1
|
Ye C, Zhang H, Chi Z, Xu Z, Cai Y, Xu Y, Tong X. Machine Learning-Based Multimodal Radiomics and Transcriptomics Models for Predicting Radiotherapy Sensitivity and Prognosis in Esophageal Cancer. J Biol Chem 2025:110242. [PMID: 40381695 DOI: 10.1016/j.jbc.2025.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/23/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.
Collapse
Affiliation(s)
- Chengyu Ye
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Hao Zhang
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Zhou Chi
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Zhina Xu
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Yujie Cai
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Yajing Xu
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Xiangmin Tong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
2
|
Yin X, Cui Y, Liu T, Li Z, Liu H, Ma X, Sha X, Ma C, Han D, Yin Y. Development and validation a radiomics combined clinical model predicts treatment response for esophageal squamous cell carcinoma patients. BMC Gastroenterol 2025; 25:313. [PMID: 40301780 PMCID: PMC12042612 DOI: 10.1186/s12876-025-03899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
PURPOSE This study is aimed to develop and validate a machine learning model, which combined radiomics and clinical characteristics to predicting the definitive chemoradiotherapy (dCRT) treatment response in esophageal squamous cell carcinoma (ESCC) patients. METHODS 204 advanced ESCC patients were included who underwent dCRT at our hospital. Patients were randomly divided into training cohort and validation cohort with a ratio of 7:3. The radiomics features were selected by LASSO algorithm. The clinical features were selected by multivariate logistics analysis (p < 0.05). Subsequently, a combined radiomics and clinical model was established and validated to predict the treatment response in ESCC patients by logistic regression model. The performance of the model was evaluated by receiver operating characteristic (ROC) curve, decision curve analysis (DCA), nomogram, and calibration curve. RESULTS Total of 944 radiomics features were extracted from the pre-treatment contrasted enhanced CT images (CECT). After feature selection, 3 radiomics features and 3 clinical features were identified as the most predictive variables. The combined model shows better prediction performance among radiomics model or clinical model. The radiomics model's AUC values in training and validation cohort are 0.71,0.69. As for clinical model the AUC values were 0.74,0.75 in training and validation cohort. However, the AUC values in combined model are 0.79, 0.78 in training cohort and validation cohort, respectively. DCA and calibration curve also demonstrated good performance for the combined model. CONCLUSION The radiomics combined clinical features model demonstrates superior treatment response prediction ability for ESCC patients received dCRT. This model has the potential to assist clinicians in identifying non-responsive patients before treatment and guide individualized therapy for advanced ESCC patients.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yongbin Cui
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Tonghai Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenjiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Huiling Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Urumuqi, China
| | - Xingmin Ma
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Sha
- Department of Radiation Oncology, Affiliated Cancer Hospital, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Urumuqi, China
| | - Changsheng Ma
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Dali Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
3
|
Huang X, Qin M, Fang M, Wang Z, Hu C, Zhao T, Qin Z, Zhu H, Wu L, Yu G, De Cobelli F, Xie X, Palumbo D, Tian J, Dong D. The application of artificial intelligence in upper gastrointestinal cancers. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:113-131. [PMID: 40265096 PMCID: PMC12010392 DOI: 10.1016/j.jncc.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/17/2024] [Accepted: 12/20/2024] [Indexed: 04/24/2025] Open
Abstract
Upper gastrointestinal cancers, mainly comprising esophageal and gastric cancers, are among the most prevalent cancers worldwide. There are many new cases of upper gastrointestinal cancers annually, and the survival rate tends to be low. Therefore, timely screening, precise diagnosis, appropriate treatment strategies, and effective prognosis are crucial for patients with upper gastrointestinal cancers. In recent years, an increasing number of studies suggest that artificial intelligence (AI) technology can effectively address clinical tasks related to upper gastrointestinal cancers. These studies mainly focus on four aspects: screening, diagnosis, treatment, and prognosis. In this review, we focus on the application of AI technology in clinical tasks related to upper gastrointestinal cancers. Firstly, the basic application pipelines of radiomics and deep learning in medical image analysis were introduced. Furthermore, we separately reviewed the application of AI technology in the aforementioned aspects for both esophageal and gastric cancers. Finally, the current limitations and challenges faced in the field of upper gastrointestinal cancers were summarized, and explorations were conducted on the selection of AI algorithms in various scenarios, the popularization of early screening, the clinical applications of AI, and large multimodal models.
