1
|
Lin D, Liu H, Song H, Chen B, Fu J, Sun M, Zhou H, Bai W, Wei S, Li H. Upregulation of C-X-C motif chemokine 12 in the spinal cord alleviated the symptoms of experimental autoimmune encephalomyelitis in Lewis rats. Front Neurosci 2023; 17:1105530. [PMID: 37008218 PMCID: PMC10060838 DOI: 10.3389/fnins.2023.1105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundC-X-C motif chemokine 12 (CXCL12) is a chemokine that performs many functions. Studies have shown that CXCL12 can aggravate inflammatory symptoms in the central nervous system (CNS). Evidence also indicates that CXCL12 can promote the repair of myelin sheaths in the CNS in experimental autoimmune encephalomyelitis (EAE). Here, we investigated the function of CXCL12 in CNS inflammation by upregulating CXCL12 in the spinal cord and subsequently inducing EAE.Materials and methodsCXCL12 upregulation in the spinal cords of Lewis rats was induced by the injection of adeno-associated virus 9 (AAV9)/eGFP-P2A-CXCL12 after intrathecal catheter implantation. Twenty-one days after AAV injection, EAE was induced and clinical score was collected; Immunofluorescence staining, WB and LFB-PAS staining were used to evaluate the effect of CXCL12 upregulation. In the in vitro study, oligodendrocyte precursor cells (OPCs) were harvested, cultured with CXCL12 and AMD3100, and subjected to immunofluorescence staining for functional assessment.ResultsCXCL12 was upregulated in the lumbar enlargement of the spinal cord by AAV injection. In each stage of EAE, upregulation of CXCL12 significantly alleviated clinical scores by inhibiting leukocyte infiltration and promoting remyelination. In contrast, the addition of AMD3100, which is a CXCR4 antagonist, inhibited the effect of CXCL12. In vitro, 10 ng/ml CXCL12 promoted the differentiation of OPCs into oligodendrocytes.ConclusionAAV-mediated upregulation of CXCL12 in the CNS can alleviate the clinical signs and symptoms of EAE and significantly decrease the infiltration of leukocytes in the peak stage of EAE. CXCL12 can promote the maturation and differentiation of OPCs into oligodendrocytes in vitro. These data indicate that CXCL12 effectively promotes remyelination in the spinal cord and decreases the signs and symptoms of EAE.
Collapse
Affiliation(s)
- Dahe Lin
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, Fujian, China
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, Fujian, China
- *Correspondence: Dahe lin,
| | - Hongjuan Liu
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
| | - Honglu Song
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Ophthalmology, The 980th Hospital of the Chinese People’s Liberation Army (PLA) Joint Logistics Support Force, Shijiazhuang, Hebei, China
| | - Biyue Chen
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Junxia Fu
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingming Sun
- Department of Ophthalmology, The Third Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Huanfen Zhou
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Wenhao Bai
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Shihui Wei
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Shihui Wei,
| | - Hongen Li
- Department of Ophthalmology, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Hongen Li,
| |
Collapse
|
2
|
Stanojević S, Blagojević V, Ćuruvija I, Vujić V. Lactobacillus rhamnosus Affects Rat Peritoneal Cavity Cell Response to Stimulation with Gut Microbiota: Focus on the Host Innate Immunity. Inflammation 2021; 44:2429-2447. [PMID: 34505975 DOI: 10.1007/s10753-021-01513-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Gut microbiota contribute to shaping the immune repertoire of the host, whereas probiotics may exert beneficial effects by modulating immune responses. Having in mind the differences in both the composition of gut microbiota and the immune response between rats of Albino Oxford (AO) and Dark Agouti (DA) rat strains, we investigated if intraperitoneal (i.p.) injection of live Lactobacillus rhamnosus (LB) may influence peritoneal cavity cell response to in vitro treatments with selected microbiota in the rat strain-dependent manner. Peritoneal cavity cells from AO and DA rats were lavaged two (d2) and seven days (d7) following i.p. injection with LB and tested for NO, urea, and H2O2 release basally, or upon in vitro stimulation with autologous E.coli and Enterococcus spp. Whereas the single i.p. injection of LB nearly depleted resident macrophages and increased the proportion of small inflammatory macrophages and monocytes on d2 in both rat strains, greater proportion of MHCIIhiCD163- and CCR7+ cells and increased NO/diminished H2O2 release in DA compared with AO rats suggest a more intense inflammatory priming by LB in this rat strain. Even though E.coli- and/or Enterococcus spp.-induced rise in H2O2 release in vitro was abrogated by LB in cells from both rat strains, LB prevented microbiota-induced increase in NO/urea ratio only in cells from AO and augmented it in cells from DA rats. Thus, the immunomodulatory properties may not be constant for particular probiotic bacteria, but shaped by innate immunity of the host.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia. .,Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia.
