1
|
Miyachi T, Kamomae T, Kawabata F, Okudaira K, Kawamura M, Ishihara S, Naganawa S. Effects of cardiac motion on dose distribution during stereotactic arrhythmia radioablation treatment: A simulation and phantom study. J Appl Clin Med Phys 2025; 26:e70021. [PMID: 39996400 PMCID: PMC12059291 DOI: 10.1002/acm2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
PURPOSE Cardiac motion may degrade dose distribution during stereotactic arrhythmia radioablation using the CyberKnife system, a robotic radiosurgery system. This study evaluated the dose distribution changes using a self-made cardiac dynamic platform that mimics cardiac motion. METHODS The cardiac dynamic platform was operated with amplitudes of 5 and 3.5 mm along the superior-inferior (SI) and left-right (LR) directions, respectively. The respiratory motion tracking of the CyberKnife system was applied when respiratory motion, simulated using a commercial platform, was introduced. The accuracy of respiratory motion tracking was evaluated by the correlation error between infrared markers and a fiducial marker. The dose distribution was compared with and without cardiac motion. The evaluations included error in the centroid analysis of the irradiated dose distribution, dose profile analysis in the SI and LR directions, and dose distribution analysis comparing the irradiated and planned dose distributions. RESULTS Cardiac motion increased the correlation error in the direction of motion. Cardiac motion displaced the centroid by up to 0.23 and 0.19 mm in the SI and LR directions, respectively. Cardiac motion blurring caused the distance of the isodose lines to become smaller (bigger) at higher (lower) doses in the SI direction. The gamma pass rate was reduced by cardiac motion but exceeded 94.1% with 1 mm/3% for all conditions. Respiratory motion tracking was also effective under cardiac motion. The cardiac motion slightly varied the dose at the edges of the irradiation volume. CONCLUSION While cardiac motion increased respiratory tracking correlation errors, its effects on dose distribution were limited in this study. Further studies using motion phantoms that are close to a human or individual patient are necessary for a more detailed understanding of the effects of cardiac motion.
Collapse
Affiliation(s)
- Takayuki Miyachi
- Department of RadiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Takeshi Kamomae
- Department of RadiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
- Radioisotope Research CenterNagoya UniversityNagoyaAichiJapan
| | - Fumitaka Kawabata
- Department of Radiological TechnologyNagoya University HospitalNagoyaAichiJapan
| | - Kuniyasu Okudaira
- Department of Radiological TechnologyNagoya University HospitalNagoyaAichiJapan
| | - Mariko Kawamura
- Department of RadiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Shunichi Ishihara
- Department of RadiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Shinji Naganawa
- Department of RadiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| |
Collapse
|
2
|
Gardner M, Finnegan RN, Dillon O, Chin V, Reynolds T, Keall PJ. Investigation of cardiac substructure automatic segmentation methods on synthetically generated 4D cone-beam CT images. Med Phys 2025; 52:2224-2237. [PMID: 39714073 DOI: 10.1002/mp.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND STereotactic Arrhythmia Radioablation (STAR) is a novel noninvasive method for treating arrythmias in which external beam radiation is directed towards subregions of the heart. Challenges for accurate STAR targeting include small target volumes and relatively large patient motion, which can lead to radiation related patient toxicities. 4D Cone-beam CT (CBCT) images are used for stereotactic lung treatments to account for respiration-related patient motion. 4D-CBCT imaging could similarly be used to account for respiration-related patient motion in STAR; however, the poor contrast of heart tissue in CBCT makes identifying cardiac substructures in 4D-CBCT images challenging. If cardiac structures can be identified in pre-treatment 4D-CBCT images, then the location of the target volume can be more accurately identified for different phases of the respiration cycle, leading to more accurate targeting and a reduction in patient toxicities. PURPOSE The aim of this simulation study is to investigate the accuracy of different cardiac substructure segmentation methods for 4D-CBCT images. METHODS Repeat 4D-CT scans from 13 lung cancer patients were obtained from The Cancer Imaging Archive. Synthetic 4D-CBCT images for each patient were simulated by forward projecting and reconstructing each respiration phase of a chosen "testing" 4D-CT scan. Eighteen cardiac structures were segmented from each respiration phase image in the testing 4D-CT using the previously validated platipy toolkit. The platipy segmentations from the testing 4D-CT were defined as the ground truth segmentations for the synthetic 4D-CBCT images. Five different 4D-CBCT cardiac segmentation methods were investigated: 3D Rigid Alignment, 4D Rigid Alignment, Direct CBCT Segmentation, Contour Transformation, and Synthetic CT Segmentation methods. For all methods except the Direct CBCT segmentation method, a separate 4D-CT (Planning CT) was used to assist in generating 4D-CBCT segmentations. Segmentation performance was measured using the Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and volume ratio (VR) metrics. RESULTS The mean ± standard deviation DSC for all cardiac substructures for the 3D Rigid Alignment, 4D Rigid Alignment, Direct CBCT Segmentation, Contour Transformation, and Synthetic CT Segmentation methods were 0.48 ± 0.29, 0.52 ± 0.29, 0.37 ± 0.32, 0.53 ± 0.29, 0.57 ± 0.28, respectively. Similarly, the HD values were 10.9 ± 3.6 , 9.9 ± 2.6 , 17.3 ± 5.3 , 9.9 ± 2.8 , 9.3 ± 3.0 mm, the MSD values were 2.9 ± 0.6 , 2.9 ± 0.6 , 6.3 ± 2.5 , 2.5 ± 0.6 , 2.4 ± 0.8 mm, and the VR Values were 0.81 ± 0.12, 0.78 ± 0.14, 1.10 ± 0.47, 0.72 ± 0.15, 0.98 ± 0.44, respectively. Of the five methods investigated the Synthetic CT segmentation method generated the most accurate segmentations for all calculated segmentation metrics. CONCLUSION This simulation study investigates the accuracy of different cardiac substructure segmentation methods for 4D-CBCT images. Accurate 4D-CBCT cardiac segmentation will provide more accurate information on the location of cardiac anatomy during STAR treatments which can lead to safer and more effective STAR. As the data and segmentation methods used in this study are all open source, this study provides a useful benchmarking tool to evaluate other CBCT cardiac segmentation methods.
