1
|
Pak SW, Kim WI, Lee SJ, Park SH, Cho YK, Kim JS, Kim JC, Kim SH, Shin IS. Silibinin alleviates house dust mite induced allergic airway inflammation by inhibiting NLRC4 inflammasome and MMP-9 expression. Biomed Pharmacother 2025; 183:117823. [PMID: 39823722 DOI: 10.1016/j.biopha.2025.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Silibinin, a major compound of silymarin, has been reported to alleviate respiratory diseases including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis through its antifibrotic, anti-inflammatory, and antioxidant properties. However, the specific mechanisms underlying its therapeutic effects, particularly in allergic asthma, are not fully understood. With the increasing prevalence and impact of allergic asthma, there is a need to elucidate the exact underlying mechanisms of its potential treatment effects. Herein, we investigated the therapeutic effects of silibinin on allergic asthma using house dust mite (HDM)-exposed mice and an HDM-stimulated human bronchial epithelium cell line, focusing on the roles of the NLR family CARD domain containing 4 (NLRC4) inflammasome and matrix metalloproteinase-9 (MMP-9). To induce airway inflammation, HDM extracts were instilled intranasally on days 0, 4, 8, and 12 to mice. Silibinin (20 and 40 mg/kg) was orally administered daily from days 0-12. The results showed that silibinin treatment attenuated allergic immune responses induced by HDM exposure, as evidenced by decreased airway hyperresponsiveness, reduced inflammatory cells and cytokines, lower immunoglobulin E levls, and decreased mucus production. Furthermore, silibinin treatment suppressed NLRC4 inflammasome activation and downregulated MMP-9 expression in the lungs. In HDM-stimulated cells, silibinin treatment decreased inflammatory cytokine levels and the expression of NLRC4 and interleukin-1β, indicating inhibition of NLRC4 inflammasome activation. Overall, our data demonstrated that silibinin alleviated allergic responses in HDM-induced asthmatic mice by inhibiting NLRC4 inflammasome activation and MMP-9 expression, underscoring its therapeutic potential in the treatment of asthma.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk 28503, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk 53212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Toraman A, Sağlam E, Savran L, Sağlam M, Köseoğlu S. Salivary levels of NLRC4 inflammasome in different periodontal clinical status. Oral Dis 2023; 29:2765-2771. [PMID: 36327138 DOI: 10.1111/odi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Nucleotide-binding and oligomerization domain (NOD)-like receptor family CARD domain-containing protein 4 (NLRC4) has a critical role in the regulation of interleukin-1β (IL-1β), an important cytokine in the pathogenesis of the periodontal diseases. In this study, we aimed to evaluate levels of salivary NLRC4 inflammasomes in different periodontal clinical statuses. METHODS The individuals with 20 periodontally healthy (healthy), 20 gingivitis, and 20 periodontitis were periodontally examined. Saliva samples were collected, after the clinical measurements (plaque index, gingival index, gingival bleeding index, probing depth, and clinical attachment level). The levels of salivary NLRC4, IL-1β, and interleukin 10 (IL-10) were examined by enzyme-linked immunosorbent assay. RESULTS The results demonstrated that levels of salivary NLRC4 (p < 0.01), and IL-1β (p < 0.001) were significantly higher in gingivitis and periodontitis than in the healthy group. No significant difference was salivary IL-10 levels between the groups (p > 0.05). Positive significant correlations among NLRC4 and IL-1β salivary levels and clinical parameters were detected (p < 0.05). CONCLUSION The findings of this study suggest that the NLRC4 is elevated in periodontal disease. Larger randomized controlled clinical studies are needed to use salivary NLRC4 levels as a potential marker for detecting the presence and/or severity of the periodontal disease.
Collapse
Affiliation(s)
- Ayşe Toraman
- Department of Periodontology, Hamidiye Faculty of Dentistry, Health Sciences University, İstanbul, Turkey
| | - Ebru Sağlam
- Department of Periodontology, Hamidiye Faculty of Dentistry, Health Sciences University, İstanbul, Turkey
| | - Levent Savran
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Serhat Köseoğlu
- Department of Periodontology, Faculty of Dentistry, İstanbul Medeniyet University, İstanbul, Turkey
| |
Collapse
|
3
|
Chen H, Peng L, Wang Z, He Y, Tang S, Zhang X. Exploration of cross-talk and pyroptosis-related gene signatures and molecular mechanisms between periodontitis and diabetes mellitus via peripheral blood mononuclear cell microarray data analysis. Cytokine 2022; 159:156014. [PMID: 36084605 DOI: 10.1016/j.cyto.2022.156014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This bioinformatics study is aimed at identifying cross-talk genes, pyroptosis-related genes, and related pathways between periodontitis (PD) and diabetes mellitus (DM), which includes type 1 diabetes (T1DM) and type 2 diabetes (T2DM). METHODS GEO datasets containing peripheral blood mononuclear cell (PBMC) data of PD and DM were acquired. After batch correction and normalization, differential expression analysis was performed to identify the differentially expressed genes (DEGs). And cross-talk genes in the PD-T1DM pair and the PD-T2DM pair were identified by overlapping DEGs with the same trend in each pair. The weighted gene coexpression network analysis (WGCNA) algorithm helped locate the pyroptosis-related genes that are related to cross-talk genes. Receiver-operating characteristic (ROC) curve analysis confirmed the predictive accuracy of these hub genes in diagnosing PD and DM. The correlation between hub genes and the immune microenvironment of PBMC in these diseases was investigated by Spearman correlation analysis. The experimentally validated protein-protein interaction (PPI) and gene-pathway network were constructed. Subnetwork analysis helped identify the key pathway connecting DM and PD. RESULTS Hub genes in the PD-T1DM pair (HBD, NLRC4, AIM2, NLRP2) and in the PD-T2DM pair (HBD, IL-1Β, AIM2, NLRP2) were identified. The similarity and difference in the immunocytes infiltration levels and immune pathway scores of PD and DM were observed. ROC analysis showed that AIM2 and HBD exhibited pleasant discrimination ability in all diseases, and the subnetwork of these genes indicated that the NOD-like receptor signaling pathway is the most potentially relevant pathway linking PD and DM. CONCLUSION HBD and AIM2 could be the most relevant potential cross-talk and pyroptosis-related genes, and the NOD-like receptor signaling pathway could be the top candidate molecular mechanism linking PD and DM, supporting a potential pathophysiological relationship between PD and DM.
