, is now achievable using the newest concept of LATTICE radiotherapy (LT-RT). This kind of treatment allows exploiting various radiation effects, such as bystander and abscopal effects. These events may be enhanced by the concomitant use of immunotherapy, with the latter being ever more successfully delivered in cancer patients. Moreover, a critical issue in the treatment of large masses is the inhomogeneous intratumoral distribution of well-oxygenated and hypo-oxygenated areas. It is well known that hypoxic areas are more resistant to the killing effect of radiation, hence the need to target them with higher aggressive doses. This concept introduces the "oxygen-guided radiation therapy" (OGRT), which means looking for suitable hypoxic markers to implement in PET/CT and Magnetic Resonance Imaging. Future treatment strategies are likely to involve combinations of LT-RT, OGRT, and immunotherapy. In this paper, we review the radiobiological rationale behind a potential benefit of LT-RT and OGRT, and we summarize the results reported in the few clinical trials published so far regarding these issues. Lastly, we suggest what future perspectives may emerge by combining immunotherapy with LT-RT/OGRT.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
- Correspondence: ; Tel.: +39-095-789-4581
| | - Vito Valenti
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
| | | | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy;
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| |
Collapse
|
24
|
Wu X, Perez NC, Zheng Y, Li X, Jiang L, Amendola BE, Xu B, Mayr NA, Lu JJ, Hatoum GF, Zhang H, Chang SX, Griffin RJ, Guha C. The Technical and Clinical Implementation of LATTICE Radiation Therapy (LRT). Radiat Res 2021; 194:737-746. [PMID: 33064814 DOI: 10.1667/rade-20-00066.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/03/2022]
Abstract
The concept of spatially fractionated radiation therapy (SFRT) was conceived over 100 years ago, first in the form of GRID, which has been applied to clinical practice since its early inception and continued to the present even with markedly improved instrumentation in radiation therapy. LATTICE radiation therapy (LRT) was introduced in 2010 as a conceptual 3D extension of GRID therapy with several uniquely different features. Since 2014, when the first patient was treated, over 150 patients with bulky tumors worldwide have received LRT. Through a brief review of the basic principles and the analysis of the collective clinical experience, a set of technical recommendations and guidelines are proposed for the clinical implementation of LRT. It is to be recognized that the current clinical practice of SFRT (GRID or LRT) is still largely based on the heuristic principles. With advancements in basic biological research and the anticipated clinical trials to systemically assess the efficacy and risk, progressively robust optimizations of the technical parameters are essential for the broader application of SFRT in clinical practice.
Collapse
Affiliation(s)
- Xiaodong Wu
- Executive Medical Physics Associates, North Miami Beach, Florida.,Innovative Cancer Institute, South Miami, Florida.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Yi Zheng
- Executive Medical Physics Associates, North Miami Beach, Florida.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Liuqing Jiang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington School of Medline, Seattle, Washington
| | - Jiade J Lu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | | | - Hualin Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sha X Chang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Chandan Guha
- Department of Radiation Oncology Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
25
|
Jiang L, Li X, Zhang J, Li W, Dong F, Chen C, Lin Q, Zhang C, Zheng F, Yan W, Zheng Y, Wu X, Xu B. Combined High-Dose LATTICE Radiation Therapy and Immune Checkpoint Blockade for Advanced Bulky Tumors: The Concept and a Case Report. Front Oncol 2021; 10:548132. [PMID: 33643893 PMCID: PMC7907519 DOI: 10.3389/fonc.2020.548132] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
Although the combination of immune checkpoint blockades with high dose of radiation has indicated the potential of co-stimulatory effects, consistent clinical outcome has been yet to be demonstrated. Bulky tumors present challenges for radiation treatment to achieve high rate of tumor control due to large tumor sizes and normal tissue toxicities. As an alternative, spatially fractionated radiotherapy (SFRT) technique has been applied, in the forms of GRID or LATTICE radiation therapy (LRT), to safely treat bulky tumors. When used alone in a single or a few fractions, GRID or LRT can be best classified as palliative or tumor de-bulking treatments. Since only a small fraction of the tumor volume receive high dose in a SFRT treatment, even with the anticipated bystander effects, total tumor eradications are rare. Backed by the evidence of immune activation of high dose radiation, it is logical to postulate that the combination of High-Dose LATTICE radiation therapy (HDLRT) with immune checkpoint blockade would be effective and could subsequently lead to improved local tumor control without added toxicities, through augmenting the effects of radiation in-situ vaccine and T-cell priming. We herein present a case of non-small cell lung cancer (NSCLC) with multiple metastases. The patient received various types of palliative radiation treatments with combined chemotherapies and immunotherapies to multiple lesions. One of the metastatic lesions measuring 63.2 cc was treated with HDLRT combined with anti-PD1 immunotherapy. The metastatic mass regressed 77.84% over one month after the treatment, and had a complete local response (CR) five months after the treatment. No treatment-related side effects were observed during the follow-up exams. None of the other lesions receiving palliative treatments achieved CR. The dramatic differential outcome of this case lends support to the aforementioned postulate and prompts for further systemic clinical studies.
Collapse
Affiliation(s)
- Liuqing Jiang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenyao Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fangfen Dong
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cheng Chen
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Qingliang Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chonglin Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fen Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson Medical College, Philadelphia, PA, United States
| | - Yi Zheng
- Department of Medical Physics, Executive Medical Physics Associates, Miami, FL, United States
| | - Xiaodong Wu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Physics, Executive Medical Physics Associates, Miami, FL, United States
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Delgadillo R, Ford JC, Abramowitz MC, Dal Pra A, Pollack A, Stoyanova R. The role of radiomics in prostate cancer radiotherapy. Strahlenther Onkol 2020; 196:900-912. [PMID: 32821953 PMCID: PMC7545508 DOI: 10.1007/s00066-020-01679-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
"Radiomics," as it refers to the extraction and analysis of a large number of advanced quantitative radiological features from medical images using high-throughput methods, is perfectly suited as an engine for effectively sifting through the multiple series of prostate images from before, during, and after radiotherapy (RT). Multiparametric (mp)MRI, planning CT, and cone beam CT (CBCT) routinely acquired throughout RT and the radiomics pipeline are developed for extraction of thousands of variables. Radiomics data are in a format that is appropriate for building descriptive and predictive models relating image features to diagnostic, prognostic, or predictive information. Prediction of Gleason score, the histopathologic cancer grade, has been the mainstay of the radiomic efforts in prostate cancer. While Gleason score (GS) is still the best predictor of treatment outcome, there are other novel applications of quantitative imaging that are tailored to RT. In this review, we summarize the radiomics efforts and discuss several promising concepts such as delta-radiomics and radiogenomics for utilizing image features for assessment of the aggressiveness of prostate cancer and its outcome. We also discuss opportunities for quantitative imaging with the advance of instrumentation in MRI-guided therapies.
Collapse
Affiliation(s)
- Rodrigo Delgadillo
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA.
| |
Collapse
|