Collapse
Affiliation(s)
- Mark Gardner
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Robert N Finnegan
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Owen Dillon
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Vicky Chin
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, New South Wales, Australia
| | - Tess Reynolds
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Paul J Keall
- Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Marshall J, Bergman A, Karan T, Deyell MW, Schellenberg D, Thomas S. Toward the Use of Implanted Cardiac Leads or the Diaphragm for Active Respiratory Motion Management in Stereotactic Arrhythmia Radioablation. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00177-4. [PMID: 40043856 DOI: 10.1016/j.ijrobp.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE To investigate the utility of implanted cardiac leads or the diaphragm for active respiratory motion management in stereotactic arrhythmia radioablation by quantifying the relationship between their motions. METHODS AND MATERIALS Seven patients treated with stereotactic arrhythmia radioablation were imaged using 5-Hz biplanar, kV x-ray fluoroscopy for 15-20 seconds under both abdominal compression (AC) and free breathing (FB) conditions. Three-dimensional motion traces for different regions of the heart were acquired by tracking and triangulating the position of all implanted cardiac leads. The heart's respiratory motion was extracted from the total motion (respiratory + cardiac) using a low-pass filter and described in optimized coordinates using principal component analysis. The existence of a relationship between the respiratory motion of different cardiac leads or the diaphragm was quantified using the Spearman rank correlation coefficient. Polynomial correlation models relating PC1 cardiac lead motion to the diaphragm were created and evaluated on the resultant errors. RESULTS Eighty-one respiratory motion correlations between different positions of the heart or diaphragm were calculated under both AC and FB. Consistently strong correlations between the respiratory motion of different positions in the heart and the diaphragm required accounting for phase shifts between motions. When accounting for phase shifts, the proportion of strong (>0.7) PC1 respiratory motion correlations was 100% under FB and 92.6% under AC. Linear fitting of cardiac lead motion with the diaphragm resulted in mean absolute PC1 tracking errors of (1.0 ± 0.6) mm under FB and (0.7 ± 0.4) mm under AC. CONCLUSIONS The respiratory motion of all combinations of implanted cardiac leads and the diaphragm are moderately to strongly correlated after accounting for phase shifts between motion traces. These phase shifts should be carefully considered to ensure patient safety during respiratory tracking or gating during stereotactic arrhythmia radioablation using cardiac leads or the diaphragm as internal surrogates.
Collapse
Affiliation(s)
- Jakob Marshall
- Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada; Medical Physics, BC Cancer, Vancouver, British Columbia, Canada.
| | - Alanah Bergman
- Medical Physics, BC Cancer, Vancouver, British Columbia, Canada; Department of Surgery, Division of Radiation Oncology and Experimental Radiotherapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tania Karan
- Medical Physics, BC Cancer, Vancouver, British Columbia, Canada
| | - Marc W Deyell
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Steven Thomas
- Medical Physics, BC Cancer, Vancouver, British Columbia, Canada; Department of Surgery, Division of Radiation Oncology and Experimental Radiotherapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Reis CQM, Cross A, Borsavage JM, Berryhill G, Karnas S, Robar JL, Gaede S. Feasibility of volumetric-modulated arc therapy gating for cardiac radioablation using real-time ECG signal acquisition and a dynamic phantom. Med Phys 2025; 52:1758-1768. [PMID: 39699040 PMCID: PMC11880648 DOI: 10.1002/mp.17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Stereotactic arrythmia radioablation (STAR) is a noninvasive technique to treat ventricular tachycardia (VT). Management of cardiorespiratory motion plays an essential role in VT-STAR treatments to improve treatment outcomes by reducing positional uncertainties and increasing dose conformality. Use of an electrocardiogram (ECG) signal, acquired in real-time, as a surrogate to gate the beam has the potential to fulfil that intent. PURPOSE To investigate the gated delivery of volumetric-modulated arc therapy (VMAT) for STAR on a TrueBeam linear accelerator (linac) using a real-time acquired ECG signal and a dynamic cardiac phantom. METHODS AND MATERIALS Dosimetric characteristics of a 6 MV flattening filter free (FFF) beam from a Varian TrueBeam linac were initially evaluated under high-frequency gating scenarios relevant to cardiac rhythms with respect to dose linearity, beam output, and energy quality. A microcontroller board was used to interface and gate the linac, sending a beam on/off signal. For real-time cardiac gated measurements, an AD8232 Heart Monitor board was used to acquire the ECG signal and synchronize the VMAT delivery to an ArcCHECK detector to a specific phase of the cardiac cycle. Gated dose distributions were compared against those acquired for a non-gated delivery mode. An in-house dynamic cardiac phantom was developed to simulate cardiorespiratory motion that correlates target position with the signal to gate the beam. Measured dose distributions using gafchromic film were also compared against the static (reference) mode in different scenarios with and without gating. RESULTS Maximum difference in dose per monitor unit (MU) was found to be no greater than 1% as compared to static mode with variation in the chamber response within 0.2% in the range of 50 MUs to 200 MUs. Maximum percentage differences for the beam output and beam qualiy index (TPR20,10) between gated and non-gated modes were 0.91% and -0.44%, respectively. Comparison of delivered dose distributions for the VMAT plan without gating versus ECG synchronized gating modes provided a passing rate 98% for the gamma analysis with 1% relative dose difference, 1 mm distance-to-agreement criteria. For the synchronization of dose delivery with target position, passing rates were 98%, 97%, and 99% for the axial, coronal, and sagittal planes, respectively, when gating the beam based on target position for cardiac motion only, for 3%, 3 mm tolerance as compared to static mode. Without gating the beam, passing rates of the respective plans are 97%, 94%, and 99% for the cardiac motion only, and 67%, 57%, and 55% when including respiratory component of motion. CONCLUSION A 6 MV-FFF TrueBeam is stable for performing gating in STAR under high-frequency gate windows within typical cardiac cycles. Agreement between measured dose distributions for a VMAT plan in static and ECG-synchronized deliveries and between static and target-position gated modes shows that the proposed methodology is feasible and can be implemented on a TrueBeam platform.
