1
|
Spiller L, Manjula R, Leissing F, Basquin J, Bourilhon P, Sinitski D, Brandhofer M, Levecque S, Gerra S, Sabelleck B, Zhang L, Feederle R, Flatley A, Hoffmann A, Panstruga R, Bernhagen J, Lolis E. Plant MDL proteins synergize with the cytokine MIF at CXCR2 and CXCR4 receptors in human cells. Sci Signal 2023; 16:eadg2621. [PMID: 37988455 DOI: 10.1126/scisignal.adg2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.
Collapse
Affiliation(s)
- Lukas Spiller
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Ramu Manjula
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology and Crystallization Facility, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Sophie Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Huang S, Qiu Y, Ma Z, Su Z, Hong W, Zuo H, Wu X, Yang Y. A secreted MIF homologue from Trichinella spiralis binds to and interacts with host monocytes. Acta Trop 2022; 234:106615. [PMID: 35901919 DOI: 10.1016/j.actatropica.2022.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
Trichinella spiralis is a very successful parasite capable of surviving in many mammal hosts and residing in muscle tissues for long periods, indicating that it must have some effective strategies to escape from or guard against the host immune attack. The functions of MIF have been studied in other parasites and demonstrated to function as a virulence factor aiding in their survival by modulating the host immune response. However, the functions of Trichinella spiralis MIF (TsMIF) have not been addressed. Here, we successfully obtained the purified recombinant TsMIF and anti-TsMIF serum. Our results showed that TsMIF was expressed in all the Trichinella spiralis developmental stages, especially highly expressed in the muscle larvae (ML) and mainly located in stichocytes, midgut, cuticle, muscle cells of ML and around intrauterine embryos of female adults. We also observed TsMIF could be secreted from ML and bind to host monocytes. Next, our data demonstrated that TsMIF not only stimulated the phosphorylation of ERK1/2 and cell proliferation by binding to the host cell surface receptor CD74, but also interacted with a host intracellular protein, Jab1, which is a coactivator of AP-1 transcription. We concluded the secreted TsMIF plays an important role in the interaction between Trichinella spiralis and its host and could be a potential drug or vaccine target molecule against Trichinella spiralis infection.
Collapse
Affiliation(s)
- Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yun Qiu
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenrong Ma
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhiming Su
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenbin Hong
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Heng Zuo
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Wu
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yurong Yang
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
3
|
Characterization of Plasmodium falciparum macrophage migration inhibitory factor homologue and its cysteine deficient mutants. Parasitol Int 2021; 87:102513. [PMID: 34785370 DOI: 10.1016/j.parint.2021.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Plasmodium falciparum macrophage migration inhibitory factor (PfMIF) is a homologue of the multifunctional human host cytokine MIF (HsMIF). Upon schizont rupture it is released into the human blood stream where it acts as a virulence factor, modulating the host immune system. Whereas for HsMIF a tautomerase, an oxidoreductase, and a nuclease activity have been identified, the latter has not yet been studied for PfMIF. Furthermore, previous studies identified PfMIF as a target for several redox post-translational modifications. Therefore, we analysed the impact of S-glutathionylation and S-nitrosation on the protein's functions. To determine the impact of the four cysteines of PfMIF we produced His-tagged cysteine to alanine mutants of PfMIF via site-directed mutagenesis. Recombinant proteins were analysed via mass spectrometry, and enzymatic assays. Here we show for the first time that PfMIF acts as a DNase of human genomic DNA and that this activity is greater than that shown by HsMIF. Moreover, we observed a significant decrease in the maximum velocity of the DCME tautomerase activity of PfMIF upon alanine replacement of Cys3, and Cys3/Cys4 double mutant. Lastly, using a yeast reporter system, we were able to verify binding of PfMIF to the human chemokine receptors CXCR4, and demonstrate a so-far overlooked binding to CXCR2, both of which function as non-cognate receptors for HsMIF. While S-glutathionylation and S-nitrosation of PfMIF did not impair the tautomerase activity of PfMIF, activation of these receptors was significantly decreased.
