1
|
Hou W, Wu N, Liu Y, Tang Y, Quan Q, Luo Y, Jin C. Mpox: Global epidemic situation and countermeasures. Virulence 2025; 16:2457958. [PMID: 39921615 PMCID: PMC11810083 DOI: 10.1080/21505594.2025.2457958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/01/2025] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Mpox, is a zoonotic disease caused by the monkeypox virus and is primarily endemic to Africa. As countries gradually stop smallpox vaccination, resistance to the smallpox virus is declining, increasing the risk of infection with mpox and other viruses. On 14 August 2024, the World Health Organization announced that the spread of mpox constituted a public health emergency of international concern. Mpox's transmission routes and symptoms are complex and pose new challenges to global health. Several vaccines (such as ACAM2000, JYNNEOS, LC16m8, and genetically engineered vaccines) and antiviral drugs (such as tecovirimat, brincidofovir, cidofovir, and varicella immunoglobulin intravenous injection) have been developed and marketed to prevent and control this disease. This review aims to introduce the epidemic situation, epidemiological characteristics, physiological and pathological characteristics, and preventive measures for mpox in detail, to provide a scientific basis for the prevention and control of mpox viruses worldwide.
Collapse
Affiliation(s)
- Wenshuang Hou
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Nan Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Yanzhi Liu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Yanjun Tang
- Department of Food Quality and safety, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Quan Quan
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Yinghua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Chenghao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- Department of Food Quality and safety, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, People’s Republic of China
| |
Collapse
|
2
|
Aryaloka S, Khairullah AR, Kusala MKJ, Fauziah I, Hidayatik N, Agil M, Yuliani MGA, Novianti AN, Moses IB, Purnama MTE, Wibowo S, Fauzia KA, Raissa R, Furqoni AH, Awwanah M, Riwu KHP. Navigating monkeypox: identifying risks and implementing solutions. Open Vet J 2024; 14:3144-3163. [PMID: 39927376 PMCID: PMC11799651 DOI: 10.5455/ovj.2024.v14.i12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 02/11/2025] Open
Abstract
Monkeypox is a zoonotic disease caused by the orthopox virus, a double-stranded DNA virus that belongs the Poxviridae virus family. It is known to infect both animals (especially monkeys and rodents) and humans and causes a rash similar to smallpox. Humans can become infected with monkeypox virus (MPXV) when they get in close contact with infected animals (zoonotic transmission) or other infected people (human-human transmission) through their body fluids such as mucus, saliva, or even skin sores. Frequently observed symptoms of this disease include fever, headaches, muscle aches, and a rash that initially looks like a tiny bump before becoming a lump that is filled with fluid. Monkeypox symptoms also include an incubation period of 5-21 days, divided into prodromal and eruption phases. Several contributing factors, such as smallpox vaccine discontinuation, widespread intake of infected animal products as a source of protein, and high population density, amongst others, have been linked to an increase in the frequency of monkeypox outbreaks. The best course of action for diagnosing individuals who may be suffering from active monkeypox is to collect a sample of skin from the lesion and perform PCR molecular testing. Monkeypox does not presently have a specific therapy; however, supportive care can assist in managing symptoms, such as medication to lower body temperature and pain. Three major orthopoxvirus vaccines have been approved to serve as a preventive measure against monkeypox: LC16, JYNNEOS, and ACAM2000. The discovery that the monkeypox outbreak is communicable both among humans and within a population has sparked new public health worries on the possibility of the outbreak of another viral pandemic. Research and studies are still being conducted to gain a deeper understanding of this zoonotic viral disease. This review is therefore focused on deciphering monkeypox, its etiology, pathogenesis, transmission, risk factors, and control.