Collapse
Affiliation(s)
- Cristiano Q. M. Reis
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Alex Cross
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jennifer M. Borsavage
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Greg Berryhill
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
| | - Scott Karnas
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
- Departments of Oncology and Medical BiophysicsWestern UniversityLondonOntarioCanada
| | - James L. Robar
- Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada
- Departments of Radiation Oncology and Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Stewart Gaede
- Department of PhysicsThe Verspeeten Family Cancer CentreLondonOntarioCanada
- Departments of Oncology and Medical BiophysicsWestern UniversityLondonOntarioCanada
| |
Collapse
|
5
|
Akdag O, Mandija S, Borman PTS, Tzitzimpasis P, van Lier ALHMW, Keesman R, Raaymakers BW, Fast MF. Evaluation of the impact of cardiac implantable electronic devices on cine MRI for real-time adaptive cardiac radioablation on a 1.5 T MR-linac. Med Phys 2025; 52:99-112. [PMID: 39365684 PMCID: PMC11700006 DOI: 10.1002/mp.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Stereotactic arrhythmia radioablation (STAR) is a novel treatment approach for refractory ventricular tachycardia (VT). The risk of treatment-induced toxicity and geographic miss can be reduced with online MRI-guidance on an MR-linac. However, most VT patients carry cardiac implantable electronic devices (CIED), which compromise MR images. PURPOSE Robust MR-linac imaging sequences are required for cardiac visualization and accurate motion monitoring in presence of a CIED during MRI-guided STAR. We optimized two clinically available cine sequences for cardiorespiratory motion estimation in presence of a CIED on a 1.5 T MR-linac. The image quality, motion estimation accuracy, and geometric fidelity using these cine sequences were evaluated. METHODS Clinically available 2D balanced steady-state free precession (bSSFP, voxel size = 3.0 × $\times$ 3.0 × $\times$ 10 mm3, Tscan = 96 ms, bandwidth (BW) = 1884 Hz/px) andT 1 ${\rm T}_{1}$ -spoiled gradient echo (T 1 ${\rm T}_{1}$ -GRE, voxel size = 4.0 × $ \times$ 4.0 × $ \times$ 10 mm3, Tscan = 97 ms, BW = 500 Hz/px) sequences were adjusted for real-time cardiac visualization and cardiorespiratory motion estimation on a 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden), while complying with safety guidelines for MRI in presence of CIEDs (specific absorption rate < $ <$ 2 W/kg andd B d t < $\frac{dB}{dt}<$ 80 mT/s). Cine acquisitions were performed in five healthy volunteers, with and without an implantable cardioverter- defibrillator (ICD) placed on the clavicle, and a VT patient. Generalized divergence-curl (GDC) deformable image registration (DIR) was used for automated landmark motion estimation in the left ventricle (LV). Gaussian processes (GP), a machine-learning technique, was trained using GDC landmarks and deployed for real-time cardiorespiratory motion prediction.B 0 $B_{0}$ -mapping was performed to assess geometric image fidelity in the presence of CIEDs. RESULTS CIEDs introduced banding artifacts partially obscuring cardiac structures in bSSFP acquisitions. In contrast, theT 1 ${\rm T}_{1}$ -GRE was more robust to CIED-induced artifacts at the expense of a lower signal-to-noise ratio. In presence of an ICD, image-based cardiorespiratory motion estimation was possible for 85% (100%) of the volunteers using the bSSFP (T 1 ${\rm T}_{1}$ -GRE) sequence. The in-plane 2D root-mean-squared deviation (RMSD) range between GDC-derived landmarks and manual annotations using the bSSFP (T1-GRE) sequence was 3.1-3.3 (3.3-4.1) mm without ICD and 4.6-4.6 (3.2-3.3) mm with ICD. Without ICD, the RMSD between the GP-predictions and GDC-derived landmarks ranged between 0.9 and 2.2 mm (1.3-3.0 mm) for the bSSFP (T1-GRE) sequence. With ICD, the RMSD between the GP-predictions and GDC-derived landmarks ranged between 1.3 and 2.2 mm (1.2-3.2 mm) using the bSSFP (T1-GRE) sequence resulting in an RMSD-increase of 42%-143% (bSSFP) and -61%-142% (T1-GRE). Lead-induced spatial distortions ranged between -0.2 and 0.2 mm (-0.7-1.2 mm) using the bSSFP (T 1 ${\rm T}_{1}$ -GRE) sequence. The 98th percentile range of the spatial distortions in the gross target volume of the patient was between 0.0 and 0.4 mm (0.0-1.8 mm) when using bSSFP (T 1 ${\rm T}_{1}$ -GRE). CONCLUSIONS Tailored bSSFP andT 1 ${\rm T}_{1}$ -GRE sequences can facilitate real-time cardiorespiratory estimation using GP trained with GDC-derived landmarks in the majority of landmark locations in the LV despite the presence of CIEDs. The need for high temporal resolution noticeably reduced achievable spatial resolution of the cine MRIs. However, the effect of the CIED-induced artifacts is device, patient and sequence dependent and requires specific assessment per case.
Collapse
Affiliation(s)
- Osman Akdag
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Stefano Mandija
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics and TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pim T. S. Borman
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Paris Tzitzimpasis
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Rick Keesman
- Department of RadiotherapyRadboud University Medical CenterNijmegenThe Netherlands
| | - Bas W. Raaymakers
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martin F. Fast
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
6
|
Liulu X, Balaji P, Barber J, De Silva K, Murray T, Hickey A, Campbell T, Harris J, Gee H, Ahern V, Kumar S, Hau E, Qian PC. Radiation therapy for ventricular arrhythmias. J Med Imaging Radiat Oncol 2024; 68:893-913. [PMID: 38698577 PMCID: PMC11686466 DOI: 10.1111/1754-9485.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Ventricular arrhythmias (VA) can be life-threatening arrhythmias that result in significant morbidity and mortality. Catheter ablation (CA) is an invasive treatment modality that can be effective in the treatment of VA where medications fail. Recurrence occurs commonly following CA due to an inability to deliver lesions of adequate depth to cauterise the electrical circuits that drive VA or reach areas of scar responsible for VA. Stereotactic body radiotherapy is a non-invasive treatment modality that allows volumetric delivery of energy to treat circuits that cannot be reached by CA. It overcomes the weaknesses of CA and has been successfully utilised in small clinical trials to treat refractory VA. This article summarises the current evidence for this novel treatment modality and the steps that will be required to bring it to the forefront of VA treatment.
