1
|
Volz L, Liu P, Tessonnier T, Cong X, Durante M, Mairani A, Gu W, Abdollahi A, Ding X, Graeff C, Li T, Mein S. HyperSHArc: Single-Isocenter Stereotactic Radiosurgery of Multiple Brain Metastases Using Proton, Helium, and Carbon Ion Arc Therapy. Adv Radiat Oncol 2025; 10:101763. [PMID: 40264854 PMCID: PMC12013133 DOI: 10.1016/j.adro.2025.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/09/2025] [Indexed: 04/24/2025] Open
Abstract
Purpose This work presents a proof-of-concept study of HyperSHArc, spot-scanning hadron arc (SHArc) therapy for single-isocenter stereotactic radiosurgery of multiple brain metastases (MBMs). HyperSHArc plans using proton, helium, and carbon ions were compared with state-of-the-art volumetric modulated photon arc therapy. Methods and Materials Treatment design and optimization procedures were devised using commercial and in-house treatment planning systems. Planning and delivery methods considered dedicated energy, spot, and multiarc selection strategies. Proton, helium, and carbon HyperSHArc plans were generated for patients with MBM exhibiting 3 to 11 intracranial lesions with gross tumor volumes (GTVs) between 0.03 and 19.8 cc, at prescribed doses between 19 and 21Gy in a single-fraction. Planning target volumes (PTVs) considered a 1-mm isotropic margin around the GTV, and robust optimization with 2.5%/1 mm criteria for range and position uncertainty was applied. Photon hyper-arc volumetric modulated arc therapy (HA-VMAT) plans were optimized for the PTVs using the HyperArc® single-isocenter stereotactic radiosurgery platform (Varian, Palo Alto, CA, USA). Results HyperSHArc plans were comparable between particle species, achieving highly conformal target doses and satisfying clinical coverage criteria. Particle arc plans reduced V2Gy and V4Gy in the healthy brain compared with HA-VMAT, while intermediate doses (V8Gy-V16Gy) were similar or reduced depending on the number of lesions. Particularly for the case with 11 targets, a considerable reduction in V12Gy was observed that could be relevant for reducing the risk of treatment-induced radionecrosis. HyperSHArc using carbon ions boosted dose-averaged linear energy transfer inside the target relevant to overcoming radioresistance factors (>100 keV/μm). Conclusions We present the first particle arc therapy strategies for MBM. Results demonstrate that with HyperSHArc, dose conformity comparable or superior to HA-VMAT is achievable while reducing the low-dose bath and increasing mean dose-averaged linear energy transfer in the GTV. Our findings suggest that HyperSHArc using light and heavy ions could be an effective and efficient means of treating MBM. Further development of HyperSHArc optimization and delivery is justified.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Peilin Liu
- Department of Radiation Oncology, Corewell Health, Royal Oak, Michigan
| | - Thomas Tessonnier
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Xiaoda Cong
- Department of Radiation Oncology, Corewell Health, Royal Oak, Michigan
| | - Marco Durante
- Biophysics, GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany
- Department is Institute of Condensed Matter Physics, Institute of Condensed Matter Physics, TU Darmstadt, Darmstadt, Germany
| | - Andrea Mairani
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amir Abdollahi
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, Royal Oak, Michigan
| | - Christian Graeff
- Biophysics, GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of electrical engineering and information technology, TU Darmstadt, Darmstadt, Germany
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stewart Mein
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
2
|