Collapse
Affiliation(s)
- Xiaoying Huang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Minghao Qin
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology Beijing, Beijing, China
| | - Mengjie Fang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Zipei Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Chaoen Hu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Tongyu Zhao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Zhuyuan Qin
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Ling Wu
- KiangWu Hospital, Macau, China
| | | | | | | | - Diego Palumbo
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Mela E, Tsapralis D, Papaconstantinou D, Sakarellos P, Vergadis C, Klontzas ME, Rouvelas I, Tzortzakakis A, Schizas D. Current Role of Artificial Intelligence in the Management of Esophageal Cancer. J Clin Med 2025; 14:1845. [PMID: 40142652 PMCID: PMC11943403 DOI: 10.3390/jcm14061845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Esophageal cancer (EC) represents a major global contributor to cancer-related mortality. The advent of artificial intelligence (AI), including machine learning, deep learning, and radiomics, holds promise for enhancing treatment decisions and predicting outcomes. The aim of this review is to present an overview of the current landscape and future perspectives of AI in the management of EC. Methods: A literature search was performed on MEDLINE using the following keywords: "Artificial Intelligence", "Esophageal cancer", "Barrett's esophagus", "Esophageal Adenocarcinoma", and "Esophageal Squamous cell carcinoma". All titles and abstracts were screened; the results included 41 studies. Results: Over the past five years, the number of studies focusing on the application of AI to the treatment and prognosis of EC has surged, leveraging increasingly larger datasets with external validation. The simultaneous incorporation in AI models of clinical factors and features from several imaging modalities displays improved predictive performance, which may enhance patient outcomes, based on direct personalized therapeutic options. However, clinicians and researchers must address existing limitations, conduct randomized controlled trials, and consider the ethical and legal aspects that arise to establish AI as a standard decision-support tool. Conclusions: AI applications may result in substantial advances in EC management, heralding a new era. Considering the complexity of EC as a clinical entity, the evolving potential of AI is anticipated to ameliorate patients' quality of life and survival rates.
Collapse
Affiliation(s)
- Evgenia Mela
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| | - Dimitrios Tsapralis
- Department of Surgery, General Hospital of Ierapetra, 72200 Ierapetra, Greece;
| | - Dimitrios Papaconstantinou
- Third Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | - Panagiotis Sakarellos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| | | | - Michail E. Klontzas
- Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, 14152 Stockholm, Sweden; (M.E.K.); (A.T.)
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Crete, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), 71500 Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, 70013 Heraklion, Greece
| | - Ioannis Rouvelas
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Surgery and Oncology, Karolinska Institutet, 14152 Stockholm, Sweden;
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Huddinge, 14152 Stockholm, Sweden
| | - Antonios Tzortzakakis
- Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, 14152 Stockholm, Sweden; (M.E.K.); (A.T.)
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, 14152 Stockholm, Sweden
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| |
Collapse
|
5
|
Zhang WY, Chang YJ, Shi RH. Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology era. World J Gastroenterol 2024; 30:4267-4280. [PMID: 39492825 PMCID: PMC11525855 DOI: 10.3748/wjg.v30.i39.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer with a poor prognosis. Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients. With the advancement of artificial intelligence (AI) technology and the proliferation of medical digital information, AI has demonstrated promising sensitivity and accuracy in assisting precise detection, treatment decision-making, and prognosis assessment of ESCC. It has become a unique opportunity to enhance comprehensive clinical management of ESCC in the era of precision oncology. This review examines how AI is applied to the diagnosis, treatment, and prognosis assessment of ESCC in the era of precision oncology, and analyzes the challenges and potential opportunities that AI faces in clinical translation. Through insights into future prospects, it is hoped that this review will contribute to the real-world application of AI in future clinical settings, ultimately alleviating the disease burden caused by ESCC.
Collapse
Affiliation(s)
- Wan-Yue Zhang
- School of Medicine, Southeast University, Nanjing 221000, Jiangsu Province, China
| | - Yong-Jian Chang
- School of Cyber Science and Engineering, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Rui-Hua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
6
|
Theocharopoulos C, Davakis S, Ziogas DC, Theocharopoulos A, Foteinou D, Mylonakis A, Katsaros I, Gogas H, Charalabopoulos A. Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal Cancer. Cancers (Basel) 2024; 16:3285. [PMID: 39409906 PMCID: PMC11475041 DOI: 10.3390/cancers16193285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer has a dismal prognosis and necessitates a multimodal and multidisciplinary approach from diagnosis to treatment. High-definition white-light endoscopy and histopathological confirmation remain the gold standard for the definitive diagnosis of premalignant and malignant lesions. Artificial intelligence using deep learning (DL) methods for image analysis constitutes a promising adjunct for the clinical endoscopist that could effectively decrease BE overdiagnosis and unnecessary surveillance, while also assisting in the timely detection of dysplastic BE and esophageal cancer. A plethora of studies published during the last five years have consistently reported highly accurate DL algorithms with comparable or superior performance compared to endoscopists. Recent efforts aim to expand DL utilization into further aspects of esophageal neoplasia management including histologic diagnosis, segmentation of gross tumor volume, pretreatment prediction and post-treatment evaluation of patient response to systemic therapy and operative guidance during minimally invasive esophagectomy. Our manuscript serves as an introduction to the growing literature of DL applications for image analysis in the management of esophageal neoplasia, concisely presenting all currently published studies. We also aim to guide the clinician across basic functional principles, evaluation metrics and limitations of DL for image recognition to facilitate the comprehension and critical evaluation of the presented studies.