Collapse
Affiliation(s)
- Xingzhou Liulu
- Cardiology DepartmentRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Poornima Balaji
- Cardiology Department, Westmead HospitalUniversity of SydneySydneyNew South WalesAustralia
- Westmead Applied Research Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Jeffrey Barber
- Department of Radiation Oncology, Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
- Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Kasun De Silva
- Cardiology Department, Westmead HospitalUniversity of SydneySydneyNew South WalesAustralia
- Westmead Applied Research Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Tiarne Murray
- Department of Radiation Oncology, Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
| | - Andrew Hickey
- Department of Radiation Oncology, Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
| | - Timothy Campbell
- Cardiology Department, Westmead HospitalUniversity of SydneySydneyNew South WalesAustralia
- Westmead Applied Research Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Jill Harris
- Department of Radiation Oncology, Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
| | - Harriet Gee
- Department of Radiation Oncology, Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
- Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Verity Ahern
- Department of Radiation Oncology, Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
- Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Saurabh Kumar
- Cardiology Department, Westmead HospitalUniversity of SydneySydneyNew South WalesAustralia
- Westmead Applied Research Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Eric Hau
- Department of Radiation Oncology, Crown Princess Mary Cancer CentreWestmead HospitalSydneyNew South WalesAustralia
- Sydney Medical School, University of SydneySydneyNew South WalesAustralia
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer ResearchThe Westmead Institute for Medical ResearchSydneyNew South WalesAustralia
- Blacktown Hematology and Cancer Centre, Blacktown HospitalBlacktownNew South WalesAustralia
| | - Pierre C Qian
- Cardiology Department, Westmead HospitalUniversity of SydneySydneyNew South WalesAustralia
- Westmead Applied Research Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
7
|
Li G, Wang G, Wei W, Li Z, Xiao Q, He H, Luo D, Chen L, Li J, Zhang X, Song Y, Bai S. Cardiorespiratory motion characteristics and their dosimetric impact on cardiac stereotactic body radiotherapy. Med Phys 2024; 51:8551-8567. [PMID: 38994881 DOI: 10.1002/mp.17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cardiac stereotactic body radiotherapy (CSBRT) is an emerging and promising noninvasive technique for treating refractory arrhythmias utilizing highly precise, single or limited-fraction high-dose irradiations. This method promises to revolutionize the treatment of cardiac conditions by delivering targeted therapy with minimal exposure to surrounding healthy tissues. However, the dynamic nature of cardiorespiratory motion poses significant challenges to the precise delivery of dose in CSBRT, introducing potential variabilities that can impact treatment efficacy. The complexities of the influence of cardiorespiratory motion on dose distribution are compounded by interplay and blurring effects, introducing additional layers of dose uncertainty. These effects, critical to the understanding and improvement of the accuracy of CSBRT, remain unexplored, presenting a gap in current clinical literature. PURPOSE To investigate the cardiorespiratory motion characteristics in arrhythmia patients and the dosimetric impact of interplay and blurring effects induced by cardiorespiratory motion on CSBRT plan quality. METHODS The position and volume variations in the substrate target and cardiac substructures were evaluated in 12 arrhythmia patients using displacement maximum (DMX) and volume metrics. Moreover, a four-dimensional (4D) dose reconstruction approach was employed to examine the dose uncertainty of the cardiorespiratory motion. RESULTS Cardiac pulsation induced lower DMX than respiratory motion but increased the coefficient of variation and relative range in cardiac substructure volumes. The mean DMX of the substrate target was 0.52 cm (range: 0.26-0.80 cm) for cardiac pulsation and 0.82 cm (range: 0.32-2.05 cm) for respiratory motion. The mean DMX of the cardiac structure ranged from 0.15 to 1.56 cm during cardiac pulsation and from 0.35 to 1.89 cm during respiratory motion. Cardiac pulsation resulted in an average deviation of -0.73% (range: -4.01%-4.47%) in V25 between the 3D and 4D doses. The mean deviations in the homogeneity index (HI) and gradient index (GI) were 1.70% (range: -3.10%-4.36%) and 0.03 (range: -0.14-0.11), respectively. For cardiac substructures, the deviations in D50 due to cardiac pulsation ranged from -1.88% to 1.44%, whereas the deviations in Dmax ranged from -2.96% to 0.88% of the prescription dose. By contrast, the respiratory motion led to a mean deviation of -1.50% (range: -10.73%-4.23%) in V25. The mean deviations in HI and GI due to respiratory motion were 4.43% (range: -3.89%-13.98%) and 0.18 (range: -0.01-0.47) (p < 0.05), respectively. Furthermore, the deviations in D50 and Dmax in cardiac substructures for the respiratory motion ranged from -0.28% to 4.24% and -4.12% to 1.16%, respectively. CONCLUSIONS Cardiorespiratory motion characteristics vary among patients, with the respiratory motion being more significant. The intricate cardiorespiratory motion characteristics and CSBRT plan complexity can induce substantial dose uncertainty. Therefore, assessing individual motion characteristics and 4D dose reconstruction techniques is critical for implementing CSBRT without compromising efficacy and safety.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weige Wei
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibin Li
- Department of Radiotherapy & Oncology, The First Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiping He
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dashuang Luo
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Song
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Cecchi DD, Ploquin NP, Faruqi S, Morrison H. Impact of abdominal compression on heart and stomach motion for stereotactic arrhythmia radioablation. J Appl Clin Med Phys 2024; 25:e14346. [PMID: 38661250 PMCID: PMC11244678 DOI: 10.1002/acm2.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE To evaluate the effectiveness of abdominal compression (AC) as a respiratory motion management method for the heart and stomach during stereotactic arrhythmia radioablation (STAR). METHODS 4D computed tomography (4DCT) scans of patients imaged with AC or without AC (free-breathing: FB) were obtained from ventricular-tachycardia (VT) (n = 3), lung cancer (n = 18), and liver cancer (n = 18) patients. Patients treated for VT were imaged both FB and with AC. Lung and liver patients were imaged once with FB or with AC, respectively. The heart, left ventricle (LV), LV components (LVCs), and stomach were contoured on each phase of the 4DCTs. Centre of mass (COM) translations in the left/right (LR), ant/post (AP), and sup/inf (SI) directions were measured for each structure. Minimum distances between LVCs and the stomach over the respiratory cycle were also measured on each 4DCT phase. Mann-Whitney U-tests were performed between AC and FB datasets with a significance of α = 0.05. RESULTS No statistical difference (all p values were >0.05) was found in COM translations between FB and AC patient datasets for all contoured cardiac structures. A reduction in COM translation with AC relative to FB was patient, direction, and structure specific for the three VT patients. A significant decrease in the AP range of motion of the stomach was observed under AC compared to FB. No statistical difference was found between minimum distances to the stomach and LVCs between FB and AC. CONCLUSIONS AC was not a consistent motion management method for STAR, nor does not uniformly affect the separation distance between LVCs and the stomach. If AC is employed in future STAR protocols, the motion of the target volume and its relative distance to the stomach should be compared on two 4DCTs: one while the patient is FB and one under AC.
