1
|
Low JM, Rodriguez-Berriguete G, Higgins GS. Repurposing radiosensitising medicines for radiotherapy: an overview. BMJ ONCOLOGY 2024; 3:e000192. [PMID: 39886153 PMCID: PMC11235008 DOI: 10.1136/bmjonc-2023-000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2025]
Abstract
Repurposing established non-cancer drugs for the treatment of cancer offers potential benefits such as speed of clinical translation and financial efficiencies. In this study, we assess the landscape of repurposing drugs for combined use with radiotherapy (RT) based on their capacity to increase tumour radiosensitivity. Using a literature-based approach, we identified 42 radiosensitising drugs with varied non-cancer indications and mechanisms of action, that have entered or completed clinical trials in combination with RT or with chemoradiotherapy. Two compounds, nicotinamide and nimorazole, have entered routine but limited clinical use in combination with radiotherapy. We provide an overview on these successfully repurposed drugs, and highlight some examples of unsuccessful repurposing efforts and drug candidates with an uncertain prospect of success. Upon reviewing the trials, we identified some common themes behind the unsuccessful efforts, including poor trial reporting, absence of biomarkers and patient selection, sub-optimal pharmacological properties, inappropriate trial design, lack or inadequate consideration of pre-clinical and clinical data, and limited funding support. We point out future directions to mitigate these issues and increase the likelihood of success in repurposing drug treatments for radiotherapy.
Collapse
Affiliation(s)
- Jie Man Low
- Department of Oncology, Oxford University Hospitals NHS Trust, Oxford, UK
| | | | | |
Collapse
|
2
|
Zhang C, Zhou W, Zhang D, Ma S, Wang X, Jia W, Guan X, Qian K. Treatments for brain metastases from EGFR/ALK-negative/unselected NSCLC: A network meta-analysis. Open Med (Wars) 2023; 18:20220574. [PMID: 36820064 PMCID: PMC9938645 DOI: 10.1515/med-2022-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 02/16/2023] Open
Abstract
More clinical evidence is needed regarding the relative priority of treatments for brain metastases (BMs) from EGFR/ALK-negative/unselected non-small cell lung cancer (NSCLC). PubMed, EMBASE, Web of Science, Cochrane Library, and ClinicalTrials.gov databases were searched. Overall survival (OS), central nervous system progression-free survival (CNS-PFS), and objective response rate (ORR) were selected for Bayesian network meta-analyses. We included 25 eligible randomized control trials (RCTs) involving 3,054 patients, investigating nine kinds of treatments for newly diagnosed BMs and seven kinds of treatments for previously treated BMs. For newly diagnosed BMs, adding chemotherapy, EGFR-TKIs, and other innovative systemic agents (temozolomide, nitroglycerin, endostar, enzastaurin, and veliparib) to radiotherapy did not significantly prolong OS than radiotherapy alone; whereas radiotherapy + nitroglycerin showed significantly better CNS-PFS and ORR. Surgery could significantly prolong OS (hazard ratios [HR]: 0.52, 95% credible intervals: 0.41-0.67) and CNS-PFS (HR: 0.32, 95% confidence interval: 0.18-0.59) compared with radiotherapy alone. For previously treated BMs, pembrolizumab + chemotherapy, nivolumab + ipilimumab, and cemiplimab significantly prolonged OS than chemotherapy alone. Pembrolizumab + chemotherapy also showed better CNS-PFS and ORR than chemotherapy. In summary, immune checkpoint inhibitor (ICI)-based therapies, especially ICI-combined therapies, showed promising efficacies for previously treated BMs from EGFR/ALK-negative/unselected NSCLC. The value of surgery should also be emphasized. The result should be further confirmed by RCTs.
Collapse
Affiliation(s)
- Chengkai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing100071, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing100071, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing100071, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, Beijing100071, China
| | - Ke Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, Beijing100071, China
| |
Collapse
|
3
|
OncoFlash – Research Updates in a Flash! (May edition). Clin Oncol (R Coll Radiol) 2022; 34:275-276. [DOI: 10.1016/j.clon.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|