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Ivana Ćuruvija
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Simões JLB, de Araújo JB, Bagatini MD. Anti-inflammatory Therapy by Cholinergic and Purinergic Modulation in Multiple Sclerosis Associated with SARS-CoV-2 Infection. Mol Neurobiol 2021; 58:5090-5111. [PMID: 34247339 PMCID: PMC8272687 DOI: 10.1007/s12035-021-02464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The virus "acute respiratory syndrome coronavirus 2" (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19), initially responsible for an outbreak of pneumonia in Wuhan, China, which, due to the high level of contagion and dissemination, has become a pandemic. The clinical picture varies from mild to critical cases; however, all of these signs already show neurological problems, from sensory loss to neurological diseases. Thus, patients with multiple sclerosis (MS) infected with the new coronavirus are more likely to develop severe conditions; in addition to worsening the disease, this is due to the high level of pro-inflammatory cytokines, which is closely associated with increased mortality both in COVID-19 and MS. This increase is uncontrolled and exaggerated, characterizing the cytokine storm, so a possible therapy for this neuronal inflammation is the modulation of the cholinergic anti-inflammatory pathway, since acetylcholine (ACh) acts to reduce pro-inflammatory cytokines and acts directly on the brain for being released by cholinergic neurons, as well as acting on other cells such as immune and blood cells. In addition, due to tissue damage, there is an exacerbated release of adenosine triphosphate (ATP), potentiating the inflammatory process and activating purinergic receptors which act directly on neuroinflammation and positively modulate the inflammatory cycle. Associated with this, in neurological pathologies, there is greater expression of P2X7 in the cells of the microglia, which positively activates the immune inflammatory response. Thus, the administration of blockers of this receptor can act in conjunction with the action of ACh in the anticholinergic inflammatory pathway. Finally, there will be a reduction in the cytokine storm and triggered hyperinflammation, as well as the level of mortality in patients with multiple sclerosis infected with SARS-CoV-2 and the development of possible neurological damage.
Collapse
|
4
|
Li K, Li J, Zheng J, Qin S. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis 2019; 10:664-675. [PMID: 31165009 PMCID: PMC6538217 DOI: 10.14336/ad.2018.0720] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kunyu Li
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiatong Li
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jialin Zheng
- 2Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Song Qin
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Djedovic N, Jevtić B, Mansilla MJ, Petković F, Blaževski J, Timotijević G, Navarro-Barriuso J, Martinez-Caceres E, Mostarica Stojković M, Miljković Đ. Comparison of dendritic cells obtained from autoimmunty-prone and resistant rats. Immunobiology 2019; 224:470-476. [PMID: 30765133 DOI: 10.1016/j.imbio.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DC) are responsible for the initiation and shaping of the adaptive immune response and are in the focus of autoimmunity research. We were interested in comparison of DC obtained from autoimmunity-prone Dark Agouti (DA) rats and autoimmunity-resistant Albino Oxford (AO) rats. DC were generated from bone marrow precursors and matured (mDC) by lipopolysaccharide. Tolerogenic DC (tolDC) obtained by vitamin D3 treatment were studied in parallel. Profile of cytokine production was different in AO and DA mDC and tolDC. Expression of MHC class II molecules and CD86 were higher in DA DC, while vitamin D3 reduced their expression in dendritic cells of both strains. Allogeneic proliferation of CD4+ T cells was reduced by AO tolDC, but not with DA tolDC in comparison to respective mDC. Finally, expression of various genes identified as differentially expressed in human mDC and tolDC was also analyzed in AO and DA DC. Again, AO and DA DC differed in the expression of the analyzed genes. To conclude, AO and DA DC differ in production of cytokines, expression of antigen presentation-related molecules and in regulation of CD4+ T proliferation. The difference is valuable for understanding the divergence of the strains in their susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Neda Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - M José Mansilla
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain; Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Filip Petković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Jana Blaževski
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Gordana Timotijević
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Juan Navarro-Barriuso
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain; Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Eva Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
| | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia.