Collapse
|
4
|
Wen Y, Cai W, Yang J, Fu X, Putha L, Xia Q, Windsor JA, Phillips AR, Tyndall JDA, Du D, Liu T, Huang W. Targeting Macrophage Migration Inhibitory Factor in Acute Pancreatitis and Pancreatic Cancer. Front Pharmacol 2021; 12:638950. [PMID: 33776775 PMCID: PMC7992011 DOI: 10.3389/fphar.2021.638950] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the pathogenesis of inflammation and cancer. It is produced by various cells and circulating MIF has been identified as a biomarker for a range of diseases. Extracellular MIF mainly binds to the cluster of differentiation 74 (CD74)/CD44 to activate downstream signaling pathways. These in turn activate immune responses, enhance inflammation and can promote cancer cell proliferation and invasion. Extracellular MIF also binds to the C-X-C chemokine receptors cooperating with or without CD74 to activate chemokine response. Intracellular MIF is involved in Toll-like receptor and inflammasome-mediated inflammatory response. Pharmacological inhibition of MIF has been shown to hold great promise in treating inflammatory diseases and cancer, including small molecule MIF inhibitors targeting the tautomerase active site of MIF and antibodies that neutralize MIF. In the current review, we discuss the role of MIF signaling pathways in inflammation and cancer and summarize the recent advances of the role of MIF in experimental and clinical exocrine pancreatic diseases. We expect to provide insights into clinical translation of MIF antagonism as a strategy for treating acute pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Yongjian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Wenhao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lohitha Putha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Genetic regulation of gene expression of MIF family members in lung tissue. Sci Rep 2020; 10:16980. [PMID: 33046825 PMCID: PMC7552402 DOI: 10.1038/s41598-020-74121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in COPD compared to control conditions and there are no reports on MIF expression in lung tissue. Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase (DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) was found to influence the splice variants detected and subsequently the direction of the SNP effects on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in COPD patients is more likely a consequence of disease-related factors rather than a cause of the disease.
Collapse
|
6
|
Florez-Sampedro L, Soto-Gamez A, Poelarends GJ, Melgert BN. The role of MIF in chronic lung diseases: looking beyond inflammation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1183-L1197. [PMID: 32208924 DOI: 10.1152/ajplung.00521.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with many diseases. Most studies found in literature describe MIF as a proinflammatory cytokine involved in chronic inflammatory conditions, but evidence from last years suggests that many of its key effects are not directly related to inflammation. In fact, MIF is constitutively expressed in most human tissues and in some cases in high levels, which does not reflect the pattern of expression of a classic proinflammatory cytokine. Moreover, MIF is highly expressed during embryonic development and decreases during adulthood, which point toward a more likely role as growth factor. Accordingly, MIF knockout mice develop age-related spontaneous emphysema, suggesting that MIF presence (e.g., in younger individuals and wild-type animals) is part of a healthy lung. In view of this new line of evidence, we aimed to review data on the role of MIF in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Abel Soto-Gamez
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,European Institute for the Biology of Aging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Rosani U, Domeneghetti S, Gerdol M, Pallavicini A, Venier P. Expansion and loss events characterized the occurrence of MIF-like genes in bivalves. FISH & SHELLFISH IMMUNOLOGY 2019; 93:39-49. [PMID: 31306763 DOI: 10.1016/j.fsi.2019.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Macrophage migration inhibitory factor (MIF) dynamically connects innate and adaptive immune systems in vertebrate animals, allowing highly orchestrated systemic responses to various insults. The occurrence of MIF-like genes in non-vertebrate organisms suggests its origin from an ancestral metazoan gene, whose function is still a matter of debate. In the present work, by analyzing available genomic and transcriptomic data from bivalve mollusks, we identified 137 MIF-like sequences, which were classified into three types, based on phylogeny and conservation of key residues: MIF, D-DT, and the lineage-specific type MDL. Comparative genomics revealed syntenic conservation of homologous genes at the family level, the loss of D-DT in the Ostreidae family as well as the expansion of MIF-like genes in the Mytilidae family, possibly underpinning the neofunctionalization of duplicated gene copies. In M. galloprovincialis, MIF and one D-DT were mostly expressed in haemocytes and mantle rim of untreated animals, while D-DT paralogs often showed very limited expression, suggesting an accessory role or their persistence as relict genes.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy; AWI Alfred Wegener Institute, Coastal Ecology, Hafenstraße 43, 25992, List auf Sylt, Germany.
| | - Stefania Domeneghetti
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy.