Collapse
Affiliation(s)
| | - Spyridon Davakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Achilleas Theocharopoulos
- Department of Electrical and Computer Engineering, National Technical University of Athens, 10682 Athens, Greece;
| | - Dimitra Foteinou
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Adam Mylonakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Ioannis Katsaros
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Helen Gogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Alexandros Charalabopoulos
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| |
Collapse
|
7
|
Song J, Zhang J, Liu G, Guo Z, Liao H, Feng W, Lin W, Li L, Zhang Y, Yang Y, Liu B, Luo R, Chen H, Wang S, Liu JH. PET/CT deep learning prognosis for treatment decision support in esophageal squamous cell carcinoma. Insights Imaging 2024; 15:161. [PMID: 38913225 PMCID: PMC11196479 DOI: 10.1186/s13244-024-01737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
OBJECTIVES The clinical decision-making regarding choosing surgery alone (SA) or surgery followed by postoperative adjuvant chemotherapy (SPOCT) in esophageal squamous cell carcinoma (ESCC) remains controversial. We aim to propose a pre-therapy PET/CT image-based deep learning approach to improve the survival benefit and clinical management of ESCC patients. METHODS This retrospective multicenter study included 837 ESCC patients from three institutions. Prognostic biomarkers integrating six networks were developed to build an ESCC prognosis (ESCCPro) model and predict the survival probability of ESCC patients treated with SA and SPOCT. Patients who did not undergo surgical resection were in a control group. Overall survival (OS) was the primary end-point event. The expected improvement in survival prognosis with the application of ESCCPro to assign treatment protocols was estimated by comparing the survival of patients in each subgroup. Seven clinicians with varying experience evaluated how ESCCPro performed in assisting clinical decision-making. RESULTS In this retrospective multicenter study, patients receiving SA had a median OS 9.2 months longer than controls. No significant differences in survival were found between SA patients with predicted poor outcomes and the controls (p > 0.05). It was estimated that if ESCCPro was used to determine SA and SPOCT eligibility, the median OS in the ESCCPro-recommended SA group and SPOCT group would have been 15.3 months and 24.9 months longer, respectively. In addition, ESCCPro also significantly improved prognosis accuracy, certainty, and the efficiency of clinical experts. CONCLUSION ESCCPro assistance improved the survival benefit of ESCC patients and the clinical decision-making among the two treatment approaches. CRITICAL RELEVANCE STATEMENT The ESCCPro model for treatment decision-making is promising to improve overall survival in ESCC patients undergoing surgical resection and patients undergoing surgery followed by postoperative adjuvant chemotherapy. KEY POINTS ESCC is associated with a poor prognosis and unclear ideal treatments. ESCCPro predicts the survival of patients with ESCC and the expected benefit from SA. ESCCPro improves clinicians' stratification of patients' prognoses.
Collapse
Affiliation(s)
- Jiangdian Song
- School of Health Management, China Medical University, Shenyang, China.
| | - Jie Zhang
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Guichao Liu
- The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Zhexu Guo
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical University, Ministry of Education, Shenyang, China
- Department of VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, China
| | - Hongxian Liao
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Wenhui Feng
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Wenxiang Lin
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Lei Li
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yi Zhang
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yuxiang Yang
- Department of Radiology, The Second People's Hospital of Xiangzhou, Zhuhai, China
| | - Bin Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Siyun Wang
- Department of Oncology, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Jian-Hua Liu
- Department of Oncology, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Deborah Daoud
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - James Liu
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Blessy George
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Flor Furman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nareeman Khan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adewale Plumptre
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Imranjot Sekhon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
9
|
Gao D, Wu YP, Chen TW. Review and prospects of new progress in intelligent imaging research on lymph node metastasis in esophageal carcinoma. META-RADIOLOGY 2024; 2:100081. [DOI: 10.1016/j.metrad.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Chen Y, Gao R, Jing D, Shi L, Kuang F, Jing R. Classification and prediction of chemoradiotherapy response and survival from esophageal carcinoma histopathology images. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124030. [PMID: 38368818 DOI: 10.1016/j.saa.2024.124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Whole slide imaging (WSI) of Hematoxylin and Eosin-stained biopsy specimens has been used to predict chemoradiotherapy (CRT) response and overall survival (OS) of esophageal squamous cell carcinoma (ESCC) patients. This retrospective study collected 279 specimens in 89 non-surgical ESCC patients through endoscopic biopsy between January 2010 and January 2019. These patients were divided into a CRT response group (CR + PR group) and a CRT non-response group (SD + PD group). The WSIs have segmented approximately 1,206,000 non-overlapping patches. Two experienced pathologists manually delineated the eight types of tissues on 32 WSIs, including esophagus tumor cell (TUM), cancer-associated stroma (CAS), normal epithelium layer (NEL), smooth muscle (MUS), lymphocytes (LYM), Red cells (RED), debris (DEB), uneven areas (UNE). The chemoradiotherapy response prediction models were built using maximum relevance-minimum redundancy (MRMR) feature selection and least absolute shrinkage and selection operator (LASSO) regression. However, pathological features with p < 0.1 were selected and integrated to be further screened using a LASSO Cox regression model to build a multivariate Cox proportional hazards model for predicting the OS. The testing accuracy of the tissue classification model was 91.3 %. The pathological model created using two CAS in-depth features and eight TUM in-depth features performed best for the prediction of treatment response and achieved an AUC of 0.744. For the prediction of OS, the testing AUC of this model at one year and three years were 0.675 and 0.870, respectively. The TUM model showed the highest AUC at one year (0.712). With its high accuracy rate, the deep learning model has the potential to transform from bench to bedside in clinical practice, improve patient's quality of life, and prolong the OS rate.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ruihuan Gao
