1
|
Das R, Coupar J, Clavijo PE, Saleh A, Cheng TF, Yang X, Chen J, VanWaes C, Chen Z. Lymphotoxin-β receptor-NIK signaling induces alternative RELB/NF-κB2 activation to promote metastatic gene expression and cell migration in head and neck cancer. Mol Carcinog 2019; 58:411-425. [PMID: 30488488 PMCID: PMC7066987 DOI: 10.1002/mc.22938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) preferentially spread to regional cervical tissues and lymph nodes. Here, we hypothesized that lymphotoxin-β (LTβ), receptor LTβR, and NF-κB-inducing kinase (NIK), promote the aberrant activation of alternative NF-κB2/RELB pathway and genes, that enhance migration and invasion of HNSCC. Genomic and expression alterations of the alternative NF-kB pathway were examined in 279 HNSCC tumors from The Cancer Genome Atlas (TCGA) and a panel of HNSCC lines. LTβR is amplified or overexpressed in HNSCC of the larynx or oral cavity, while LTβ, NIK, and RELB are overexpressed in cancers arising within lymphoid oropharyngeal and tonsillar sites. Similarly, subsets of HNSCC lines displayed overexpression of LTβR, NIK, and RELB proteins. Recombinant LTβ, and siRNA depletion of endogenous LTβR and NIK, modulated expression of LTβR, NIK, and nuclear translocation of NF-κB2(p52)/RELB as well as functional NF-κB promoter reporter activity. Treatment with a NIK inhibitor (1,3[2H,4H]-Iso-Quinoline Dione) reduced the protein expression of NIK and NF-κB2(p52)/RELB, and blocked LTβ induced nuclear translocation of RELB. NIK and RELB siRNA knockdown or NIK inhibitor slowed HNSCC migration or invation in vitro. LTβ-induces expression of migration and metastasis related genes, including hepatocyte growth/scatter factor receptor MET. Knockdown of NIK or MET similarly inhibited the migration of HNSCC cell lines. This may help explain why HNSCC preferentially migrate to local lymph nodes, where LTβ is expressed. Our findings show that LTβ/LTβR promotes activation of the alternative NIK-NF-κB2/RELB pathway to enhance MET-mediated cell migration in HNSCC, which could be potential therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Rita Das
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Jamie Coupar
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Anthony Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Tsu-Fan Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Jianhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Carter VanWaes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
- Contributed equally as senior authors
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
- Contributed equally as senior authors
| |
Collapse
|
2
|
Wang Z, Chai Q, Zhu M. Differential Roles of LTβR in Endothelial Cell Subsets for Lymph Node Organogenesis and Maturation. THE JOURNAL OF IMMUNOLOGY 2018; 201:69-76. [PMID: 29760194 DOI: 10.4049/jimmunol.1701080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/26/2018] [Indexed: 11/19/2022]
Abstract
Cellular cross-talk mediated by lymphotoxin αβ-lymphotoxin β receptor (LTβR) signaling plays a critical role in lymph node (LN) development. Although the major role of LTβR signaling has long been considered to occur in mesenchymal lymphoid tissue organizer cells, a recent study using a VE-cadherincreLtbrfl/fl mouse model suggested that endothelial LTβR signaling contributes to the formation of LNs. However, the detailed roles of LTβR in different endothelial cells (ECs) in LN development remain unknown. Using various cre transgenic mouse models (Tekcre , a strain targeting ECs, and Lyve1cre , mainly targeting lymphatic ECs), we observed that specific LTβR ablation in Tekcre+ or Lyve1cre+ cells is not required for LN formation. Moreover, double-cre-mediated LTβR depletion does not interrupt LN formation. Nevertheless, TekcreLtbrfl/fl mice exhibit reduced lymphoid tissue inducer cell accumulation at the LN anlagen and impaired LN maturation. Interestingly, a subset of ECs (VE-cadherin+Tekcre-low/neg ECs) was found to be enriched in transcripts related to hematopoietic cell recruitment and transendothelial migration, resembling LN high ECs in adult animals. Furthermore, endothelial Tek was observed to negatively regulate hematopoietic cell transmigration. Taken together, our data suggest that although Tekcre+ endothelial LTβR is required for the accumulation of hematopoietic cells and full LN maturation, LTβR in VE-cadherin+Tekcre-low/neg ECs in embryos might represent a critical portal-determining factor for LN formation.