| |
Collapse
|
6
|
Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? J Neurol Sci 2018; 392:8-21. [PMID: 30097157 DOI: 10.1016/j.jns.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
|
7
|
Fan C, Long R, You Y, Wang J, Yang X, Huang S, Sheng Y, Peng X, Liu H, Wang Z, Liu K. A novel PADRE-Kv1.3 vaccine effectively induces therapeutic antibodies and ameliorates experimental autoimmune encephalomyelitis in rats. Clin Immunol 2018; 193:98-109. [DOI: 10.1016/j.clim.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/24/2023]
|
8
|
Zhang R, Zeng H, Zhang Y, Chen K, Zhang C, Song C, Fang L, Xu Z, Yang K, Jin B, Wang Q, Chen L. CD226 ligation protects against EAE by promoting IL-10 expression via regulation of CD4+ T cell differentiation. Oncotarget 2017; 7:19251-64. [PMID: 26942885 PMCID: PMC4991380 DOI: 10.18632/oncotarget.7834] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Treatment targeting CD226 can ameliorate experimental autoimmune encephalomyelitis (EAE), the widely accepted model of MS. However, the mechanisms still need to be elucidated. Here we showed that CD226 blockage by anti-CD226 blocking mAb LeoA1 efficiently promoted IL-10 production in human peripheral blood monocytes (PBMC) or in mixed lymphocyte culture (MLC) system, significantly induced the CD4+IL-10+ T cell differentiation while suppressing the generation of Th1 and Th17. Furthermore, CD226 pAb administration in vivo reduced the onset of EAE in mice by promoting IL-10 production and regulating T cell differentiation. Concomitantly, the onset and severity of EAE were reduced and the serum IL-10 expression levels were increased in CD226 knockout mice than that in control mice when both received EAE induction. These novel findings confirmed that CD226 played a pivotal role in mediating autoimmune diseases such as EAE. Furthermore, to our knowledge, we show for the first time that IL-10 is an important contributor in the inhibitory effects of CD226 ligation on EAE.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.,State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Hanyu Zeng
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Kun Chen
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Chaojun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Liang Fang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhuwei Xu
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
9
|
Nacka-Aleksić M, Stojić-Vukanić Z, Pilipović I, Vujnović I, Bufan B, Dimitrijević M, Leposavić G. Strain specificities in cellular and molecular immunopathogenic mechanisms underlying development of experimental autoimmune encephalomyelitis in aged rats. Mech Ageing Dev 2017; 164:146-163. [DOI: 10.1016/j.mad.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022]
|
10
|
Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M. Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 2016; 13:297. [PMID: 27881137 PMCID: PMC5121946 DOI: 10.1186/s12974-016-0763-8] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.