Collapse
Affiliation(s)
- Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nanik Hidayatik
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Agil
- Division of Veterinary Clinic Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - M. Gandul Atik Yuliani
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arindita Niatazya Novianti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Abdul Hadi Furqoni
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
3
|
Ahmed MH, Samia NSN, Singh G, Gupta V, Mishal MFM, Hossain A, Suman KH, Raza A, Dutta AK, Labony MA, Sultana J, Faysal EH, Alnasser SM, Alam P, Azam F. An immuno-informatics approach for annotation of hypothetical proteins and multi-epitope vaccine designed against the Mpox virus. J Biomol Struct Dyn 2024; 42:5288-5307. [PMID: 37519185 DOI: 10.1080/07391102.2023.2239921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023]
Abstract
A worrying new outbreak of Monkeypox (Mpox) in humans is caused by the Mpox virus (MpoxV). The pathogen has roughly 28 hypothetical proteins of unknown structure, function, and pathogenicity. Using reliable bioinformatics tools, we attempted to analyze the MpoxV genome, identify the role of hypothetical proteins (HPs), and design a potential candidate vaccine. Out of 28, we identified seven hypothetical proteins using multi-server validation with high confidence for the occurrence of conserved domains. Their physical, chemical, and functional characterizations, including molecular weight, theoretical isoelectric point, 3D structures, GRAVY value, subcellular localization, functional motifs, antigenicity, and virulence factors, were performed. We predicted possible cytotoxic T cell (CTL), helper T cell (HTL) and linear and conformational B cell epitopes, which were combined in a 219 amino acid multiepitope vaccine with human β defensin as a linker. This multi-epitopic vaccine was structurally modelled and docked with toll-like receptor-3 (TLR-3). The dynamical stability of the vaccine-TLR-3 docked complexes exhibited stable interactions based on RMSD and RMSF tests. Additionally, the modelled vaccine was cloned in-silico in an E. coli host to check the appropriate expression of the final vaccine built. Our results might conform to an immunogenic and safe vaccine, which would require further experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Hridoy Ahmed
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Nure Sharaf Nower Samia
- Department of Life Sciences (DLS), School of Environment and Life Sciences (SELS), Independent University, Dhaka, Bangladesh
| | - Gagandeep Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi CCRAS, Ministry of Ayush, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | | | - Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Adnan Raza
- Bioscience department, COMSATS University of Islamabad, Islamabad, Pakistan
| | - Amit Kumar Dutta
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Moriom Akhter Labony
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Jakia Sultana
- Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Mohapatra RK, Singh PK, Branda F, Mishra S, Kutikuppala LVS, Suvvari TK, Kandi V, Ansari A, Desai DN, Alfaresi M, Kaabi NAA, Fares MAA, Garout M, Halwani MA, Alissa M, Rabaan AA. Transmission dynamics, complications and mitigation strategies of the current mpox outbreak: A comprehensive review with bibliometric study. Rev Med Virol 2024; 34:e2541. [PMID: 38743385 DOI: 10.1002/rmv.2541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
As the mankind counters the ongoing COVID-19 pandemic by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), it simultaneously witnesses the emergence of mpox virus (MPXV) that signals at global spread and could potentially lead to another pandemic. Although MPXV has existed for more than 50 years now with most of the human cases being reported from the endemic West and Central African regions, the disease is recently being reported in non-endemic regions too that affect more than 50 countries. Controlling the spread of MPXV is important due to its potential danger of a global spread, causing severe morbidity and mortality. The article highlights the transmission dynamics, zoonosis potential, complication and mitigation strategies for MPXV infection, and concludes with suggested 'one health' approach for better management, control and prevention. Bibliometric analyses of the data extend the understanding and provide leads on the research trends, the global spread, and the need to revamp the critical research and healthcare interventions. Globally published mpox-related literature does not align well with endemic areas/regions of occurrence which should ideally have been the scenario. Such demographic and geographic gaps between the location of the research work and the endemic epicentres of the disease need to be bridged for greater and effective translation of the research outputs to pubic healthcare systems, it is suggested.