Collapse
Affiliation(s)
- Zhongnan Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and .,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
The Lymphotoxin β Receptor Is Essential for Upregulation of IFN-Induced Guanylate-Binding Proteins and Survival after Toxoplasma gondii Infection. Mediators Inflamm 2017; 2017:7375818. [PMID: 28845089 PMCID: PMC5563413 DOI: 10.1155/2017/7375818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
Lymphotoxin β receptor (LTβR) signaling plays an important role in efficient initiation of host responses to a variety of pathogens, encompassing viruses, bacteria, and protozoans via induction of the type I interferon response. The present study reveals that after Toxoplasma gondii infection, LTβR−/− mice show a substantially reduced survival rate when compared to wild-type mice. LTβR−/− mice exhibit an increased parasite load and a more pronounced organ pathology. Also, a delayed increase of serum IL-12p40 and a failure of the protective IFNγ response in LTβR−/− mice were observed. Serum NO levels in LTβR−/− animals rose later and were markedly decreased compared to wild-type animals. At the transcriptional level, LTβR−/− animals exhibited a deregulated expression profile of several cytokines known to play a role in activation of innate immunity in T. gondii infection. Importantly, expression of the IFNγ-regulated murine guanylate-binding protein (mGBP) genes was virtually absent in the lungs of LTβR−/− mice. This demonstrates clearly that the LTβR is essential for the induction of a type II IFN-mediated immune response against T. gondii. The pronounced inability to effectively upregulate host defense effector molecules such as GBPs explains the high mortality rates of LTβR−/− animals after T. gondii infection.
Collapse
|
4
|
Bienkowska J, Allaire N, Thai A, Goyal J, Plavina T, Nirula A, Weaver M, Newman C, Petri M, Beckman E, Browning JL. Lymphotoxin-LIGHT pathway regulates the interferon signature in rheumatoid arthritis. PLoS One 2014; 9:e112545. [PMID: 25405351 PMCID: PMC4236099 DOI: 10.1371/journal.pone.0112545] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/06/2014] [Indexed: 01/03/2023] Open
Abstract
A subset of patients with autoimmune diseases including rheumatoid arthritis (RA) and lupus appear to be exposed continually to interferon (IFN) as evidenced by elevated expression of IFN induced genes in blood cells. In lupus, detection of endogenous chromatin complexes by the innate sensing machinery is the suspected driver for the IFN, but the actual mechanisms remain unknown in all of these diseases. We investigated in two randomized clinical trials the effects on RA patients of baminercept, a lymphotoxin-beta receptor-immunoglobulin fusion protein that blocks the lymphotoxin-αβ/LIGHT axis. Administration of baminercept led to a reduced RNA IFN signature in the blood of patients with elevated baseline signatures. Both RA and SLE patients with a high IFN signature were lymphopenic and lymphocyte counts increased following baminercept treatment of RA patients. These data demonstrate a coupling between the lymphotoxin-LIGHT system and IFN production in rheumatoid arthritis. IFN induced retention of lymphocytes within lymphoid tissues is a likely component of the lymphopenia observed in many autoimmune diseases. ClinicalTrials.gov NCT00664716.