Collapse
Affiliation(s)
- Daniel David Cecchi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Nicolas Paul Ploquin
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
- Department of Oncology, Division of Medical Physics, University of Calgary, Calgary, Alberta, Canada
| | - Salman Faruqi
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
- Department of Oncology, Division of Radiation Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Hali Morrison
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
- Department of Oncology, Division of Medical Physics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Poon J, Thompson RB, Deyell MW, Schellenberg D, Clark H, Reinsberg S, Thomas S. Analysis of left ventricle regional myocardial motion for cardiac radioablation: Left ventricular motion analysis. J Appl Clin Med Phys 2024; 25:e14333. [PMID: 38493500 PMCID: PMC11087184 DOI: 10.1002/acm2.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE Left ventricle (LV) regional myocardial displacement due to cardiac motion was assessed using cardiovascular magnetic resonance (CMR) cine images to establish region-specific margins for cardiac radioablation treatments. METHODS CMR breath-hold cine images and LV myocardial tissue contour points were analyzed for 200 subjects, including controls (n = 50) and heart failure (HF) patients with preserved ejection fraction (HFpEF, n = 50), mid-range ejection fraction (HFmrEF, n = 50), and reduced ejection fraction (HFrEF, n = 50). Contour points were divided into segments according to the 17-segment model. For each patient, contour point displacements were determined for the long-axis (all 17 segments) and short-axis (segments 1-12) directions. Mean overall, tangential (longitudinal or circumferential), and normal (radial) displacements were calculated for the 17 segments and for each segment level. RESULTS The greatest overall motion was observed in the control group-long axis: 4.5 ± 1.2 mm (segment 13 [apical anterior] epicardium) to 13.8 ± 3.0 mm (segment 6 [basal anterolateral] endocardium), short axis: 4.3 ± 0.8 mm (segment 9 [mid inferoseptal] epicardium) to 11.5 ± 2.3 mm (segment 1 [basal anterior] endocardium). HF patients exhibited lesser motion, with the smallest overall displacements observed in the HFrEF group-long axis: 4.3 ± 1.7 mm (segment 13 [apical anterior] epicardium) to 10.6 ± 3.4 mm (segment 6 [basal anterolateral] endocardium), short axis: 3.9 ± 1.3 mm (segment 8 [mid anteroseptal] epicardium) to 7.4 ± 2.8 mm (segment 1 [basal anterior] endocardium). CONCLUSIONS This analysis provides an estimate of epicardial and endocardial displacement for the 17 segments of the LV for patients with normal and impaired LV function. This reference data can be used to establish treatment planning margin guidelines for cardiac radioablation. Smaller margins may be used for patients with higher degree of impaired heart function, depending on the LV segment.
Collapse
Affiliation(s)
- Justin Poon
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Medical PhysicsBC CancerVancouverBritish ColumbiaCanada
| | - Richard B. Thompson
- Department of Biomedical EngineeringUniversity of AlbertaEdmontonAlbertaCanada
| | - Marc W. Deyell
- Heart Rhythm ServicesDivision of CardiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Haley Clark
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Medical PhysicsBC CancerSurreyBritish ColumbiaCanada
| | - Stefan Reinsberg
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Steven Thomas
- Department of Medical PhysicsBC CancerVancouverBritish ColumbiaCanada
| |
Collapse
|
10
|
Rigal L, Benali K, Barré V, Bougault M, Bellec J, Crevoisier RD, Martins R, Simon A. Multimodal fusion workflow for target delineation in cardiac radioablation of ventricular tachycardia. Med Phys 2024; 51:292-305. [PMID: 37455674 DOI: 10.1002/mp.16613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cardiac radioablation (CR) is an innovative treatment to ablate cardiac arrythmia sources by radiation therapy. CR target delineation is a challenging task requiring the exploitation of highly different imaging modalities, including cardiac electro-anatomical mapping (EAM). PURPOSE In this work, a data integration process is proposed to alleviate the tediousness of CR target delineation by generating a fused representation of the heart, including all the information of interest resulting from the analysis and registration of electro-anatomical data, PET scan and planning computed tomography (CT) scan. The proposed process was evaluated by cardiologists during delineation trials. METHODS The data processing pipeline was composed of the following steps. The cardiac structures of interest were segmented from cardiac CT scans using a deep learning method. The EAM data was registered to the cardiac CT scan using a point cloud based registration method. The PET scan was registered using rigid image registration. The EAM and PET information, as well as the myocardium thickness, were projected on the surface of the 3D mesh of the left ventricle. The target was identified by delineating a path on this surface that was further projected to the thickness of the myocardium to create the target volume. This process was evaluated by comparison with a standard slice-by-slice delineation with mental EAM registration. Four cardiologists delineated targets for three patients using both methods. The variability of target volumes, and the ease of use of the proposed method, were evaluated. RESULTS All cardiologists reported being more confident and efficient using the proposed method. The inter-clinician variability in delineated target volume was systematically lower with the proposed method (average dice score of 0.62 vs. 0.32 with a classical method). Delineation times were also improved. CONCLUSIONS A data integration process was proposed and evaluated to fuse images of interest for CR target delineation. It effectively reduces the tediousness of CR target delineation, while improving inter-clinician agreement on target volumes. This study is still to be confirmed by including more clinicians and patient data to the experiments.