Collapse
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Puneet K Singh
- School of Biotechnology, Campus-11, KIIT Deemed-to-be-University, Bhubaneswar, Odisha, India
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT Deemed-to-be-University, Bhubaneswar, Odisha, India
| | | | - Tarun K Suvvari
- Department of Medicine, Rangaraya Medical College, Kakinada, Andhra Pradesh, India
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, Telangana, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, India
| | - Dhruv N Desai
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
5
|
Cai Y, Zhang X, Zhang K, Liang J, Wang P, Cong J, Xu X, Li M, Liu K, Wei B. The global patent landscape of emerging infectious disease monkeypox. BMC Infect Dis 2024; 24:403. [PMID: 38622539 PMCID: PMC11017537 DOI: 10.1186/s12879-024-09252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Monkeypox is an emerging infectious disease with confirmed cases and deaths in several parts of the world. In light of this crisis, this study aims to analyze the global knowledge pattern of monkeypox-related patents and explore current trends and future technical directions in the medical development of monkeypox to inform research and policy. METHODS A comprehensive study of 1,791 monkeypox-related patents worldwide was conducted using the Derwent patent database by descriptive statistics, social network method and linear regression analysis. RESULTS Since the 21st century, the number of monkeypox-related patents has increased rapidly, accompanied by increases in collaboration between commercial and academic patentees. Enterprises contributed the most in patent quantity, whereas the initial milestone patent was filed by academia. The core developments of technology related to the monkeypox include biological and chemical medicine. The innovations of vaccines and virus testing lack sufficient patent support in portfolios. CONCLUSIONS Monkeypox-related therapeutic innovation is geographically limited with strong international intellectual property right barriers though it has increased rapidly in recent years. The transparent licensing of patent knowledge is driven by the merger and acquisition model, and the venture capital, intellectual property and contract research organization model. Currently, the patent thicket phenomenon in the monkeypox field may slow the progress of efforts to combat monkeypox. Enterprises should pay more attention to the sharing of technical knowledge, make full use of drug repurposing strategies, and promote innovation of monkeypox-related technology in hotspots of antivirals (such as tecovirimat, cidofovir, brincidofovir), vaccines (JYNNEOS, ACAM2000), herbal medicine and gene therapy.
Collapse
Affiliation(s)
- Yuanqi Cai
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Xiaoming Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, China
| | - Kuixing Zhang
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Jingbo Liang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Pingping Wang
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Xin Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Mengyao Li
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Kunmeng Liu
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China.
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China.
| |
Collapse
|
6
|
Mektebi A, Elsaid M, Yadav T, Abdallh F, Assker M, Siddiq A, Sayad R, Saifi M, Farahat RA. Mpox vaccine acceptance among healthcare workers: a systematic review and meta-analysis. BMC Public Health 2024; 24:4. [PMID: 38166685 PMCID: PMC10759337 DOI: 10.1186/s12889-023-17186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Mpox is a zoonotic viral disease that emerged in May 2022 and has since shown a high prevalence in non-mpox-endemic areas, resulting in an outbreak that caused more than 84,000 cases in 110 countries around the globe. Several vaccines are available to prevent the disease, and multiple studies have been conducted to assess the attitudes of different populations toward receiving the mpox vaccine. This study systematically reviews all the studies conducted on mpox vaccine acceptance/hesitancy among healthcare workers. METHODS A systematic literature search was conducted through four electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, up to March 2023. Studies that described mpox vaccine acceptance/hesitancy among healthcare workers were included, and the data were extracted using a uniform extraction sheet. Following the extraction, the meta-analysis included ten studies with 7322 healthcare workers. Three researchers independently assessed the risk of bias in the included study using the Newcastle-Ottawa Scale (NOS). RESULTS Ten studies were included in the review. This review indicates that the prevalence of mpox vaccine acceptance was 58.5%, and the prevalence of mpox vaccine hesitancy was 41.5%. There was a higher prevalence of acceptance in countries located in Asian and African areas compared to those in North America and Europe, estimated at 68% and 44.3%, respectively. Among the studies conducted solely among physicians, there was a high prevalence of mpox vaccine acceptance, at 77.1%, compared to 49% in studies that included all healthcare workers. CONCLUSION There is a significant variation in the prevalence of mpox vaccine acceptance among different populations. Further research is needed to identify the factors that contribute to this variation and to develop interventions to increase vaccine acceptance. In addition, it is important to promote research on mpox vaccine acceptance and hesitancy among healthcare workers in countries where data is limited. This research will help policymakers develop effective policies to increase acceptance and reduce the disease burden.
Collapse
Affiliation(s)
- Ammar Mektebi
- Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
- Medical Research Platform, Cairo, Egypt
- German-Syrian Research Society e.V., Frankfurt, Germany
| | - Mohamed Elsaid
- Medical Research Platform, Cairo, Egypt.