Collapse
Affiliation(s)
- Jadwiga Bienkowska
- Translational Medicine, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Norm Allaire
- Translational Medicine, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Alice Thai
- Translational Medicine, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Jaya Goyal
- Translational Medicine, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Tatiana Plavina
- Translational Medicine, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Ajay Nirula
- Immunobiology, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Megan Weaver
- Global Clinical Operations, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Charlotte Newman
- Global Clinical Operations, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Michelle Petri
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Evan Beckman
- Immunobiology, Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Jeffrey L. Browning
- Immunobiology, Biogen Idec, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bechill J, Muller WJ. Herpesvirus entry mediator (HVEM) attenuates signals mediated by the lymphotoxin β receptor (LTβR) in human cells stimulated by the shared ligand LIGHT. Mol Immunol 2014; 62:96-103. [PMID: 24980868 DOI: 10.1016/j.molimm.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/13/2023]
Abstract
Signals mediated by members of the tumor necrosis factor receptor superfamily modulate a network of diverse processes including initiation of inflammatory responses and altering cell fate between pathways favoring survival and death. Although such pathways have been well-described for the TNF-α receptor, less is known about signaling induced by the TNF superfamily member LIGHT and how it is differentially altered by expression of its two receptors LTβR and HVEM in the same cell. We used cell lines with different relative expression of HVEM and LTβR to show that LIGHT-induced signals mediated by these receptors were associated with altered TRAF2 stability and RelA nuclear translocation. Production of the inflammatory chemokine CXCL10 was primarily mediated by LTβR. Higher expression of HVEM was associated with cell survival, while unopposed LTβR signaling favored pathways leading to apoptosis. Importantly, restoring HVEM expression in cells with low endogenous expression recapitulated the phenotype of cells with higher endogenous expression. Together, our data provide evidence that relative expression of HVEM and LTβR modulates canonical NF-κB and pro-apoptotic signals stimulated by LIGHT.
Collapse
Affiliation(s)
- John Bechill
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Northwestern University, 310 East Superior Street, Morton 4-685, Chicago, IL 60611 USA
| | - William J Muller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Northwestern University, 310 East Superior Street, Morton 4-685, Chicago, IL 60611 USA.
| |
Collapse
|
6
|
Nussinov R, Ma B, Tsai CJ, Csermely P. Allosteric conformational barcodes direct signaling in the cell. Structure 2013; 21:1509-21. [PMID: 24010710 PMCID: PMC6361540 DOI: 10.1016/j.str.2013.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 01/01/2023]
Abstract
The cellular network is highly interconnected. Pathways merge and diverge. They proceed through shared proteins and may change directions. How are cellular pathways controlled and their directions decided, coded, and read? These questions become particularly acute when we consider that a small number of pathways, such as signaling pathways that regulate cell fates, cell proliferation, and cell death in development, are extensively exploited. This review focuses on these signaling questions from the structural standpoint and discusses the literature in this light. All co-occurring allosteric events (including posttranslational modifications, pathogen binding, and gain-of-function mutations) collectively tag the protein functional site with a unique barcode. The barcode shape is read by an interacting molecule, which transmits the signal. A conformational barcode provides an intracellular address label, which selectively favors binding to one partner and quenches binding to others, and, in this way, determines the pathway direction, and, eventually, the cell's response and fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
7
|
Abstract
Allosteric propagation results in communication between distinct sites in the protein structure; it also encodes specific effects on cellular pathways, and in this way it shapes cellular response. One example of long-range effects is binding of morphogens to cell surface receptors, which initiates a cascade of protein interactions that leads to genome activation and specific cellular action. Allosteric propagation results from combinations of multiple factors, takes place through dynamic shifts of conformational ensembles, and affects the equilibria of macromolecular interactions. Here, we (a) emphasize the well-known yet still underappreciated role of allostery in conveying explicit signals across large multimolecular assemblies and distances to specify cellular action; (b) stress the need for quantitation of the allosteric effects; and finally, (c) propose that each specific combination of allosteric effectors along the pathway spells a distinct function. The challenges are colossal; the inspiring reward will be predicting function, misfunction, and outcomes of drug regimes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|