Collapse
Affiliation(s)
- Diogo Lobo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Guilhermina M Carriche
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
11
|
Stanisavljević S, Lukić J, Soković S, Mihajlovic S, Mostarica Stojković M, Miljković D, Golić N. Correlation of Gut Microbiota Composition with Resistance to Experimental Autoimmune Encephalomyelitis in Rats. Front Microbiol 2016; 7:2005. [PMID: 28018327 PMCID: PMC5156687 DOI: 10.3389/fmicb.2016.02005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022] Open
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system (CNS). It is widely accepted that autoimmune response against the antigens of the CNS is the essential pathogenic force in the disease. It has recently become increasingly appreciated that activated encephalitogenic cells tend to migrate toward gut associated lymphoid tissues (GALTs) and that interrupted balance between regulatory and inflammatory immunity within the GALT might have decisive role in the initiation and propagation of the CNS autoimmunity. Gut microbiota composition and function has the major impact on the balance in the GALT. Thus, our aim was to perform analyses of gut microbiota in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Albino Oxford (AO) rats that are highly resistant to EAE induction and Dark Agouti (DA) rats that develop EAE after mild immunization were compared for gut microbiota composition in different phases after EAE induction. Microbial analyses of the genus Lactobacillus and related lactic acid bacteria showed higher diversity of Lactobacillus spp. in EAE-resistant AO rats, while some members of Firmicutes and Proteobacteria (Undibacterium oligocarboniphilum) were detected only in feces of DA rats at the peak of the disease (between 13 and 16 days after induction). Interestingly, in contrast to our previous study where Turicibacter sp. was found exclusively in non-immunized AO, but not in DA rats, in this study it was detected in DA rats that remained healthy 16 days after induction, as well as in four of 12 DA rats at the peak of the disease. Similar observation was obtained for the members of Lachnospiraceae. Further, production of a typical regulatory cytokine interleukin-10 was compared in GALT cells of AO and DA rats, and higher production was observed in DA rats. Our data contribute to the idea that gut microbiota and GALT considerably influence multiple sclerosis pathogenesis.
Collapse
Affiliation(s)
- Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković," University of BelgradeBelgrade, Serbia
| | - Jovanka Lukić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
| | - Svetlana Soković
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
| | - Sanja Mihajlovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
| | | | - Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković," University of BelgradeBelgrade, Serbia
- *Correspondence: Djordje Miljković, Natasa Golić,
| | - Natasa Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
- *Correspondence: Djordje Miljković, Natasa Golić,
| |
Collapse
|
12
|
Stojić-Vukanić Z, Nacka-Aleksić M, Pilipović I, Vujnović I, Blagojević V, Kosec D, Dimitrijević M, Leposavić G. Aging diminishes the resistance of AO rats to EAE: putative role of enhanced generation of GM-CSF Expressing CD4+ T cells in aged rats. IMMUNITY & AGEING 2015; 12:16. [PMID: 26448779 PMCID: PMC4596406 DOI: 10.1186/s12979-015-0044-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aging influences immune response and susceptibility to EAE in a strain specific manner. The study was designed to examine influence of aging on EAE induction in Albino Oxford (AO) rats. RESULTS Differently from 3-month-old (young) rats, which were resistant to EAE induction, the majority of aged (24-26-month-old) rats developed mild chronic form of EAE. On 16(th) day post-immunization, when in aged rats the neurological deficit reached plateau, more mononuclear cells, including CD4+ T lymphocytes was retrieved from spinal cord of aged than young rats. The frequencies of IL-17+ and GM-CSF+ cells within spinal cord infiltrating CD4+ lymphocytes were greater in aged rats. To their increased frequency contributed the expansion of GM-CSF + IL-17 + IFN-γ+ cells, which are highly pathogenic in mice. The expression of the cytokines (IL-1β and IL-23/p19) driving GM-CSF + IL-17 + IFN-γ + cell differentiation in mice was also augmented in aged rat spinal cord mononuclear cells. Additionally, in aged rat spinal cord the expansion of GM-CSF + IL-17-IFN-γ- CD4+ T lymphocytes was found. Consistently, the expression of mRNAs for IL-3, the cytokine exhibiting the same expression pattern as GM-CSF, and IL-7, the cytokine driving differentiation of GM-CSF + IL-17-IFN-γ- CD4 + lymphocytes in mice, was upregulated in aged rat spinal cord mononuclear cells, and the tissue, respectively. This was in accordance with the enhanced generation of the brain antigen-specific GM-CSF+ CD4+ lymphocytes in aged rat draining lymph nodes, as suggested by (i) the higher frequency of GM-CSF+ cells (reflecting the expansion of IL-17-IFN-γ- cells) within their CD4+ lymphocytes and (ii) the upregulated GM-CSF and IL-3 mRNA expression in fresh CD4+ lymphocytes and MBP-stimulated draining lymph node cells and IL-7 mRNA in lymph node tissue from aged rats. In agreement with the upregulated GM-CSF expression in aged rats, strikingly more CD11b + CD45(int) (activated microglia) and CD45(hi) (mainly proinflammatory dendritic cells and macrophages) cells was retrieved from aged than young rat spinal cord. Besides, expression of mRNA for SOCS1, a negative regulator of proinflammatory cytokine expression in innate immunity cells, was downregulated in aged rat spinal cord mononuclear cells. CONCLUSIONS The study revealed that aging may overcome genetic resistance to EAE, and indicated the cellular and molecular mechanisms contributing to this phenomenon in AO rats.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| |
Collapse
|
13
|
Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 2015; 49:101-18. [PMID: 25944279 DOI: 10.1016/j.bbi.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.