- Faculty of Medicine, 6Th of October, Misr University for Science and Technology, Giza, Egypt.
| | - Tularam Yadav
- Medical Research Platform, Cairo, Egypt
- Faculty of Medicine, Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan
| | - Fatima Abdallh
- Medical Research Platform, Cairo, Egypt
- Faculty of Medicine, Hashemite University, Zarqa City, Jordan
| | - Mohamad Assker
- Medical Research Platform, Cairo, Egypt
- Faculty of Medicine, University of Sharjah, Sharjah, UAE
| | - Abdelmonem Siddiq
- Medical Research Platform, Cairo, Egypt
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Reem Sayad
- Medical Research Platform, Cairo, Egypt
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Motaz Saifi
- Medical Research Platform, Cairo, Egypt
- Department of Medicine, Medicine & Health Science, An-Najah National University, Nablus, Palestine
| | | |
Collapse
|
7
|
Shah BM, Modi P. Breaking Barriers: Current Advances and Future Directions in Mpox Therapy. Curr Drug Targets 2024; 25:62-76. [PMID: 38151842 DOI: 10.2174/0113894501281263231218070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Mpox, a newly discovered zoonotic infection, can be transmitted from animal to human and between humans. Serological and genomic studies are used to identify the virus. OBJECTIVE Currently, there are no proven effective treatments for Mpox. Also, the safety and efficacy of intravenous vaccinia immune globulin, oral Tecovirimat (an inhibitor of intracellular viral release), and oral Brincidofovir (a DNA polymerase inhibitor) against the Mpox virus are uncertain, highlighting the need for more effective and safe treatments. As a result, drug repurposing has emerged as a promising strategy to identify previously licensed drugs that can be repurposed to treat Mpox. RESULTS Various approaches have been employed to identify previously approved drugs that can target specific Mpox virus proteins, including thymidylate kinase, D9 decapping enzyme, E8 protein, Topoisomerase1, p37, envelope proteins (D13, A26, and H3), F13 protein, virus's main cysteine proteases, and DNA polymerase. CONCLUSION In this summary, we provide an overview of potential drugs that could be used to treat Mpox and discuss the underlying biological processes of their actions.
Collapse
Affiliation(s)
- Bhumi M Shah
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| | - Palmi Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| |
Collapse
|
8
|
Moawad MHE, Taha AM, Nguyen D, Ali M, Mohammed YA, Moawad WAET, Hamouda E, Bonilla-Aldana DK, Rodriguez-Morales AJ. Attitudes towards Receiving Monkeypox Vaccination: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1840. [PMID: 38140243 PMCID: PMC10747893 DOI: 10.3390/vaccines11121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The public's attitude towards Mpox vaccination is a critical factor in the success of immunisation programmes. Understanding the factors contributing to vaccine acceptance or hesitancy is critical for developing effective health communication strategies. This systematic review and meta-analysis aims to bring together evidence from observational studies on attitudes towards Mpox vaccination, including willingness and rejection. METHODS From this review's inception until June 2023, a comprehensive search was conducted across four major electronic databases: PubMed, Web of Science, Scopus, and EBSCO. The inclusion criteria included studies investigating public attitudes towards Mpox vaccination, as defined by acceptance and willingness to be vaccinated versus rejection and unwillingness. RESULTS Thirty studies met the inclusion criteria among the screened literature. An analysis of 27 studies involving 81,792 participants revealed that 45,926 (56.14%) were willing to receive the Mpox vaccination. In contrast, ten studies involving 7448 participants revealed that 2156 people (28.94%) were unwilling to receive the Mpox vaccination. Females were less willing to receive the vaccine than males, with an odds ratio (OR) of 0.61 (95% CI, 0.43-0.86). Furthermore, homosexuals were found to be more willing than heterosexuals, with an OR of 1.44 (95% CI, 1.14-1.80). CONCLUSION Vaccination is emerging as a critical strategy for preventing Mpox infection and fostering herd immunity against potential outbreaks. Improving public awareness and acceptance of vaccination is critical to avoiding a situation similar to the COVID-19 pandemic. Targeted educational and outreach programmes could explain the benefits of vaccination, bridging the information gap and encouraging a proactive public health approach to emerging infectious diseases.