Baltazar F, Longarino FK, Stengl C, Liermann J, Mein S, Debus J, Tessonnier T, Mairani A. Investigating LETd optimization strategies in carbon ion radiotherapy for pancreatic cancer: a dosimetric study using an anthropomorphic phantom. Med Phys 2025; 52:1746-1757. [PMID: 39656067 PMCID: PMC11880654 DOI: 10.1002/mp.17569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Clinical carbon ion beams offer the potential to overcome hypoxia-induced radioresistance in pancreatic tumors, due to their high dose-averaged Linear Energy Transfer (LETd), as previous studies have linked a minimum LETd within the tumor to improved local control. Current clinical practices at the Heidelberg Ion-Beam Therapy Center (HIT), which use two posterior beams, do not fully exploit the LETd advantage of carbon ions, as the high LETd is primarily focused on the beams' distal edges. Different LETd-boosting strategies, such as Spot-scanning Hadron Arc (SHArc), could enhance LETd distribution by concentrating high-LETd values in potential hypoxic tumor cores while sparing organs at risk. PURPOSE This study aims to investigate and verify different LETd-boosting strategies using an anthropomorphic pancreas phantom. METHODS Various LETd-boosting strategies were investigated for a cylindrical and a pancreas-shaped target in an anthropomorphic pancreas phantom. Treatment plans were optimized using single field optimization (SFO) or multi field optimization (MFO), with objective functions based on either physical dose (Phys), relative biological effectiveness (RBE)-weighted dose, or a combination of RBE and LETd-based objectives (LETopt). The LETd-boosting planning strategies were optimized with the goal of increasing the minimum LETd in the tumor without compromising its homogeneous dose coverage. Beam configurations investigated included the two-beam in-house clinical standard (2-SFOPhys, 2-SFORBE and 2-MFORBE-LETopt), a three-beam configuration (3-MFORBE and 3-MFORBE-LETopt) and SHArc (SHArcPhys, SHArcRBE and SHArcRBE-LETopt) using step-and-shoot delivery. The different plans were verified using an anthropomorphic pancreas phantom at HIT and compared to treatment planning system (TPS) predictions. RESULTS All investigated LETd-boosting strategies altered the LETd distribution while meeting optimization goals and constraints, resulting in varying degrees of LETd enhancement. For the cylindrical volume, the SHArc plan resulted in the highest LETd concentration in the tumor core, with the minimum LETd in the GTV scaling up to 91 keV/µm. For the pancreas-shaped volume, however, the 3-MFORBE-LETopt achieved a higher minimum LETd in the GTV than SHArcRBE (75.6 and 62.3 keV/µm, respectively). When combining SHArc with LETd optimization, a minimum LETd of 76.3 keV/µm was achieved, suggesting a potential benefit from this combined approach. Most dosimetric verifications showed dose deviations to the TPS within a 5% range, for both beam-per-beam and total dose. LETd-optimized and SHArc plans exhibited slightly higher mean dose deviations (2.0%-4.6%) compared to the standard RBE-based plans (<1.5%). CONCLUSION This study demonstrated the feasibility of enhancing LETd in pancreatic tumors using carbon ion arc delivery coupled with LETd optimization. The possibility of delivering these plans was verified through irradiation of an anthropomorphic pancreas phantom, which showed agreement between dose measurements and predictions.
Collapse
Affiliation(s)
- Filipa Baltazar
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | - Friderike K. Longarino
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
| | - Christina Stengl
- Medical FacultyHeidelberg UniversityHeidelbergGermany
- Division of Medical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jakob Liermann
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
- Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- National Center for Tumor diseases (NCT)HeidelbergGermany
| | - Stewart Mein
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Accelerator and Medical PhysicsInstitute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Jürgen Debus
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
- Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- National Center for Tumor diseases (NCT)HeidelbergGermany
- German Cancer Consortium (DKTK) Core Centre HeidelbergHeidelbergGermany
| | - Thomas Tessonnier
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andrea Mairani
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Centro Nazionale di Adroterapia Oncologica (CNAO)PaviaItaly
| |
Collapse
|
3
|