Collapse
|
14
|
Nacka-Aleksić M, Pilipović I, Stojić-Vukanić Z, Kosec D, Bufan B, Vujnović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sexual dimorphism in the aged rat CD4+ T lymphocyte-mediated immune response elicited by inoculation with spinal cord homogenate. Mech Ageing Dev 2015; 152:15-31. [PMID: 26408399 DOI: 10.1016/j.mad.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 01/13/2023]
Abstract
Considering the crucial pathogenic role of CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and the opposite direction of the sexual dimorphism in the severity of the disease in 22-24-and 3-month-old dark agouti rats, sex differences in CD4+ T-cell-mediated immune response in aged rats immunized for EAE were examined and compared with those in young animals. In the inductive phase of EAE, fewer activated CD4+ lymphocytes were retrieved from draining lymph nodes of male (developing less severe disease) compared with female rats, due, at least partly, to their lesser expansion. The former reflected a greater suppressive capacity of CD4+CD25+Foxp3+ cells. Consequently, CD4+ lymphocyte infiltration into the spinal cord of aged male rats was diminished. At the peak of EAE, the frequency of reactivated cells was lower, whereas that of the regulatory CD4+ cells was higher in male rat spinal cord. Consistently, microglial activation and the expression of proinflammatory/damaging cytokines in male rat spinal cord mononuclear cells were diminished. Additionally, the frequency of the highly pathogenic IL-17+IFN-γ+ T lymphocytes infiltrating their spinal cord was lower. Together, these results point to (i) an age-specificity in CD4+ cell-mediated immune response and (ii) mechanisms underlying the sex differences in this response in aged rats.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
15
|
Wang L, Li X, Zhao Y, Fang C, Lian Y, Gou W, Han T, Zhu X. Insights into the mechanism of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:663-72. [PMID: 26188201 DOI: 10.1093/abbs/gmv064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023] Open
Abstract
The chemokine CXCL12 and its receptor CXCR4 are important signaling components required for human blastocyst implantation and the progression of pregnancy. Growing evidence indicates that the CXCL12/CXCR4 axis can regulate trophoblast function and uterine spiral artery remodeling, which plays a fundamental role in placentation and fetal outcome. The orphan receptor CXCR7 is also believed to partly regulate the function of the CXCL12/CXCR4 axis. Additionally, the CXCL12/CXCR4/CXCR7 axis can enhance the cross-talk between trophoblasts and decidual cells such as uterine natural killer cells and decidual stromal cells which are involved in regulation of trophoblast differentiation and invasion and placental angiogenesis. In addition, recent studies proved that CXCL12 expression is elevated in the placenta and mid-trimester amniotic fluid of pregnant women with preeclampsia, implying that dysregulation of CXCL12 plays a role in the pathogenesis of preeclampsia. Further understanding of the regulatory mechanisms of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis may help to design novel therapeutic approaches for pregnancy-associated diseases.