- Department of Oncology, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liting Shi
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Feng Kuang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Ran Jing
- Department of Cardiovascular Medicine, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| |
Collapse
|
11
|
Li ZM, Liu W, Chen XL, Wu WZ, Xu XE, Chu MY, Yu SX, Li EM, Huang HC, Xu LY. Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data. Clin Res Hepatol Gastroenterol 2024; 48:102318. [PMID: 38471582 DOI: 10.1016/j.clinre.2024.102318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. METHODS A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2-0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. RESULTS Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158-0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). CONCLUSION We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
Collapse
Affiliation(s)
- Zhi-Mao Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Radiation Oncology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China
| | - Wei Liu
- College of Science, Heilongjiang Institute of Technology, Harbin 150050, Heilongjiang, PR China
| | - Xu-Li Chen
- Department of Clinical Laboratory Medicine, Shantou Central Hospital, Shantou 515041, Guangdong, PR China
| | - Wen-Zhi Wu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Man-Yu Chu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Shuai-Xia Yu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - He-Cheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
12
|
Yim D, Khuntia J, Parameswaran V, Meyers A. Preliminary Evidence of the Use of Generative AI in Health Care Clinical Services: Systematic Narrative Review. JMIR Med Inform 2024; 12:e52073. [PMID: 38506918 PMCID: PMC10993141 DOI: 10.2196/52073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Generative artificial intelligence tools and applications (GenAI) are being increasingly used in health care. Physicians, specialists, and other providers have started primarily using GenAI as an aid or tool to gather knowledge, provide information, train, or generate suggestive dialogue between physicians and patients or between physicians and patients' families or friends. However, unless the use of GenAI is oriented to be helpful in clinical service encounters that can improve the accuracy of diagnosis, treatment, and patient outcomes, the expected potential will not be achieved. As adoption continues, it is essential to validate the effectiveness of the infusion of GenAI as an intelligent technology in service encounters to understand the gap in actual clinical service use of GenAI. OBJECTIVE This study synthesizes preliminary evidence on how GenAI assists, guides, and automates clinical service rendering and encounters in health care The review scope was limited to articles published in peer-reviewed medical journals. METHODS We screened and selected 0.38% (161/42,459) of articles published between January 1, 2020, and May 31, 2023, identified from PubMed. We followed the protocols outlined in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to select highly relevant studies with at least 1 element on clinical use, evaluation, and validation to provide evidence of GenAI use in clinical services. The articles were classified based on their relevance to clinical service functions or activities using the descriptive and analytical information presented in the articles. RESULTS Of 161 articles, 141 (87.6%) reported using GenAI to assist services through knowledge access, collation, and filtering. GenAI was used for disease detection (19/161, 11.8%), diagnosis (14/161, 8.7%), and screening processes (12/161, 7.5%) in the areas of radiology (17/161, 10.6%), cardiology (12/161, 7.5%), gastrointestinal medicine (4/161, 2.5%), and diabetes (6/161, 3.7%). The literature synthesis in this study suggests that GenAI is mainly used for diagnostic processes, improvement of diagnosis accuracy, and screening and diagnostic purposes using knowledge access. Although this solves the problem of knowledge access and may improve diagnostic accuracy, it is oriented toward higher value creation in health care. CONCLUSIONS GenAI informs rather than assisting or automating clinical service functions in health care. There is potential in clinical service, but it has yet to be actualized for GenAI. More clinical service-level evidence that GenAI is used to streamline some functions or provides more automated help than only information retrieval is needed. To transform health care as purported, more studies related to GenAI applications must automate and guide human-performed services and keep up with the optimism that forward-thinking health care organizations will take advantage of GenAI.
Collapse
Affiliation(s)
- Dobin Yim
- Loyola University, Maryland, MD, United States
| | - Jiban Khuntia
- University of Colorado Denver, Denver, CO, United States
| | | | - Arlen Meyers
- University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
13
|
Jeong S, Yu H, Park SH, Woo D, Lee SJ, Chong GO, Han HS, Kim JC. Comparing deep learning and handcrafted radiomics to predict chemoradiotherapy response for locally advanced cervical cancer using pretreatment MRI. Sci Rep 2024; 14:1180. [PMID: 38216687 PMCID: PMC10786874 DOI: 10.1038/s41598-024-51742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Concurrent chemoradiotherapy (CRT) is the standard treatment for locally advanced cervical cancer (LACC), but its responsiveness varies among patients. A reliable tool for predicting CRT responses is necessary for personalized cancer treatment. In this study, we constructed prediction models using handcrafted radiomics (HCR) and deep learning radiomics (DLR) based on pretreatment MRI data to predict CRT response in LACC. Furthermore, we investigated the potential improvement in prediction performance by incorporating clinical factors. A total of 252 LACC patients undergoing curative chemoradiotherapy are included. The patients are randomly divided into two independent groups for the training (167 patients) and test datasets (85 patients). Contrast-enhanced T1- and T2-weighted MR scans are obtained. For HCR analysis, 1890 imaging features are extracted and a support vector machine classifier with a five-fold cross-validation is trained on training dataset to predict CRT response and subsequently validated on test dataset. For DLR analysis, a 3-dimensional convolutional neural network was trained on training dataset and validated on test dataset. In conclusion, both HCR and DLR models could predict CRT responses in patients with LACC. The integration of clinical factors into radiomics prediction models tended to improve performance in HCR analysis. Our findings may contribute to the development of personalized treatment strategies for LACC patients.