Collapse
Affiliation(s)
- Mostafa Hossam-Eldin Moawad
- Clinical Department, Faculty of Pharmacy, Alexandria University, Alexandria 21544, Egypt;
- Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Dang Nguyen
- Massachusetts General Hospital, Corrigan Minehan Heart Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Mohammed Ali
- Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | | | - Wesam Abd El-Tawab Moawad
- Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt;
- MARS Global, London WC2H 9JQ, UK
| | - Esraa Hamouda
- Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt;
| | | | - Alfonso J. Rodriguez-Morales
- Clinical Epidemiology and Biostatistics Master Program, Faculty of Health Sciences, Universidad Científica del Sur, Lima 15097, Peru;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
| |
Collapse
|
9
|
Ghazy RM, Elrewany E, Gebreal A, ElMakhzangy R, Fadl N, Elbanna EH, Tolba MM, Hammad EM, Youssef N, Abosheaishaa H, Hamouda EEM, Mehana ZEE, Al Zomia AS, A Alnami RA, Salma EAS, Alqahtani AS, Alshehri AF, Hussein M. Systematic Review on the Efficacy, Effectiveness, Safety, and Immunogenicity of Monkeypox Vaccine. Vaccines (Basel) 2023; 11:1708. [PMID: 38006040 PMCID: PMC10674429 DOI: 10.3390/vaccines11111708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The variation in the reported vaccine safety and effectiveness could contribute to the high rates of vaccine hesitancy among the general population and healthcare workers in areas where monkeypox (mpox) is circulating. In this review, our objective was to evaluate the safety, immunogenicity, effectiveness, and efficacy of the mpox vaccines. METHODS An extensive search for articles across multiple databases was performed, including searching six databases (PubMed Central, PubMed Medline, Scopus, Web of Science, Cochrane, ProQuest), two pre-print databases (European PMC Preprint and MedRxiv), and Google Scholar. RESULTS A total of 4290 citations were retrieved from the included databases. Following the removal of duplicates and the initial screening of records, a total of 36 studies were included into the analysis. Additionally, we identified five more studies through manual searches, resulting in a total of 41 eligible articles for qualitative synthesis. The study findings revealed that mpox vaccines demonstrate the ability to generate adequate antibodies; however, their effectiveness may decrease over time, exhibiting varying safety profiles. Most of the included studies consistently reported substantial levels of effectiveness and efficacy against mpox. Interestingly, the number of vaccine doses administered was found to influence the degree of immunogenicity, subsequently impacting the overall effectiveness and efficacy of the vaccines. Furthermore, we found that smallpox vaccines exhibited a form of cross-protection against mpox. CONCLUSIONS Vaccines can be used to prevent mpox and effectively control its spread.
Collapse
Affiliation(s)
- Ramy Mohamed Ghazy
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.M.G.); (E.E.)
| | - Ehab Elrewany
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.M.G.); (E.E.)
| | - Assem Gebreal
- Alexandria Faculty of Medicine, Alexandria University, Alexandria 21561, Egypt; (A.G.); (E.M.H.); (Z.E.E.M.)
| | - Rony ElMakhzangy
- Family Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.E.); (N.F.)
| | - Noha Fadl
- Family Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.E.); (N.F.)
| | - Eman Hassan Elbanna
- Health Administration and Behavioral Sciences Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt;
| | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum City 63723, Egypt;
| | - Elsayed Mohamed Hammad
- Alexandria Faculty of Medicine, Alexandria University, Alexandria 21561, Egypt; (A.G.); (E.M.H.); (Z.E.E.M.)
| | - Naglaa Youssef
- Medical-Surgical Nursing, Faculty of Nursing, Cairo University, Cairo 11562, Egypt;
| | | | | | - Zeyad Elsayed Eldeeb Mehana
- Alexandria Faculty of Medicine, Alexandria University, Alexandria 21561, Egypt; (A.G.); (E.M.H.); (Z.E.E.M.)