Herrera TD, Ödén J, Lorenzo Polo A, Crezee J, Kok HP. Thermoradiotherapy Optimization Strategies Accounting for Hyperthermia Delivery Uncertainties. Int J Radiat Oncol Biol Phys 2024; 120:1435-1447. [PMID: 39019236 DOI: 10.1016/j.ijrobp.2024.07.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE The combined effect of hyperthermia and radiation therapy can be quantified by an enhanced equivalent radiation dose (EQDRT). Uncertainties in hyperthermia treatment planning and adjustments during treatment can impact achieved EQDRT. We developed and compared strategies for EQDRT optimization of radiation therapy plans, focusing on robustness against common adjustments. METHODS AND MATERIALS Using Plan2Heat, we computed preplanning hyperthermia plans and treatment adjustment scenarios for 3 cervical cancer patients. We imported these scenarios into RayStation 12A for optimization with 4 different strategies: (1) conventional radiation therapy optimization prescribing 46 Gy to the planning target volume (PTV), (2) nominal EQDRT optimization using the preplanning scenario, targeting uniform 58 Gy in the gross tumor volume (GTV), keeping organs at risk doses as in plan 1, (3) robust EQDRT optimization, as plan 2 but adding adjusted scenarios for optimization, and (4) library of plans (4 plans) with strategy 2 criteria but optimizing on 1 adjusted scenario per plan. We calculated for each radiation therapy plan EQDRT distributions for preplanning and adjusted scenarios, evaluating each combination of GTV coverage and homogeneity objectives. RESULTS EQDRT95% increased from 49.9 to 50.9 Gy in strategy 1 to 56.1 to 57.4 Gy in strategy 2 with the preplanning scenario, improving homogeneity by ∼10%. Strategy 2 demonstrated the best overall robustness, with 62% of all GTV objectives within tolerance. Strategy 3 had a higher percentage of coverage objectives within tolerance than strategy 2 (68% vs 54%) but a lower percentage for uniformity (44% vs 71%). Strategy 4 showed a similar EQDRT95% and homogeneity for adjusted scenarios than strategy 2 for a preplanning scenario. D0.1% (radiation dose received by the 0.1% most irradiated volume) for organs at risk was increased by strategies 2 to 4 by up to ∼6 Gy. CONCLUSIONS EQDRT optimization enhances EQDRT levels and uniformity compared with conventional optimization. Better overall robustness is achieved by optimizing the preplanning hyperthermia plan. Robust optimization improves coverage but reduces homogeneity. A library of plans ensures coverage and uniformity when dealing with adjusted hyperthermia scenarios.
Collapse
Affiliation(s)
- Timoteo D Herrera
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Johannes Crezee
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Tessonnier T, Filosa DI, Karle C, Baltazar F, Manti L, Glimelius L, Haberer T, Abdollahi A, Debus J, Mein S, Dokic I, Mairani A. First Dosimetric and Biological Verification for Spot-Scanning Hadron Arc Radiation Therapy With Carbon Ions. Adv Radiat Oncol 2024; 9:101611. [PMID: 39534427 PMCID: PMC11555336 DOI: 10.1016/j.adro.2024.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Spot-scanning hadron arc radiation therapy (SHArc) is a novel delivery technique for ion beams with potentially improved dose conformity and dose-averaged linear energy transfer (LETd) redistribution. The first dosimetric validation and in vitro verification of carbon ion arc delivery is presented. Methods and Materials Intensity-modulated particle therapy (IMPT) and SHArc plans were designed to deliver homogeneous physical dose or biological dose in a cylindrical polymethyl methacrylate (PMMA) phantom. Additional IMPT carbon plans were optimized for testing different LETd-boosting strategies. Verifications of planned doses were performed with an ionization chamber, and a clonogenic survival assay was conducted using A549 cancer lung cell line. Radiation-induced nuclear 53BP1 foci were assessed to evaluate the cellular response in both normoxic and hypoxic conditions. Results Dosimetric measurements and clonogenic assay results showed a good agreement with planned dose and survival distributions. Measured survival fractions and foci confirmed carbon ions SHArc as a potential modality to overcome hypoxia-induced radioresistance. LETd-boosted IMPT plans reached similar LETd in the target as in SHArc plans, promising similar features against hypoxia but at the cost of an increased entrance dose. SHArc resulted, however, in a lower dose bath but in a larger volume around the target. Conclusions The first proof-of-principle of carbon ions SHArc delivery was performed, and experimental evidence suggests this novel modality as an attractive approach for treating hypoxic tumors.