Collapse
Affiliation(s)
- Sungmoon Jeong
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hosang Yu
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin-Hyung Park
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Dongwon Woo
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Seoung-Jun Lee
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Gun Oh Chong
- Department of Gynecology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyung Soo Han
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Chul Kim
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
14
|
Li K, Zhang S, Hu Y, Cai A, Ao Y, Gong J, Liang M, Yang S, Chen X, Li M, Tian J, Shan H. Radiomics Nomogram with Added Nodal Features Improves Treatment Response Prediction in Locally Advanced Esophageal Squamous Cell Carcinoma: A Multicenter Study. Ann Surg Oncol 2023; 30:8231-8243. [PMID: 37755566 DOI: 10.1245/s10434-023-14253-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE We aimed to develop and validate a radiomics nomogram and determine the value of radiomic features from lymph nodes (LNs) for predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC). METHODS In this multicenter retrospective study, eligible participants who had undergone NCRT followed by radical esophagectomy were consecutively recruited. Three radiomics models (modelT, modelLN, and modelTLN) based on tumor and LN features, alone and combined, were developed in the training cohort. The radiomics nomogram was developed by incorporating the prediction value of the radiomics model and clinicoradiological risk factors using multivariate logistic regression, and was evaluated using the receiver operating characteristic curve, validated in two external validation cohorts. RESULTS Between October 2011 and December 2018, 116 patients were included in the training cohort. Between June 2015 and October 2020, 51 and 27 patients from two independent hospitals were included in validation cohorts 1 and 2, respectively. The radiomics modelTLN performed better than the radiomics modelT for predicting pCR. The radiomics nomogram incorporating the predictive value of the radiomics modelTLN and heterogeneous after NCRT outperformed the clinicoradiological model, with an area under the curve (95% confidence interval) of 0.833 (0.765-0.894) versus 0.764 (0.686-0.833) [p = 0.088, DeLong test], 0.824 (0.718-0.909) versus 0.692 (0.554-0.809) [p = 0.012], and 0.902 (0.794-0.984) versus 0.696 (0.526-0.857) [p = 0.024] in all three cohorts. CONCLUSIONS Radiomic features from LNs could provide additional value for predicting pCR in ESCC patients, and the radiomics nomogram provided an accurate prediction of pCR, which might aid treatment decision.
Collapse
Affiliation(s)
- Kunwei Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Shuaitong Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yi Hu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Aiqun Cai
- Department of Radiology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yong Ao
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jun Gong
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Songlin Yang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Xiangmeng Chen
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong Province, People's Republic of China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, People's Republic of China.
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Sadeghi MH, Sina S, Alavi M, Giammarile F. The OCDA-Net: a 3D convolutional neural network-based system for classification and staging of ovarian cancer patients using [ 18F]FDG PET/CT examinations. Ann Nucl Med 2023; 37:645-654. [PMID: 37768493 DOI: 10.1007/s12149-023-01867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE To create the 3D convolutional neural network (CNN)-based system that can use whole-body [18F]FDG PET for recurrence/post-therapy surveillance in ovarian cancer (OC). METHODS In this study, 1224 image sets from OC patients who underwent whole-body [18F]FDG PET/CT at Kowsar Hospital between April 2019 and May 2022 were investigated. For recurrence/post-therapy surveillance, diagnostic classification as cancerous, and non-cancerous and staging as stage III, and stage IV were determined by pathological diagnosis and specialists' interpretation. New deep neural network algorithms, the OCDAc-Net, and the OCDAs-Net were developed for diagnostic classification and staging of OC patients using [18F]FDG PET/CT images. Examinations were divided into independent training (75%), validation (10%), and testing (15%) subsets. RESULTS This study included 37 women (mean age 56.3 years; age range 36-83 years). Data augmentation techniques were applied to the images in two phases. There were 1224 image sets for diagnostic classification and staging. For the test set, 170 image sets were considered for diagnostic classification and staging. The OCDAc-Net areas under the receiver operating characteristic curve (AUCs) and overall accuracy for diagnostic classification were 0.990 and 0.92, respectively. The OCDAs-Net achieved areas under the receiver operating characteristic curve (AUCs) of 0.995 and overall accuracy of 0.94 for staging. CONCLUSIONS The proposed 3D CNN-based models provide potential tools for recurrence/post-therapy surveillance in OC. The OCDAc-Net and the OCDAs-Net model provide a new prognostic analysis method that can utilize PET images without pathological findings for diagnostic classification and staging.