| | - Ahmed Saad Al Zomia
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Raad Ahmed A Alnami
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Emad Ali Saeed Salma
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Abdulaziz Saleh Alqahtani
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Abdulaziz Fayez Alshehri
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Mai Hussein
- Clinical Research Administration, Alexandria Directorate of Health Affairs, Alexandria 21561, Egypt
- Egyptian Ministry of Health and Population, Cairo 11562, Egypt
- Master of Medical Science in Clinical Investigation, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Keikha M, Zandhaghighi M, Shahraki Zahedani S. Death-associated with human monkeypox outbreak 2022: the current perspectives - correspondence. Int J Surg 2023; 109:1806-1807. [PMID: 36928291 PMCID: PMC10389562 DOI: 10.1097/js9.0000000000000123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 03/18/2023]
Affiliation(s)
- Masoud Keikha
- Department of Medical Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | | |
Collapse
|
11
|
Malik S, Ahmad T, Ahsan O, Muhammad K, Waheed Y. Recent Developments in Mpox Prevention and Treatment Options. Vaccines (Basel) 2023; 11:500. [PMID: 36992085 PMCID: PMC10057056 DOI: 10.3390/vaccines11030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Human mpox is an emerging epidemic in the world. The monkey pox virus (MPXV) belongs to the same family of zoonotic Orthopoxviridae as that of the smallpox virus and exhibits similar clinical symptomology. Information regarding its diagnostics, disease epidemiology, surveillance, preventive methods, and treatment strategies are being collated with time. The purpose of this review is to trace the recent events in the scientific platform that have defined new preventive and treatment strategies against mpox. A methodological approach has been used to gather data from the latest literature to comprehensively overview the emerging treatment options. The results portion will cover details regarding the prevention of mpox. It will also shed light on a brief description of contemporary vaccines and antiviral agents that have been evaluated for their treatment potential since the emergence of the mpox threat. These treatment options are setting the pace for controlling the widespread monkeypox infection. However, the limitations attached to these treatment strategies need to be tackled quickly to increase their efficacy so that they can be deployed on a large scale for the prevention of this epidemic becoming another pandemic in this decade.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Omar Ahsan
- Department of Medicine, Foundation University School of Health Sciences, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
12
|
Ahmed SK, Mohamed MG, Dabou EA, Abuijlan I, Chandran D, El-Shall NA, Chopra H, Dhama K. Monkeypox (mpox) in immunosuppressed patients. F1000Res 2023; 12:127. [PMID: 37089133 PMCID: PMC10113800 DOI: 10.12688/f1000research.130272.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
The World Health Organization (WHO) proclaimed a public health emergency in July 2022 due to the emergence of Mpox (formerly monkeypox) while the globe was still dealing with the COVID-19 epidemic. The characteristics of mpox in immunocompetent individuals are well-characterized, despite difficulties in diagnostics, immunization, and access to treatment that persist in low-income countries. Patients with weakened immune systems are more likely to spread an illness and die from it than healthy people because they cannot mount a protective immune response against it, such as a neutralizing IgG and poxvirus-specific Th1 response. A health warning on severe mpox in people who are immunocompromised due to Human Immunodeficiency virus (HIV) and other illnesses was released by the U.S. Centers for Disease Control and Prevention (CDC) on September 29, 2022. The advice does not specifically include primary immunodeficiency, but it does define other immunocompromising disorders as "having autoimmune disease with immunodeficiency as a clinical component". Both those with healthy immune systems and those with weakened immune systems, such as those who are immunosuppressed, older people, children, etc., have encountered serious health issues, but the latter group is more likely to do so. According to the advisory, "of the people with severe mpox manifestations for whom CDC has been consulted, the majority have had HIV with CD4 counts 200 cells/ml, indicating substantial immunosuppression". However, new cases are still expected to be discovered, especially in low-income countries with limited access to diagnosis, treatment, and prevention, and where a large percentage of the mpox-infected population also has advanced HIV infection. Thus, further research is always needed to determine the best way to treat mpox in immunocompromised people. In this context, we discussed /reviewed the mpox clinical presentation, available treatment options and current preventive guidelines in immunocompromised patients.