Collapse
Affiliation(s)
- Louis Rigal
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| | - Karim Benali
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
- Department of Cardiology, Saint-Etienne University Hospital, Saint-Priest-En-Jarez, France
| | - Valentin Barré
- Department of Cardiology, Rennes University Hospital, Rennes, France
| | - Mathilde Bougault
- Department of Cardiology, Rennes University Hospital, Rennes, France
| | - Julien Bellec
- Department of Cardiology, Rennes University Hospital, Rennes, France
- Medical Physics Department, CLCC Eugène Marquis, Rennes, France
| | - Renaud De Crevoisier
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| | - Raphaël Martins
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| | - Antoine Simon
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| |
Collapse
|
11
|
Stevens RRF, Hazelaar C, Fast MF, Mandija S, Grehn M, Cvek J, Knybel L, Dvorak P, Pruvot E, Verhoeff JJC, Blanck O, van Elmpt W. Stereotactic Arrhythmia Radioablation (STAR): Assessment of cardiac and respiratory heart motion in ventricular tachycardia patients - A STOPSTORM.eu consortium review. Radiother Oncol 2023; 188:109844. [PMID: 37543057 DOI: 10.1016/j.radonc.2023.109844] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
AIM To identify the optimal STereotactic Arrhythmia Radioablation (STAR) strategy for individual patients, cardiorespiratory motion of the target volume in combination with different treatment methodologies needs to be evaluated. However, an authoritative overview of the amount of cardiorespiratory motion in ventricular tachycardia (VT) patients is missing. METHODS In this STOPSTORM consortium study, we performed a literature review to gain insight into cardiorespiratory motion of target volumes for STAR. Motion data and target volumes were extracted and summarized. RESULTS Out of the 232 studies screened, 56 provided data on cardiorespiratory motion, of which 8 provided motion amplitudes in VT patients (n = 94) and 10 described (cardiac/cardiorespiratory) internal target volumes (ITVs) obtained in VT patients (n = 59). Average cardiac motion of target volumes was < 5 mm in all directions, with maximum values of 8.0, 5.2 and 6.5 mm in Superior-Inferior (SI), Left-Right (LR), Anterior-Posterior (AP) direction, respectively. Cardiorespiratory motion of cardiac (sub)structures showed average motion between 5-8 mm in the SI direction, whereas, LR and AP motions were comparable to the cardiac motion of the target volumes. Cardiorespiratory ITVs were on average 120-284% of the gross target volume. Healthy subjects showed average cardiorespiratory motion of 10-17 mm in SI and 2.4-7 mm in the AP direction. CONCLUSION This review suggests that despite growing numbers of patients being treated, detailed data on cardiorespiratory motion for STAR is still limited. Moreover, data comparison between studies is difficult due to inconsistency in parameters reported. Cardiorespiratory motion is highly patient-specific even under motion-compensation techniques. Therefore, individual motion management strategies during imaging, planning, and treatment for STAR are highly recommended.
Collapse
Affiliation(s)
- Raoul R F Stevens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Pavel Dvorak
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
12
|
Fast MF, Lydiard S, Boda-Heggemann J, Tanadini-Lang S, Muren LP, Clark CH, Blanck O. Precision requirements in stereotactic arrhythmia radioablation for ventricular tachycardia. Phys Imaging Radiat Oncol 2023; 28:100508. [PMID: 38026083 PMCID: PMC10679852 DOI: 10.1016/j.phro.2023.100508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Catharine H Clark
- Radiotherapy Physics, University College London Hospital, 250 Euston Rd, London NW1 2PG, UK
- Department of Medical Physics and Bioengineering, University College London, Malet Place, London WC1E 6BT, UK
- Medical Physics Dept, National Physical Laboratory, Hampton Rd, London TW11 0PX, UK
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| |
Collapse
|
13
|
Mehrhof F, Bergengruen P, Gerds-Li JH, Jahn A, Kluge AK, Parwani A, Zips D, Boldt LH, Schönrath F. Cardiac radioablation of incessant ventricular tachycardia in patients with terminal heart failure under permanent left ventricular assist device therapy-description of two cases. Strahlenther Onkol 2023; 199:511-519. [PMID: 36750509 PMCID: PMC10133058 DOI: 10.1007/s00066-023-02045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/08/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Cardiac radioablation (cRA) using a stereotactic single-session radioablative approach has recently been described as a possible treatment option for patients with otherwise untreatable recurrent ventricular tachycardia (VT). There is very limited experience in cRA for patients undergoing left ventricular assist device (LVAD) therapy. We present clinical experiences of two patients treated with cRA for incessant VT under long-term LVAD therapy. METHODS Two male patients (54 and 61 years old) with terminal heart failure under LVAD therapy (both patients for 8 years) showed incessant VT despite extensive antiarrhythmic drug therapy and repeated catheter ablation. cRA with a single dose of 25 Gy was applied as a last resort strategy under compassionate use in both patients following an electroanatomical mapping procedure. RESULTS Both patients displayed ongoing VT during and after the cRA procedure. Repeated attempts at post-procedural rhythm conversion failed in both patients; however, one patient was hemodynamically stabilized and could be discharged home for several months before falling prey to a fatal bleeding complication. The second patient initially stabilized for a few days following cRA before renewed acceleration of running VT required bilateral ablation of the stellate ganglion; the patient died 50 days later. No immediate side effects of cRA were detected in either patient. CONCLUSION cRA might serve as a last resort strategy for patients with terminal heart failure undergoing LVAD therapy and displaying incessant VT. Intermediate- and long-term outcomes of these seriously ill patients often remain poor; therefore, best supportive care strategies should also be evaluated as long as no clear beneficial effects of cRA procedures can be shown. For patients treated with cRA under running ventricular rhythm abnormality, strategies for post-procedural generation of stabilized rhythm have to be established.
Collapse
Affiliation(s)
- Felix Mehrhof
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany.