Collapse
Affiliation(s)
- Mohammad Hossein Sadeghi
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Sedigheh Sina
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
- Radiation Research Center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| | - Mehrosadat Alavi
- Department of Nuclear Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
16
|
Yang Z, Gong J, Li J, Sun H, Pan Y, Zhao L. The gap before real clinical application of imaging-based machine-learning and radiomic models for chemoradiation outcome prediction in esophageal cancer: a systematic review and meta-analysis. Int J Surg 2023; 109:2451-2466. [PMID: 37463039 PMCID: PMC10442126 DOI: 10.1097/js9.0000000000000441] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/01/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Due to tumoral heterogeneity and the lack of robust biomarkers, the prediction of chemoradiotherapy response and prognosis in patients with esophageal cancer (EC) is challenging. The goal of this study was to assess the study quality and clinical value of machine learning and radiomic-based quantitative imaging studies for predicting the outcomes of EC patients after chemoradiotherapy. MATERIALS AND METHODS PubMed, Embase, and Cochrane were searched for eligible articles. The methodological quality and risk of bias were evaluated using the Radiomics Quality Score (RQS), Image Biomarkers Standardization Initiative (IBSI) Guideline, and Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement, as well as the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. A meta-analysis of the evidence focusing on predicting chemoradiotherapy response and outcome in EC patients was implemented. RESULTS Forty-six studies were eligible for qualitative synthesis. The mean RQS score was 9.07, with an adherence rate of 42.52%. The adherence rates of the TRIPOD and IBSI were 61.70 and 43.17%, respectively. Ultimately, 24 studies were included in the meta-analysis, of which 16 studies had a pooled sensitivity, specificity, and area under the curve (AUC) of 0.83 (0.76-0.89), 0.83 (0.79-0.86), and 0.84 (0.81-0.87) in neoadjuvant chemoradiotherapy datasets, as well as 0.84 (0.75-0.93), 0.89 (0.83-0.93), and 0.93 (0.90-0.95) in definitive chemoradiotherapy datasets, respectively. Moreover, radiomics could distinguish patients from the low-risk and high-risk groups with different disease-free survival (DFS) (pooled hazard ratio: 3.43, 95% CI 2.39-4.92) and overall survival (pooled hazard ratio: 2.49, 95% CI 1.91-3.25). The results of subgroup and regression analyses showed that some of the heterogeneity was explained by the combination with clinical factors, sample size, and usage of the deep learning (DL) signature. CONCLUSIONS Noninvasive radiomics offers promising potential for optimizing treatment decision-making in EC patients. However, it is necessary to make scientific advancements in EC radiomics regarding reproducibility, clinical usefulness analysis, and open science categories. Improved model reporting of study objectives, blind assessment, and image processing steps are required to help promote real clinical applications of radiomics in EC research.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Radiation Oncology, Xijing Hospital
| | - Jie Gong
- Department of Radiation Oncology, Xijing Hospital
| | - Jie Li
- Department of Radiation Oncology, Xijing Hospital
| | - Hongfei Sun
- Department of Radiation Oncology, Xijing Hospital
| | - Yanglin Pan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, People’s Republic of China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital
| |
Collapse
|
17
|
Menon N, Guidozzi N, Chidambaram S, Markar SR. Performance of radiomics-based artificial intelligence systems in the diagnosis and prediction of treatment response and survival in esophageal cancer: a systematic review and meta-analysis of diagnostic accuracy. Dis Esophagus 2023; 36:doad034. [PMID: 37236811 PMCID: PMC10789236 DOI: 10.1093/dote/doad034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Radiomics can interpret radiological images with more detail and in less time compared to the human eye. Some challenges in managing esophageal cancer can be addressed by incorporating radiomics into image interpretation, treatment planning, and predicting response and survival. This systematic review and meta-analysis provides a summary of the evidence of radiomics in esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE, and Ovid EMBASE databases-articles describing radiomics in esophageal cancer were included. A meta-analysis was also performed; 50 studies were included. For the assessment of treatment response using 18F-FDG PET/computed tomography (CT) scans, seven studies (443 patients) were included in the meta-analysis. The pooled sensitivity and specificity were 86.5% (81.1-90.6) and 87.1% (78.0-92.8). For the assessment of treatment response using CT scans, five studies (625 patients) were included in the meta-analysis, with a pooled sensitivity and specificity of 86.7% (81.4-90.7) and 76.1% (69.9-81.4). The remaining 37 studies formed the qualitative review, discussing radiomics in diagnosis, radiotherapy planning, and survival prediction. This review explores the wide-ranging possibilities of radiomics in esophageal cancer management. The sensitivities of 18F-FDG PET/CT scans and CT scans are comparable, but 18F-FDG PET/CT scans have improved specificity for AI-based prediction of treatment response. Models integrating clinical and radiomic features facilitate diagnosis and survival prediction. More research is required into comparing models and conducting large-scale studies to build a robust evidence base.