Collapse
Affiliation(s)
- Sirwan Khalid Ahmed
- Department of Pediatrics, Rania Pediatric & Maternity Teaching Hospital, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Mona Gamal Mohamed
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Eman Abdelaziz Dabou
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Israa Abuijlan
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
13
|
Ahmed SK, Mohamed MG, Dabou EA, Abuijlan I, Chandran D, El-Shall NA, Chopra H, Dhama K. Monkeypox (mpox) in immunosuppressed patients. F1000Res 2023; 12:127. [PMID: 37089133 PMCID: PMC10113800 DOI: 10.12688/f1000research.130272.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 02/05/2023] Open
Abstract
The World Health Organization (WHO) proclaimed a public health emergency in July 2022 due to the emergence of Mpox (formerly monkeypox) while the globe was still dealing with the COVID-19 epidemic. The characteristics of mpox in immunocompetent individuals are well-characterized, despite difficulties in diagnostics, immunization, and access to treatment that persist in low-income countries. Patients with weakened immune systems are more likely to spread an illness and die from it than healthy people because they cannot mount a protective immune response against it, such as a neutralizing IgG and poxvirus-specific Th1 response. A health warning on severe mpox in people who are immunocompromised due to Human Immunodeficiency virus (HIV) and other illnesses was released by the U.S. Centers for Disease Control and Prevention (CDC) on September 29, 2022. The advice does not specifically include primary immunodeficiency, but it does define other immunocompromising disorders as "having autoimmune disease with immunodeficiency as a clinical component". Both those with healthy immune systems and those with weakened immune systems, such as those who are immunosuppressed, older people, children, etc., have encountered serious health issues, but the latter group is more likely to do so. According to the advisory, "of the people with severe mpox manifestations for whom CDC has been consulted, the majority have had HIV with CD4 counts 200 cells/ml, indicating substantial immunosuppression". However, new cases are still expected to be discovered, especially in low-income countries with limited access to diagnosis, treatment, and prevention, and where a large percentage of the mpox-infected population also has advanced HIV infection. Thus, further research is always needed to determine the best way to treat mpox in immunocompromised people. In this context, we discussed /reviewed the mpox clinical presentation, available treatment options and current preventive guidelines in immunocompromised patients.
Collapse
Affiliation(s)
- Sirwan Khalid Ahmed
- Department of Pediatrics, Rania Pediatric & Maternity Teaching Hospital, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Mona Gamal Mohamed
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Eman Abdelaziz Dabou
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Israa Abuijlan
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
14
|
Sah R, Paul D, Mohanty A, Shah A, Mohanasundaram AS, Padhi BK. Monkeypox (Mpox) vaccines and their side effects: the other side of the coin. Int J Surg 2023; 109:215-217. [PMID: 36799858 PMCID: PMC10389550 DOI: 10.1097/js9.0000000000000142] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu
- Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra
| | | | | | - Abhishek Shah
- B.P. Koriala Institute of Health Sciences, Dharan, Nepal
| | | | - Bijay K. Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Sharma V, Aggarwal D, Sharma AK, Chandran D, Sharma A, Chopra H, Emran TB, Dey A, Dhama K. An overview on Monkeypox, Current Paradigms and Advances in its Vaccination, Treatment and Clinical Management: Trends, Scope, Promise and Challenges. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:3000-3012. [DOI: 10.22207/jpam.16.spl1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monkeypox virus is an orthopoxvirus sharing the common genus with variola and vaccinia virus. Most of the monkeypox (MPX) cases had been reported from the central and west African region (the main endemic areas) prior to 2022 but there was a sudden outbreak in May, 2022 disseminating the infections to thousands of people even in non-endemic countries, posing a global public health emergency. MPX was considered a rae and neglected disease, however the 2022 MPX outbreaks in multiple countries attracted attention of worldwide researchers to pace up for carrying out researches on various aspects of MPXV including attempts to design and develop diagnostics, vaccines, drugs and therapeutics counteract MPX. Apart from being a zoonotic disease, the current outbreaks highlighted rapid human-to-human transmission of MPXV, besides the reverse zoonosis has also been documented with recent first report of human-to-dog transmission, urging a call for the importance of one health approach. Atypical and unusual disease manifestations as well asymptomatic MPXV infections have also been observed during 2022 MPX outbreak. The affected patients typically develop a rash resulting in a mild disease followed by recovery with some supportive care and use of antivirals such as tecovirimat, cidofovir and brincidofovir in severe disease cases. Modified vaccinia Ankara (MVA) vaccine with an excellent safety profile has been recommended to patients with higher risk exposure and immunocompromised individuals. Moreover, another vaccine the replication-competent vaccine (ACAM2000) could be a suitable alternative to MVA’s non-availability to some selective immunocompetent individuals. Current review highlights the salient aspects of management and treatment of monkeypox along with underlying promises in terms of therapeutics and a variety of challenges posed due to current global public health emergency situation to counteract MPX.