| |
Collapse
|
8
|
An Evolutionary Perspective of Dopachrome Tautomerase Enzymes in Metazoans. Genes (Basel) 2019; 10:genes10070495. [PMID: 31261784 PMCID: PMC6678240 DOI: 10.3390/genes10070495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
Melanin plays a pivotal role in the cellular processes of several metazoans. The final step of the enzymically-regulated melanin biogenesis is the conversion of dopachrome into dihydroxyindoles, a reaction catalyzed by a class of enzymes called dopachrome tautomerases. We traced dopachrome tautomerase (DCT) and dopachrome converting enzyme (DCE) genes throughout metazoans and we could show that only one class is present in most of the phyla. While DCTs are typically found in deuterostomes, DCEs are present in several protostome phyla, including arthropods and mollusks. The respective DCEs belong to the yellow gene family, previously reported to be taxonomically restricted to insects, bacteria and fungi. Mining genomic and transcriptomic data of metazoans, we updated the distribution of DCE/yellow genes, demonstrating their presence and active expression in most of the lophotrochozoan phyla as well as in copepods (Crustacea). We have traced one intronless DCE/yellow gene through most of the analyzed lophotrochozoan genomes and we could show that it was subjected to genomic diversification in some species, while it is conserved in other species. DCE/yellow was expressed in most phyla, although it showed tissue specific expression patterns. In the parasitic copepod Mytilicola intestinalis DCE/yellow even belonged to the 100 most expressed genes. Both tissue specificity and high expression suggests that diverse functions of this gene family also evolved in other phyla apart from insects.
Collapse
|
9
|
Chou M, Sun Y, Yang J, Wang Y, Li Y, Yuan G, Zhang D, Wang J, Wei G. Comprehensive analysis of phenotype, microstructure and global transcriptional profiling to unravel the effect of excess copper on the symbiosis between nitrogen-fixing bacteria and Medicago lupulina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1346-1357. [PMID: 30625663 DOI: 10.1016/j.scitotenv.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. However, knowledge of the molecular mechanisms, especially the microstructure and global transcriptional profiling, of the symbiosis process under heavy metal contamination is limited. In this study, a heavy metal-tolerant legume, Medicago lupulina, was treated with different concentrations of copper (Cu). The results showed that the early infection process was inhibited and the nodule ultrastructure was changed under 200 mg kg-1 Cu stress. Most infection threads (ITs) were prevented from entering the nodule cells, and few rhizobia were released into the host cells, in which thickening of the plant cell wall and IT wall was observed, demonstrating that rhizobial invasion was inhibited under Cu stress. RNA-seq analysis indicated that a strong shift in gene expression occurred (3257 differentially expressed genes, DEGs). The most pronounced effect was the upregulation of a set of 71 of 73 DEGs for nodule-specific cysteine-rich peptides, which have been shown to control the terminal differentiation of rhizobia in the nodules and to have antimicrobial activity. Various genes for metal transport, chelation binding and antioxidant defence were regulated. In particular, the DEGs for Cu trafficking and detoxification were induced during nodule formation. The DEGs for ethylene (ET) biosynthesis and signalling were also differentially expressed during nodulation, suggesting that the inhibition of nodulation by Cu occurred partially through ET signalling. Furthermore, the genes related to the cell wall were mostly upregulated and most likely involved in cell wall thickening. These findings provide an integrated understanding of the effects of Cu on legume nodule symbiosis at the molecular and phenotypic levels.
Collapse
Affiliation(s)
- Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yali Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yujie Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Guijie Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jiamei Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Xu F, Shi YH, Chen J. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:947-955. [PMID: 30586634 DOI: 10.1016/j.fsi.2018.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine playing critical roles in inflammatory and immune responses. However, its functions have not been well studied in fish. In this study, we identified a MIF molecule from Japanese sea bass (Lateolabrax japonicus; LjMIF). Multiple sequence alignment showed that LjMIF has the typical structural features of MIFs. Phylogenetic tree analysis revealed that LjMIF is most closely related to the yellowfin tuna (Thunnus albacares), large yellow croaker (Larimichthys crocea), and red drum (Sciaenops ocellatus) homologs. Constitutive mRNA expression of LjMIF was detected in all tested tissues, with the highest level in the liver. Upon Vibro harveyi infection, LjMIF transcripts were altered in the tested tissues, including the liver, spleen, and head kidney. Subsequently, we prepared recombinant LjMIF (rLjMIF) and the corresponding antibody (anti-LjMIF). The in vitro study showed that rLjMIF inhibited the trafficking of Japanese sea bass monocytes/macrophages (MO/MΦ) and lymphocytes, but not of neutrophils, while anti-LjMIF had the opposite effect. rLjMIF also enhanced phagocytosis and intracellular killing of V. harveyi by MO/MΦ, while anti-LjMIF only inhibited phagocytosis by MO/MΦ. The in vivo study showed that rLjMIF aggravated the course of V. harveyi infection in Japanese sea bass, but anti-LjMIF increased the survival rate of the fish and decreased the bacterial burden. In conclusion, our observation revealed that LjMIF is closely involved in the immune responses of Japanese sea bass for combating V. harveyi infection.
Collapse
Affiliation(s)
- Feng Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|