Collapse
Affiliation(s)
- Nainika Menon
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
| | - Nadia Guidozzi
- Department of General Surgery, University of Witwatersrand, Johannesburg, South Africa
| | - Swathikan Chidambaram
- Academic Surgical Unit, Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London, UK
| | - Sheraz Rehan Markar
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Kapoor R, Sleeman W, Palta J, Weiss E. 3D deep convolution neural network for radiation pneumonitis prediction following stereotactic body radiotherapy. J Appl Clin Med Phys 2023; 24:e13875. [PMID: 36546583 PMCID: PMC10018674 DOI: 10.1002/acm2.13875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated 3D convolutional neural networks (CNNs) with input from radiographic and dosimetric datasets of primary lung tumors and surrounding lung volumes to predict the likelihood of radiation pneumonitis (RP). Pre-treatment, 3- and 6-month follow-up computed tomography (CT) and 3D dose datasets from one hundred and ninety-three NSCLC patients treated with stereotactic body radiotherapy (SBRT) were retrospectively collected and analyzed for this study. DenseNet-121 and ResNet-50 models were selected for this study as they are deep neural networks and have been proven to have high accuracy for complex image classification tasks. Both were modified with 3D convolution and max pooling layers to accept 3D datasets. We used a minority class oversampling approach and data augmentation to address the challenges of data imbalance and data scarcity. We built two sets of models for classification of three (No RP, Grade 1 RP, Grade 2 RP) and two (No RP, Yes RP) classes as outputs. The 3D DenseNet-121 models performed better (F1 score [0.81], AUC [0.91] [three class]; F1 score [0.77], AUC [0.84] [two class]) than the 3D ResNet-50 models (F1 score [0.54], AUC [0.72] [three-class]; F1 score [0.68], AUC [0.71] [two-class]) (p = 0.017 for three class predictions). We also attempted to identify salient regions within the input 3D image dataset via integrated gradient (IG) techniques to assess the relevance of the tumor surrounding volume for RP stratification. These techniques appeared to indicate the significance of the tumor and surrounding regions in the prediction of RP. Overall, 3D CNNs performed well to predict clinical RP in our cohort based on the provided image sets and radiotherapy dose information.
Collapse
Affiliation(s)
- Rishabh Kapoor
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William Sleeman
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jatinder Palta
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
19
|
Zhang S, Mu W, Dong D, Wei J, Fang M, Shao L, Zhou Y, He B, Zhang S, Liu Z, Liu J, Tian J. The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. HEALTH DATA SCIENCE 2023; 3:0005. [PMID: 38487199 PMCID: PMC10877701 DOI: 10.34133/hds.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 03/17/2024]
Abstract
Importance Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity. Highlights We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. Conclusion AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.
Collapse
Affiliation(s)
- Shuaitong Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengjie Fang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Song Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital/Second Clinical Medical College of Southern Medical University/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures. Radiat Oncol 2022; 17:212. [PMID: 36575480 PMCID: PMC9795769 DOI: 10.1186/s13014-022-02186-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To construct machine learning models for predicting progression free survival (PFS) and overall survival (OS) with esophageal squamous cell carcinoma (ESCC) patients. METHODS 204 ESCC patients were randomly divided into training cohort (n = 143) and test cohort (n = 61) according to the ratio of 7:3. Two radiomics models were constructed by radiomics features, which were selected by LASSO Cox model to predict PFS and OS, respectively. Clinical features were selected by univariate and multivariate Cox proportional hazards model (p < 0.05). Combined radiomics and clinical model was developed by selected clinical and radiomics features. The receiver operating characteristic curve, Kaplan Meier curve and nomogram were used to display the capability of constructed models. RESULTS There were 944 radiomics features extracted based on volume of interest in CT images. There were six radiomics features and seven clinical features for PFS prediction and three radiomics features and three clinical features for OS prediction; The radiomics models showed general performance in training cohort and test cohort for prediction for prediction PFS (AUC, 0.664, 0.676. C-index, 0.65, 0.64) and OS (AUC, 0.634, 0.646.C-index, 0.64, 0.65). The combined models displayed high performance in training cohort and test cohort for prediction PFS (AUC, 0.856, 0.833. C-index, 0.81, 0.79) and OS (AUC, 0.742, 0.768. C-index, 0.72, 0.71). CONCLUSION We developed combined radiomics and clinical machine learning models with better performance than radiomics or clinical alone, which were used to accurate predict 3 years PFS and OS of non-surgical ESCC patients. The prediction results could provide a reference for clinical decision.