Collapse
Affiliation(s)
- Liang Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China The First Student Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Xueyi Li
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatism & Immunity, Xi-jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yilin Zhao
- Department of Respiratory Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Chao Fang
- Institute of Neurosciences, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingli Lian
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenli Gou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Xiaoming Zhu
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
16
|
Abstract
Multiple sclerosis is a neurologic disease caused by immune cell infiltration into the central nervous system, resulting in gray and white matter inflammation, progressive demyelination, and neuronal loss. Astrocytes, the most abundant cell population in the central nervous system (CNS), have been considered inert scaffold or housekeeping cells for many years. However, recently, it has become clear that this cell population actively modulates the immune response in the CNS at multiple levels. While being exposed to a plethora of cytokines during ongoing autoimmune inflammation, astrocytes modulate local CNS inflammation by secreting cytokines and chemokines, among other factors. This review article gives an overview of the most recent understanding about cytokine networks operational in astrocytes during autoimmune neuroinflammation and highlights potential targets for immunomodulatory therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, HIM 714, Boston, MA, 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, HIM 714, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Activity, but not mRNA expression of gelatinases correlates with susceptibility to experimental autoimmune encephalomyelitis. Neuroscience 2015; 292:1-12. [DOI: 10.1016/j.neuroscience.2015.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 01/17/2023]
|
18
|
Blaževski J, Petković F, Momčilović M, Jevtić B, Mostarica Stojković M, Miljković D. Tumor necrosis factor stimulates expression of CXCL12 in astrocytes. Immunobiology 2015; 220:845-50. [PMID: 25662914 DOI: 10.1016/j.imbio.2015.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023]
Abstract
It has been increasingly appreciated that tumor necrosis factor (TNF) performs various protective and anti-inflammatory functions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Recently, CXCL12 has been identified as a key inhibitor of leukocyte entry into the central nervous system (CNS) and as a regulator of inflammation resulting from the invasion. Here, a positive correlation between expression of TNF and CXCL12 in the CNS samples of EAE rats is presented. Also, it is shown that TNF potentiates CXCL12 expression in astrocytes. These results contribute to a view that TNF produced within the CNS plays a protective role in neuroinflammation.
Collapse
Affiliation(s)
- Jana Blaževski
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Filip Petković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | | | - Djordje Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia.
| |
Collapse
|
19
|
Spampinato SF, Merlo S, Chisari M, Nicoletti F, Sortino MA. Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Front Cell Neurosci 2015; 8:462. [PMID: 25642169 PMCID: PMC4294134 DOI: 10.3389/fncel.2014.00462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/18/2014] [Indexed: 11/22/2022] Open
Abstract
Group III metabotropic glutamate (mGlu) receptors mediate important neuroprotective and anti-inflammatory effects. Stimulation of mGlu4 receptor reduces neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) whereas mGlu4 knockout mice display exacerbated EAE clinical scores. We now show that mGlu4 receptors are expressed in oligodendrocytes, astrocytes and microglia in culture. Oligodendrocytes express mGlu4 receptors only at early stages of maturation (O4 positive), but not when more differentiated (myelin basic protein, MBP positive). Treatment of immature oligodendrocytes with the mGlu4 receptor agonist L-2-Amino-4-phosphonobutyrate (L-AP4; 50 μM for 48 h) accelerates differentiation with enhanced branching and earlier appearance of MBP staining. Oligodendrocyte death induced by exposure to 1 mM kainic acid for 24 h is significantly reduced by a 30-min pretreatment with L-AP4 (50 μM), an effect observed only in the presence of astrocytes, mimicked by the specific mGlu4 receptor positive allosteric modulator N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) (30 μM) and prevented by pretreatment with the mGlu4 receptor antagonist, cyclopropyl-4-phosphonophenylglycine (CPPG) (100 μM). In astrocytes, mGlu4 receptor is the most expressed among group III mGlu receptors, as by Quantitative real time PCR (QRT-PCR), and its