Collapse
Affiliation(s)
- Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center, Heidelberg, Germany
| | - Domenico Ivan Filosa
- Radiation Biophysics Laboratory, Department of Physics “E. Pancini,” University of Naples Federico II, Naples, Italy
- Istituto Nazionale di Fisica Nucleare-INFN, Sezione di Napoli, Naples, Italy
| | - Celine Karle
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany
- National Center for Radiation Oncology, Heidelberg Institute of Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Filipa Baltazar
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany
- National Center for Radiation Oncology, Heidelberg Institute of Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Lorenzo Manti
- Radiation Biophysics Laboratory, Department of Physics “E. Pancini,” University of Naples Federico II, Naples, Italy
- Istituto Nazionale di Fisica Nucleare-INFN, Sezione di Napoli, Naples, Italy
| | | | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany
- National Center for Radiation Oncology, Heidelberg Institute of Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany
- National Center for Radiation Oncology, Heidelberg Institute of Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany
- National Center for Radiation Oncology, Heidelberg Institute of Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ivana Dokic
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany
- National Center for Radiation Oncology, Heidelberg Institute of Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy, Medical Physics, Pavia, Italy
| |
Collapse
|
5
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
6
|
Volz L, Korte J, Martire MC, Zhang Y, Hardcastle N, Durante M, Kron T, Graeff C. Opportunities and challenges of upright patient positioning in radiotherapy. Phys Med Biol 2024; 69:18TR02. [PMID: 39159668 DOI: 10.1088/1361-6560/ad70ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Objective.Upright positioning has seen a surge in interest as a means to reduce radiotherapy (RT) cost, improve patient comfort, and, in selected cases, benefit treatment quality. In particle therapy (PT) in particular, eliminating the need for a gantry can present massive cost and facility footprint reduction. This review discusses the opportunities of upright RT in perspective of the open challenges.Approach.The clinical, technical, and workflow challenges that come with the upright posture have been extracted from an extensive literature review, and the current state of the art was collected in a synergistic perspective from photon and particle therapy. Considerations on future developments and opportunities are provided.Main results.Modern image guidance is paramount to upright RT, but it is not clear which modalities are essential to acquire in upright posture. Using upright MRI or upright CT, anatomical differences between upright/recumbent postures have been observed for nearly all body sites. Patient alignment similar to recumbent positioning was achieved in small patient/volunteer cohorts with prototype upright positioning systems. Possible clinical advantages, such as reduced breathing motion in upright position, have been reported, but limited cohort sizes prevent resilient conclusions on the treatment impact. Redesign of RT equipment for upright positioning, such as immobilization accessories for various body regions, is necessary, where several innovations were recently presented. Few clinical studies in upright PT have already reported promising outcomes for head&neck patients.Significance.With more evidence for benefits of upright RT emerging, several centers worldwide, particularly in PT, are installing upright positioning devices or have commenced upright treatment. Still, many challenges and open questions remain to be addressed to embed upright positioning firmly in the modern RT landscape. Guidelines, professionals trained in upright patient positioning, and large-scale clinical studies are required to bring upright RT to fruition.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - James Korte
- Department of Physical Science, Peter MacCallum Cancer Centere, Melbourne, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Maria Chiara Martire
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institut, Villigen-PSI, Switzerland
| | - Nicholas Hardcastle
- Department of Physical Science, Peter MacCallum Cancer Centere, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Marco Durante
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany
| | - Tomas Kron
- Department of Physical Science, Peter MacCallum Cancer Centere, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Christian Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department for Electronic Engineering and Computer Science, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Quarz A, Volz L, Antink CH, Durante M, Graeff C. Deep learning-based voxel sampling for particle therapy treatment planning. Phys Med Biol 2024; 69:155014. [PMID: 38917844 DOI: 10.1088/1361-6560/ad5bba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Objective.Scanned particle therapy often requires complex treatment plans, robust optimization, as well as treatment adaptation. Plan optimization is especially complicated for heavy ions due to the variable relative biological effectiveness. We present a novel deep-learning model to select a subset of voxels in the planning process thus reducing the planning problem size for improved computational efficiency.Approach.Using only a subset of the voxels in target and organs at risk (OARs) we produced high-quality treatment plans, but heuristic selection strategies require manual input. We designed a deep-learning model based onP-Net to obtain an optimal voxel sampling without relying on patient-specific user input. A cohort of 70 head and neck patients that received carbon ion therapy was used for model training (50), validation (10) and testing (10). For training, a total of 12 500 carbon ion plans were optimized, using a highly efficient artificial intelligence (AI) infrastructure implemented into a research treatment planning platform. A custom loss function increased sampling density in underdosed regions, while aiming to reduce the total number of voxels.Main results.On the test dataset, the number of voxels in the optimization could be reduced by 84.8% (median) at <1% median loss in plan quality. When the model was trained to reduce sampling in the target only while keeping all voxels in OARs, a median reduction up to 71.6% was achieved, with 0.5% loss in the plan quality. The optimization time was reduced by a factor of 7.5 for the total AI selection model and a factor of 3.7 for the model with only target selection.Significance.The novel deep-learning voxel sampling technique achieves a significant reduction in computational time with a negligible loss in the plan quality. The reduction in optimization time can be especially useful for future real-time adaptation strategies.