Collapse
|
21
|
Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28:6363-6379. [PMID: 36533112 PMCID: PMC9753055 DOI: 10.3748/wjg.v28.i45.6363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally. Medical imaging is an important auxiliary means for the diagnosis, assessment and prognostic prediction of GI cancers. Radiomics is an emerging and effective technology to decipher the encoded information within medical images, and traditional machine learning is the most commonly used tool. Recent advances in deep learning technology have further promoted the development of radiomics. In the field of GI cancer, although there are several surveys on radiomics, there is no specific review on the application of deep-learning-based radiomics (DLR). In this review, a search was conducted on Web of Science, PubMed, and Google Scholar with an emphasis on the application of DLR for GI cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. Besides, the challenges and recommendations based on the findings of the review are comprehensively analyzed to advance DLR.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Hao-Ming Yan
- School of Clinical Medicine, China Medical University, Shenyang 110013, Liaoning Province, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei Province, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Liang Yao
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Zhong-Ren Wang
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau 999078, China
| |
Collapse
|
22
|
Mao Q, Zhou MT, Zhao ZP, Liu N, Yang L, Zhang XM. Role of radiomics in the diagnosis and treatment of gastrointestinal cancer. World J Gastroenterol 2022; 28:6002-6016. [PMID: 36405385 PMCID: PMC9669820 DOI: 10.3748/wjg.v28.i42.6002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer (GIC) has high morbidity and mortality as one of the main causes of cancer death. Preoperative risk stratification is critical to guide patient management, but traditional imaging studies have difficulty predicting its biological behavior. The emerging field of radiomics allows the conversion of potential pathophysiological information in existing medical images that cannot be visually recognized into high-dimensional quantitative image features. Tumor lesion characterization, therapeutic response evaluation, and survival prediction can be achieved by analyzing the relationships between these features and clinical and genetic data. In recent years, the clinical application of radiomics to GIC has increased dramatically. In this editorial, we describe the latest progress in the application of radiomics to GIC and discuss the value of its potential clinical applications, as well as its limitations and future directions.
Collapse
Affiliation(s)
- Qi Mao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Mao-Ting Zhou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Zhang-Ping Zhao
- Department of Radiology, Panzhihua Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Ning Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
23
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Prospective clinical research of radiomics and deep learning in oncology: A translational review. Crit Rev Oncol Hematol 2022; 179:103823. [PMID: 36152912 DOI: 10.1016/j.critrevonc.2022.103823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022] Open
Abstract
Radiomics and deep learning (DL) hold transformative promise and substantial and significant advances in oncology; however, most methods have been tested in retrospective or simulated settings. There is considerable interest in the biomarker validation, clinical utility, and methodological robustness of these studies and their deployment in real-world settings. This review summarizes the characteristics of studies, the level of prospective validation, and the overview of research on different clinical endpoints. The discussion of methodological robustness shows the potential for independent external replication of prospectively reported results. These in-depth analyses further describe the barriers limiting the translation of radiomics and DL into primary care options and provide specific recommendations regarding clinical deployment. Finally, we propose solutions for integrating novel approaches into the treatment environment to unravel the critical process of translating AI models into the clinical routine and explore strategies to improve personalized medicine.
Collapse
Affiliation(s)
- Xingping Zhang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China; Department of New Networks, Peng Cheng Laboratory, Shenzhen 518000, China
| | - Yanchun Zhang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China; Department of New Networks, Peng Cheng Laboratory, Shenzhen 518000, China; Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia.
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110189, China
| | - Xiaoxia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
| | - Liefa Liao
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330000, China; School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
24
|
Gong J, Zhang W, Huang W, Liao Y, Yin Y, Shi M, Qin W, Zhao L. CT-based radiomics nomogram may predict local recurrence-free survival in esophageal cancer patients receiving definitive chemoradiation or radiotherapy: a multicenter study. Radiother Oncol 2022; 174:8-15. [PMID: 35750106 DOI: 10.1016/j.radonc.2022.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE To establish and validate a contrast-enhanced computed tomography-based hybrid radiomics nomogram for prediction of local recurrence-free survival (LRFS) in esophageal squamous cell cancer (ESCC) patients receiving definitive (chemo)radiotherapy in a multicenter setting. MATERIALS AND METHODS This retrospective study included 302 ESCC patients from Xijing Hospital receiving definitive (chemo)radiotherapy, which were randomly assigned to the training (n=201) and internal validation set (n=101). And 74 and 21 ESCC patients from the other two centers were used as the external validation set (n=95). A hybrid radiomics nomogram was established by integrating clinical factors, radiomic signature and deep-learning signature in training set and was tested in two validation sets. RESULTS The deep-learning signature showed better prognostic performance than radiomic signature for predicting LRFS in training (C-index:0.73 vs 0.70), internal (Cindex: 0.72 vs 0.64) and external validation set (C-index:0.72 vs 0.63), which could stratify patients into high and low-risk group with different prognosis (cut-off value: -0.06). Low-risk groups had better LRFS than high-risk groups in training (p<0.0001; 2-y LRFS 71.1% vs 33.0%), internal (p<0.01; 2-y LRFS 58.8% vs 34.8%) and external validation sets (p<0.0001; 2-y LRFS 61.9% vs 22.4%), respectively. The hybrid radiomics nomogram established by integrating radiomic signature, deep-learning signature with clinical factors including T stage and concurrent chemotherapy outperformed any one or two combinations in training (C-index:0.82), internal (Cindex: 0.78), and external validation set (C-index:0.76). Calibration curves showed good agreement. CONCLUSIONS The hybrid radiomics based on pretreatment contrast-enhanced computed tomography provided a promising way to predict local recurrence of ESCC patients receiving definitive (chemo)radiotherapy.
Collapse
Affiliation(s)
- Jie Gong
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University. Xi'an, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Ye Liao
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University. Xi'an, China
| | - Yutian Yin
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University. Xi'an, China
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University. Xi'an, China.
| | - Wei Qin
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University. Xi'an, China.
| |
Collapse
|