| | - Paula Bergengruen
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jin-Hong Gerds-Li
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| | - Andrea Jahn
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| | - Anne Kathrin Kluge
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany
| | - Abdul Parwani
- Department for Cardiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Daniel Zips
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Department for Cardiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Felix Schönrath
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) Partnersite Berlin, Berlin, Germany
- Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
14
|
Harms J, Schreibmann E, Mccall NS, Lloyd MS, Higgins KA, Castillo R. Cardiac motion and its dosimetric impact during radioablation for refractory ventricular tachycardia. J Appl Clin Med Phys 2023:e13925. [PMID: 36747376 DOI: 10.1002/acm2.13925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Cardiac radioablation (CR) is a noninvasive treatment option for patients with refractory ventricular tachycardia (VT) during which high doses of radiation, typically 25 Gy, are delivered to myocardial scar. In this study, we investigate motion from cardiac cycle and evaluate the dosimetric impact in a cohort of patients treated with CR. METHODS This retrospective study included eight patients treated at our institution who had respiratory-correlated and ECG-gated 4DCT scans acquired within 2 weeks of CR. Deformable image registration was applied between maximum systole (SYS) and diastole (DIAS) CTs to assess cardiac motion. The average respiratory-correlated CT (AVGresp ) was deformably registered to the average cardiac (AVGcardiac ), SYS, and DIAS CTs, and contours were propagated using the deformation vector fields (DVFs). Finally, the original treatment plan was recalculated on the deformed AVGresp CT for dosimetric assessment. RESULTS Motion magnitudes were measured as the mean (SD) value over the DVFs within each structure. Displacement during the cardiac cycle for all chambers was 1.4 (0.9) mm medially/laterally (ML), 1.6 (1.0) mm anteriorly/posteriorly (AP), and 3.0 (2.8) mm superiorly/inferiorly (SI). Displacement for the 12 distinct clinical target volumes (CTVs) was 1.7 (1.5) mm ML, 2.4 (1.1) mm AP, and 2.1 (1.5) SI. Displacements between the AVGresp and AVGcardiac scans were 4.2 (2.0) mm SI and 5.8 (1.4) mm total. Dose recalculations showed that cardiac motion may impact dosimetry, with dose to 95% of the CTV dropping from 27.0 (1.3) Gy on the AVGresp to 20.5 (7.1) Gy as estimated on the AVGcardiac . CONCLUSIONS Cardiac CTV motion in this patient cohort is on average below 3 mm, location-dependent, and when not accounted for in treatment planning may impact target coverage. Further study is needed to assess the impact of cardiac motion on clinical outcomes.
Collapse
Affiliation(s)
- Joseph Harms
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eduard Schreibmann
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Neal S Mccall
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Michael S Lloyd
- Section of Clinical Cardiac Electrophysiology, Emory University, Atlanta, Georgia, USA
| | - Kristin A Higgins
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Richard Castillo
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
STereotactic Arrhythmia Radioablation: current status of the art. The old world and the new world connected. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Reis CQM, Robar JL. Evaluation of the feasibility of cardiac gating for SBRT of ventricular tachycardia based on real-time ECG signal acquisition. J Appl Clin Med Phys 2022; 24:e13814. [PMID: 36286619 PMCID: PMC9924123 DOI: 10.1002/acm2.13814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the feasibility of cardiac synchronized gating in stereotactic body radiation therapy (SBRT) of ventricular tachycardia (VT) using a real-time electrocardiogram (ECG) signal acquisition. METHODS AND MATERIALS Stability of beam characteristics during simulated ECG gating was examined by developing a microcontroller interface to a Varian Clinac iX linear accelerator allowing gating at frequencies and duty cycles relevant to cardiac rhythm. Delivery accuracy was evaluated by measuring dose linearity with an ionization chamber, and flatness and symmetry with a two-dimensional detector array, for different gating windows within typical human cardiac cycle periods. To establish a practical method of gating based on actual ECG signals, an AD8232 Heart Monitor board was used to acquire the ECG signal and synchronize the beam delivery. Real-time cardiac gated delivery measurements were performed for a single 10 × 10 cm2 field and for a VT-SBRT plan using intensity-modulated radiation therapy (IMRT). RESULTS AND DISCUSSION Dose per monitor unit (MU) values were found to be linear within most gating windows investigated with maximum differences relative to non-gated delivery of <2% for gating windows ≥200 ms and for >10 MUs. Beam profiles for both gated and non-gated modes were also found to agree with maximum differences of 0.5% relative to central axis dose for all sets of beam-on/beam-off combinations. Comparison of dose distributions for intensity-modulated SBRT plans between non-gating and cardiac gating modes provided a gamma passing rate of 97.2% for a 2% 2 mm tolerance. CONCLUSIONS Beam output is stable with respect to linearity, flatness, and symmetry for gating windows within cardiac cycle periods. Agreement between dose distributions for VT-SBRT using IMRT in non-gated and cardiac cycle gated delivery modes shows that the proposed methodology is feasible. Technically, gating for delivery of SBRT for VT is possible with regard to beam stability.
Collapse
Affiliation(s)
- Cristiano Q. M. Reis
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada,Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada,Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - James L. Robar
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada,Department of Medical PhysicsNova Scotia HealthHalifaxNova ScotiaCanada,Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
17
|
Ninni S, Gallot-Lavallée T, Klein C, Longère B, Brigadeau F, Potelle C, Crop F, Rault E, Decoene C, Lacornerie T, Lals S, Kouakam C, Pontana F, Lacroix D, Klug D, Mirabel X. Stereotactic Radioablation for Ventricular Tachycardia in the Setting of Electrical Storm. Circ Arrhythm Electrophysiol 2022; 15:e010955. [PMID: 36074658 DOI: 10.1161/circep.122.010955] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) has been reported as a safe and efficient therapy for treating refractory ventricular tachycardia (VT) despite optimal medical treatment and catheter ablation. However, data on the use of SBRT in patients with electrical storm (ES) is lacking. The aim of this study was to assess the clinical outcomes associated with SBRT in the context of ES. METHODS This retrospective study included patients who underwent SBRT in the context of ES from March 2020 to March 2021 in one tertiary center (CHU Lille). The target volume was delineated according to a predefined workflow. The efficacy was assessed with the following end points: sustained VT recurrence, VT reduced with antitachycardia pacing, and implantable cardioverter defibrillator shock. RESULTS Seventeen patients underwent SBRT to treat refractory VT in the context of ES (mean 67±12.8 age, 59% presenting ischemic heart disease, mean left ventricular ejection fraction: 33.7± 9.7%). Five patients presented with ES related to incessant VT. Among these 5 patients, the time to effectiveness ranged from 1 to 7 weeks after SBRT. In the 12 remaining patients, VT recurrences occurred in 7 patients during the first 6 weeks following SBRT. After a median 12.5 (10.5-17.8) months follow-up, a significant reduction of the VT burden was observed beyond 6 weeks (-91% [95% CI, 78-103]), P<0.0001). The incidence of implantable cardioverter defibrillator shock and antitachycardia pacing was 36% at 1 year. CONCLUSIONS SBRT is associated with a significant reduction of the VT burden in the event of an ES; however, prospective randomized control trials are needed. In patients without incessant VT, recurrences are observed in half of patients during the first 6 weeks. VT tolerance and implantable cardioverter defibrillator programming adjustments should be integrated as part of an action plan defined before SBRT for each patient.