Collapse
|
16
|
Chandran D, Hridya P, Prasanth D, Abernaa D, Kaaviya A, Menon PS, Vinodhini D, Aslam MM, Pran M, Savanth VV, Nainu F, Yatoo MI, Ebad Ur Rehman M, Chopra H, Emran TB, Dey A, Sharma AK, Dhama K. Changing Patterns in the Spread of Human Monkeypox: A Dangerous New Development in Disease Epidemiology. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:3106-3118. [DOI: 10.22207/jpam.16.spl1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent cases of monkeypox (MPX), a zoonotic illness caused by monkeypox virus (MPXV), outside of Africa have prompted international public health concerns. The emergence, re-emergence, and global dispersion of zoonoses are profoundly impacted by a wide variety of causes, including but not limited to climate change, urbanization, animal migration, quick means of travel and tourism, vector biology, anthropogenic influences, and natural factors. Human MPX was first identified in the Democratic Republic of the Congo (DRC) in 1970, and since then it has spread throughout Africa, particularly to West and Central Africa, with some instances even emerging outside of Africa. Since the 1970s, there has been an increasing trend in the occurrence of human MPX, with the DRC seeing the largest increase. The median age at first presentation has increased from 4 years in the 1970s to 21 years in the current time. The total fatality rate was 8.7%, although there was a significant variation between clades: Central African (10.6%) and West African (3.6%). Since 2003, sporadic outbreaks have occurred outside of Africa due to imports and travel-related dissemination. Risky practices that could lead to contracting MPX include having contact with infected animals or people. There is still much to learn about MPXV, such as the reason for the sudden increase in cases while travel links from endemic countries have not yet been established profoundly, identity the natural reservoir animal(s), make advances in diagnostics, increase surveillance and monitoring, carry out in-depth epidemiological investigations, genome sequencing and phylogenetic analysis, explore the reasons for the changing epidemiology and evolving nature of the virus, its ecological niche, and the discovery of effective treatment and management of MPX. This l mini-review aims to reveal an increase in the number of reported cases of MPX worldwide, with the highest concentration in the DRC, as well as its spread to other countries and a shift in the median age of patients from infants to teenagers and young adults highlighting from older years to current 2022 MPX outbreaks. Some cross-protection against MPX was provided by smallpox vaccination, suggesting that its discontinuation may have contributed to an increase in human-to-human transmission. The disease’s worldwide significance is underscored by the fact that it has spread beyond Africa. As the epidemiology of this resurging disease is constantly shifting, surveillance and detection programs are crucial to keeping up with it.
Collapse
|
17
|
Chandran D, Nandanagopal V, Gopan M, Megha K, Hari Sankar C, Muhammad Aslam M, Savanth VV, Pran M, Nainu F, Yatoo MI, Ebad Ur Rehman M, Chopra H, Emran TB, Dey A, Sharma AK, A. Saied A, Dhama K. Major Advances in Monkeypox Vaccine Research and Development – An Update. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:3083-3095. [DOI: 10.22207/jpam.16.spl1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monkeypox (MPX) is a zoonotic disease that is endemic to the western and central regions of Africa and it is caused by monkeypox virus (MPXV), which is classified as a member of the Poxviridae family, specifically the Chordopoxvirinae subfamily, and the Orthopoxvirus genus. The current multiregional outbreak of MPX, which started in May of 2022, has since swiftly spread across the globe and thus has been declared a global public health emergency by the World Health Organization (WHO). Protective immunity against MPXV can be achieved by administering a smallpox vaccination, as the two viruses share antigenic properties. Although smallpox was declared eradicated in 1980, the vaccine campaign was halted the following year, leaving the population with significantly less immunity than it had before. The potential for human-to-human transmission of MPXV has grown as a result. Due to the lack of a particular treatment for MPX infection, anti-viral medications initially designed for the smallpox virus are being employed. However, the prognosis for MPX may vary depending on factors like immunization history, pre-existing illnesses, and comorbidities, even though the majority of persons who develop MPX have a mild, self-limiting illness. Vaccines and antiviral drugs are being researched as potential responses to the latest 2022 MPX epidemic. The first-generation smallpox vaccinations maintained in national stockpiles of several countries are not recommended due to not meeting the current safety and manufacturing criteria, as stated by the WHO. Newer, safer (second- and third-generation) smallpox vaccines, such as JYNNEOSTM, which has been licensed for the prevention of MPX, are indicated as potentially useful in the interim guideline. Studies on vaccines and antiviral drugs are still being investigated as possible remedies to the recent MPX outbreak. This mini-review article serves as a retrospective look at the evolution of smallpox vaccines from their inception in the 1700s to the current trends up to the end of year 2022, specifically for developing monkeypox vaccines.
Collapse
|