Collapse
Affiliation(s)
- A Quarz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| | - L Volz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - C Hoog Antink
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Physics 'Ettore Pancini', University Federico II, Naples, Italy
| | - C Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Holtzman AL, Mohammadi H, Furutani KM, Koffler DM, McGee LA, Lester SC, Gamez ME, Routman DM, Beltran CJ, Liang X. Impact of Relative Biologic Effectiveness for Proton Therapy for Head and Neck and Skull-Base Tumors: A Technical and Clinical Review. Cancers (Basel) 2024; 16:1947. [PMID: 38893068 PMCID: PMC11171304 DOI: 10.3390/cancers16111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies. In this paper, we discuss the clinical significance of RBE within treatment volumes and adjacent serial organs at risk in the management of head and neck and skull-base tumors. We review proton RBE uncertainties and its modeling and explore clinical outcomes. Additionally, we highlight technological advancements and innovations in plan optimization and treatment delivery, including linear energy transfer/RBE optimizations and the development of spot-scanning proton arc therapy. These advancements show promise in harnessing the full capabilities of proton therapy from an academic standpoint, further technological innovations and clinical outcome studies, however, are needed for their integration into routine clinical practice.
Collapse
Affiliation(s)
- Adam L. Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Daniel M. Koffler
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lisa A. McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Scott C. Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mauricio E. Gamez
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
9
|
Wase V, Wuyckens S, Lee JA, Saint-Guillain M. The proton arc therapy treatment planning problem is NP-Hard. Comput Biol Med 2024; 171:108139. [PMID: 38394800 DOI: 10.1016/j.compbiomed.2024.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Proton arc therapy (PAT) is an advanced radiotherapy technique using charged particles in which the radiation device rotates continuously around the patient while irradiating the tumor. Compared to conventional, fixed-angle beam delivery mode, proton arc therapy has the potential to further improve the quality of cancer treatment by delivering accurate radiation dose to tumors while minimizing damage to surrounding healthy tissues. However, the computational complexity of treatment planning in PAT raises challenges as to its effective implementation. In this paper, we demonstrate that designing a PAT plan through algorithmic methods is a NP-hard problem (in fact, NP-complete), where the problem size is determined by the number of discrete irradiation angles from which the radiation can be delivered. This finding highlights the inherent complexity of PAT treatment planning and emphasizes the need for efficient algorithms and heuristics to address the challenges associated with optimizing the delivery of radiation doses in this context.
Collapse
Affiliation(s)
- Viktor Wase
- RaySearch Laboratories AB, Stockholm, Sweden.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - John A Lee
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | |
Collapse
|
10
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
11
|
Engwall E, Marthin O, Wase V, Sundström J, Mikhalev V, de Jong BA, Langendijk JA, Melbéus H, Andersson B, Korevaar EW, Both S, Bokrantz R, Glimelius L, Fredriksson A. Partitioning of discrete proton arcs into interlaced subplans can bring proton arc advances to existing proton facilities. Med Phys 2023; 50:5723-5733. [PMID: 37482909 DOI: 10.1002/mp.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Proton arcs have shown potential to reduce the dose to organs at risks (OARs) by delivering the protons from many different directions. While most previous studies have been focused on dynamic arcs (delivery during rotation), an alternative approach is discrete arcs, where step-and-shoot delivery is used over a large number of beam directions. The major advantage of discrete arcs is that they can be delivered at existing proton facilities. However, this advantage comes at the expense of longer treatment times. PURPOSE To exploit the dosimetric advantages of proton arcs, while achieving reasonable delivery times, we propose a partitioning approach where discrete arc plans are split into subplans to be delivered over different fractions in the treatment course. METHODS For three oropharyngeal cancer patients, four different arc plans have been created and compared to the corresponding clinical IMPT plan. The treatment plans are all planned to be delivered in 35 fractions, but with different delivery approaches over the fractions. The first arc plan (1×30) has 30 directions to be delivered every