silencing prevents protective effects. Protection is also observed when conditioned medium (CM) from L-AP4-pretreated astrocytes is transferred to oligodendrocytes challenged with kainic acid. Transforming growth factor β (TGF-β) mediates the increased oligodendrocyte survival as the effect of L-AP4 is mimicked by addition of 10 ng/ml TGF-β and prevented by incubation with a neutralizing anti-TGF-β antibody. In contrast, despite the expression of mGlu4 receptor in resting and activated microglia, CM from L-AP4-stimulated microglia does not modify kainate-induced oligodendrocyte toxicity. Our results suggest that mGlu4 receptors expressed in astrocytes mediate enhanced survival of oligodendrocytes under conditions of excitotoxicity.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome Sapienza Rome, Italy ; IRCSS Neuromed Pozzilli, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| |
Collapse
|
20
|
Lavrnja I, Laketa D, Savic D, Bozic I, Bjelobaba I, Pekovic S, Nedeljkovic N. Expression of a second ecto-5'-nucleotidase variant besides the usual protein in symptomatic phase of experimental autoimmune encephalomyelitis. J Mol Neurosci 2014; 55:898-911. [PMID: 25326791 DOI: 10.1007/s12031-014-0445-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022]
Abstract
Ecto-5'-nucleotidase/cluster of differentiation 73 (CD73) (eN) is a 70-kDa glycoprotein expressed in several different mammalian tissues and cell types. It is the rate-limiting enzyme of the purine catabolic pathway, which catalyzes the hydrolysis of AMP to produce adenosine with known anti-inflammatory and immunosuppressive actions. There is strong evidence for lymphocyte and endothelial cell eN having a role in experimental autoimmune encephalomyelitis (EAE), but the role of eN in cell types within the central nervous system is less clear. We have previously shown that eN activity significantly increased in the lumbar spinal cord during EAE. The present study is aimed to explore molecular pattern of the eN upregulation over the course of the disease and cell type(s) accountable for the induction. EAE was induced in Dark Agouti (DA) rats by immunization with the spinal cord tissue homogenate and adjuvant. Animals were sacrificed 8, 15, and 28 days following immunization (D8, D15, and D28), i.e., at time points which corresponded to the presymptomatic, symptomatic, and postsymptomatic phases of the disease, respectively. Significant increase in eN activity and its upregulation at the gene and the protein levels were demonstrated at D15 and less prominently at D28 in comparison to control. Additionally, reactive astrocytes abundantly present in the lumbar spinal cord parenchyma were identified as principal cell type with significantly elevated eN expression. In all experimental groups, eN was expressed as a 71-kDa protein band of uniform abundance, whereas the overexpression of eN at D15 and D28 was associated with the expression of a second 75-kDa eN variant. The possible outcome of eN upregulation during EAE as a part of protective astrocyte repertoire contributing to the resolution of the disease is discussed.
Collapse
Affiliation(s)
- Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Boulevard Despot Stefan 142, Belgrade, 11060, Serbia,
| | | | | | | | | | | | | |
Collapse
|
21
|
Hepatic expression of metallothionein I/II, glycoprotein 96, IL-6, and TGF- β in rat strains with different susceptibilities to experimental autoimmune encephalomyelitis. Clin Dev Immunol 2013; 2013:750406. [PMID: 24489578 PMCID: PMC3893782 DOI: 10.1155/2013/750406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022]
Abstract
In a search of peripheral factors that could be responsible for the discrepancy in susceptibility to EAE in Albino Oxford (AO) and Dark Agouti (DA) rats, we estimated the expression of metallothioneins I/II (MT), heat shock protein-gp96, interleukin (IL)-6, and transforming growth factor (TGF)-β in the livers of these animals. Rats were immunized with bovine brain homogenate (BBH) emulsified in complete Freund adjuvant (CFA) or only with CFA. Western blot and immunohistochemical analyses were done on day 12 after the immunization, as well as in intact rats. The data have shown that during the first attack of EAE only the EAE prone-DA rats markedly upregulated the hepatic MTs, gp96, IL-6, and TGF-β. In contrast, AO rats had a significantly higher expression of MT I/II, IL-6, and TGF-β in intact liver (P < 0,001), suggesting that the greater constitutive expression of these proteins contributed to the resistance of EAE. Besides, since previously we found that AO rats reacted on immunization by an early upregulation of TGF-β on several hepatic structures (vascular endothelium, Kupffer cells, and hepatocytes), the data suggest that the specific hepatic microenvironment might contribute also to the faster recovery of these rats from EAE.
Collapse
|