Collapse
Affiliation(s)
- Sandro Ninni
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Thomas Gallot-Lavallée
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Cédric Klein
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Benjamin Longère
- CHU Lille, Institut Cœur-Poumon, Service De Radiologie (B.L., F.P.)
| | - François Brigadeau
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | | | - Frederik Crop
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Erwann Rault
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Camille Decoene
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Thomas Lacornerie
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.).,Medical Physics, Centre Oscar Lambret, Lille, France (F.C., E.R., C.D., T.L.)
| | - Séverine Lals
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center (F.C., E.R., C.D., T.L., S.L.)
| | - Claude Kouakam
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - François Pontana
- CHU Lille, Institut Cœur-Poumon, Service De Radiologie (B.L., F.P.)
| | - Dominique Lacroix
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | - Didier Klug
- CHU Lille, Institut Cœur-Poumon, Service de Cardiologie (S.N., T.G.L., C.K., F.B., C.K., D.L., D.K.)
| | | |
Collapse
|
18
|
Perrin R, Maguire P, Garonna A, Weidlich G, Bulling S, Fargier-Voiron M, De Marco C, Rossi E, Ciocca M, Vitolo V, Mirandola A. Case Report: Treatment Planning Study to Demonstrate Feasibility of Transthoracic Ultrasound Guidance to Facilitate Ventricular Tachycardia Ablation With Protons. Front Cardiovasc Med 2022; 9:849247. [PMID: 35600462 PMCID: PMC9116532 DOI: 10.3389/fcvm.2022.849247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundCardiac arrhythmias, such as ventricular tachycardia, are disruptions in the normal cardiac function that originate from problems in the electrical conduction of signals inside the heart. Recently, a non-invasive treatment option based on external photon or proton beam irradiation has been used to ablate the arrhythmogenic structures. Especially in proton therapy, based on its steep dose gradient, it is crucial to monitor the motion of the heart in order to ensure that the radiation dose is delivered to the correct location. Transthoracic ultrasound imaging has the potential to provide guidance during this treatment delivery. However, it has to be noted that the presence of an ultrasound probe on the chest of the patient introduces constraints on usable beam angles for both protons and photon treatments. This case report investigates the possibility to generate a clinically acceptable proton treatment plan while the ultrasound probe is present on the chest of the patient.CaseA treatment plan study was performed based on a 4D cardiac-gated computed tomography scan of a 55 year-old male patient suffering from refractory ventricular tachycardia who underwent cardiac radioablation. A proton therapy treatment plan was generated for the actual treatment target in presence of an ultrasound probe on the chest of this patient. The clinical acceptability of the generated plan was confirmed by evaluating standard target dose-volume metrics, dose to organs-at-risk and target dose conformity and homogeneity.ConclusionThe generation of a clinically acceptable proton therapy treatment plan for cardiac radioablation of ventricular tachycardia could be performed in the presence of an ultrasound probe on the chest of the patient. These results establish a basis and justification for continued research and product development for ultrasound-guided cardiac radioablation.
Collapse
Affiliation(s)
| | | | - Adriano Garonna
- EBAMed SA, Geneva, Switzerland
- *Correspondence: Adriano Garonna
| | - Georg Weidlich
- Radiation Oncology, National Medical Physics and Dosimetry Company, Palo Alto, CA, United States
| | | | | | | | - Eleonora Rossi
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | | |
Collapse
|
19
|
Akdag O, Borman PTS, Woodhead P, Uijtewaal P, Mandija S, Van Asselen B, Verhoeff JJC, Raaymakers BW, Fast MF. First experimental exploration of real-time cardiorespiratory motion management for future stereotactic arrhythmia radioablation treatments on the MR-linac. Phys Med Biol 2022; 67. [PMID: 35189610 DOI: 10.1088/1361-6560/ac5717] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
Objective.Stereotactic arrhythmia radioablation (STAR) is a novel, non-invasive treatment for refractory ventricular tachycardia (VT). The VT isthmus is subject to both respiratory and cardiac motion. Rapid cardiac motion presents a unique challenge. In this study, we provide first experimental evidence for real-time cardiorespiratory motion-mitigated MRI-guided STAR on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) aimed at simultaneously compensating cardiac and respiratory motions.Approach.A real-time cardiorespiratory motion-mitigated radiotherapy workflow was developed on the Unity MR-linac in research mode. A 15-beam intensity-modulated radiation therapy treatment plan (1 × 25 Gy) was created in Monaco v.5.40.01 (Elekta AB) for the Quasar MRI4Dphantom (ModusQA, London, ON). A film dosimetry insert was moved by combining either artificial (cos4, 70 bpm, 10 mm peak-to-peak) or subject-derived (59 average bpm, 15.3 mm peak-to-peak) cardiac motion with respiratory (sin, 12 bpm, 20 mm peak-to-peak) motion. A balanced 2D cine MRI sequence (13 Hz, field-of-view = 400 × 207 mm2, resolution = 3 × 3 × 15 mm3) was developed to estimate cardiorespiratory motion. Cardiorespiratory motion was estimated by rigid registration and then deconvoluted into cardiac and respiratory components. For beam gating, the cardiac component was used, whereas the respiratory component was used for MLC-tracking. In-silico dose accumulation experiments were performed on three patient data sets to simulate the dosimetric effect of cardiac motion on VT targets.Main results.Experimentally, a duty cycle of 57% was achieved when simultaneously applying respiratory MLC-tracking and cardiac gating. Using film, excellent agreement was observed compared to a static reference delivery, resulting in a 1%/1 mm gamma pass rate of 99%. The end-to-end gating latency was 126 ms on the Unity MR-linac. Simulations showed that cardiac motion decreased the target's D98% dose between 0.1 and 1.3 Gy, with gating providing effective mitigation.Significance.Real-time MRI-guided cardiorespiratory motion management greatly reduces motion-induced dosimetric uncertainty and warrants further research and development for potential future use in STAR.
Collapse
Affiliation(s)
- O Akdag
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P T S Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P Woodhead
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,Elekta AB, Kungstensgatan 18, 113 57 Stockholm, Sweden
| | - P Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - S Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - B Van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - B W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
20
|
Bellec J, Rigal L, Hervouin A, Martins R, Lederlin M, Jaksic N, Castelli J, Benali K, de Crevoisier R, Simon A. Cardiac radioablation for ventricular tachycardia: Which approach for incorporating cardiorespiratory motions into the planning target volume? Phys Med 2022; 95:16-24. [DOI: 10.1016/j.ejmp.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
|