fraction, while the others are partitioned into subplans with 10 and 6 beam directions, each to be delivered every third (3×10), fifth fraction (5×6), or seventh fraction (7×10). All plans are assessed with respect to delivery time, target robustness over the treatment course, doses to OARs and NTCP for dysphagia and xerostomia. RESULTS The delivery time (including an additional delay of 30 s between the discrete directions to simulate manual interaction with the treatment control system) is reduced from on average 25.2 min for the 1×30 plan to 9.2 min for the 3×10 and 7×10 plans and 5.7 min for the 5×6 plans. The delivery time for the IMPT plan is 7.9 min. When accounting for the combination of delivery time, target robustness, OAR sparing, and NTCP reduction, the plans with 10 directions in each fraction are the preferred choice. Both the 3×10 and 7×10 plans show improved target robustness compared to the 1×30 plans, while keeping OAR doses and NTCP values at almost as low levels as for the 1×30 plans. For all patients the NTCP values for dysphagia are lower for the partitioned plans with 10 directions compared to the IMPT plans. NTCP reduction for xerostomia compared to IMPT is seen in two of the three patients. The best results are seen for the first patient, where the NTCP reductions for the 7×10 plan are 1.6 p.p. (grade 2 xerostomia) and 1.5 p.p. (grade 2 dysphagia). The corresponding NTCP reductions for the 1×30 plan are 2.7 p.p. (xerostomia, grade 2) and 2.0 p.p. (dysphagia, grade 2). CONCLUSIONS Discrete proton arcs can be implemented at any proton facility with reasonable treatment times using a partitioning approach. The technique also makes the proton arc treatments more robust to changes in the patient anatomy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bas A de Jong
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
13
|
Mein S, Kopp B, Tessonnier T, Liermann J, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-scanning hadron arc (SHArc) therapy: A proof of concept using single and multi-ion strategies with helium, carbon, oxygen and neon ions. Med Phys 2022; 49:6082-6097. [PMID: 35717613 DOI: 10.1002/mp.15800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To present particle arc therapy treatments using single and multi-ion therapy optimization strategies with helium (4 He), carbon (12 C), oxygen (16 O) and neon (20 Ne) ion beams. METHODS AND MATERIALS An optimization procedure and workflow were devised for spot-scanning hadron arc therapy (SHArc) treatment planning in the PRECISE (PaRticle thErapy using single and Combined Ion optimization StratEgies) treatment planning system (TPS). Physical and biological beam models were developed for helium, carbon, oxygen and neon ions via FLUKA MC simulation. SHArc treatments were optimized using both single ion (12 C, 16 O, or 20 Ne) and multi-ion therapy (16 O+4 He or 20 Ne+4 He) applying variable relative biological effectiveness (RBE) modeling using a modified microdosimetric kinetic model (mMKM) with (α/β)x values of 2Gy, 5Gy and 3.1Gy respectively, for glioblastoma, pancreatic adenocarcinoma, and prostate adenocarcinoma patient cases. Dose, effective dose, linear energy transfer (LET) and RBE were computed with the GPU-accelerated dose engine FRoG and dosimetric/biophysical attributes were evaluated in the context of conventional particle and photon-based therapies (e.g., volumetric modulated arc therapy [VMAT]). RESULTS All SHArc plans met the target optimization goals (3GyRBE) and demonstrated increased target conformity and substantially lower low-dose bath to surrounding normal tissues than VMAT. SHArc plans using a single ion species (12 C, 16 O, or 20 Ne) exhibited favorable LET distributions with the highest-LET components centralized in the target volume, with values ranging from ∼80-170keV/μm, ∼130-220keV/μm and ∼180-350keV/μm, for 12 C, 16 O, or 20 Ne, respectively, exceeding mean target LET of conventional particle therapy (12 C:∼60, 16 O:∼78 20 Ne:∼100 keV/μm). Multi-ion therapy with SHArc delivery (SHArcMIT ) provided a similar level of target LET enhancement as SHArc compared to conventional planning, however, with additional benefits of homogenous physical dose and RBE distributions. CONCLUSION Here, we demonstrate that arc delivery of light and heavy ion beams, using either a single ion species (12 C, 16 O, or 20 Ne) or combining two ions in a single fraction (16 O+4 He or 20 Ne+4 He), affords enhanced physical and biological distributions (e.g., LET) compared with conventional delivery with photons or particle beams. SHArc marks the first single and multi-ion arc therapy treatment optimization approach using light and heavy ions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Benedikt Kopp
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Jakob Liermann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, 27100, Italy
| |
Collapse
|