Collapse
Affiliation(s)
- Hang Chen
- College of Stomatology, Chongqing Medical University, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Song Tang
- College of Stomatology, Chongqing Medical University, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China.
| |
Collapse
|
4
|
[NLRC4 plays a regulatory role in F. nucleatum-induced pyroptosis in macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1560-1565. [PMID: 36329592 PMCID: PMC9637494 DOI: 10.12122/j.issn.1673-4254.2022.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the mechanism of F.nucleatum-induced pyroptosis in macrophages and the regulatory role of inflammasomes. METHODS Lactate dehydrogenase (LDH) cytotoxicity assay and Hoechst 33342/PI double fluorescence staining were used to analyze cytolysis in F.nucleatum-infected macrophage RAW264.7 cells.The expressions of pyroptosis-related proteins caspase-1, GSDMD and IL-1β were determined using Western blotting.Inflammasome activation in the cells was analyzed by detecting the mRNA expressions of NLRP3, NLRC4, AIM2, and NLRP1 with qRT-PCR.RNA interference technique was used to knock down the key molecules involved in pyroptosis regulation in the macrophages, and the pyroptosis and necrosis rates of the cells following F.nucleatum infection were examined. RESULTS The results of LDH cytotoxicity assay and double-fluorescence staining showed that F.nucleatum infection caused swelling and lytic cell death in RAW264.7 cells.F.nucleatum infection resulted in the activation of caspase-1 and GSDMD and upregulated IL-1β expression in a multiplicity of infection (MOI)-and time-dependent manner (P < 0.05).qRT-PCR revealed significantly increased expression of NLRC4 mRNA in the macrophages after F.nucleatum infection (P < 0.05).NLRC4 silencing by siRNA strongly inhibited the activation of caspase-1/GSDMD pathway and reduced cell death (P < 0.05) and IL-1β expression in F.nucleatum-infected cells. CONCLUSION NLRC4 inflammasome drives caspase-1/GSDMD-mediated pyroptosis and inflammatory signaling in F.nucleatum-infected macrophages, suggesting the potential of NLRC4 inflammasome as a therapeutic target for F.nucleatum infections.
Collapse
|
5
|
Zhou F, Zhang G, Wu Y, Xiong Y. Inflammasome Complexes: Crucial mediators in osteoimmunology and bone diseases. Int Immunopharmacol 2022; 110:109072. [DOI: 10.1016/j.intimp.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
6
|
Alippe Y, Kress D, Ricci B, Sun K, Yang T, Wang C, Xiao J, Abu-Amer Y, Mbalaviele G. Actions of the NLRP3 and NLRC4 inflammasomes overlap in bone resorption. FASEB J 2021; 35:e21837. [PMID: 34383985 DOI: 10.1096/fj.202100767rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Overwhelming evidence indicates that excessive stimulation of innate immune receptors of the NOD-like receptor (NLR) family causes significant damage to multiple tissues, yet the role of these proteins in bone metabolism is not well known. Here, we studied the interaction between the NLRP3 and NLRC4 inflammasomes in bone homeostasis and disease. We found that loss of NLRP3 or NLRC4 inflammasome attenuated osteoclast differentiation in vitro. At the tissue level, lack of NLRP3, or NLRC4 to a lesser extent, resulted in higher baseline bone mass compared to wild-type (WT) mice, and conferred protection against LPS-induced inflammatory osteolysis. Bone mass accrual in mutant mice correlated with lower serum IL-1β levels in vivo. Unexpectedly, the phenotype of Nlrp3-deficient mice was reversed upon loss of NLRC4 as bone mass was comparable between WT mice and Nlrp3;Nlrc4 knockout mice. Thus, although bone homeostasis is perturbed to various degrees by the lack of NLRP3 or NLRC4, this tissue appears to function normally upon compound loss of the inflammasomes assembled by these receptors.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Dustin Kress
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Biancamaria Ricci
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Sun
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA.,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA.,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Shriners Hospital for Children, St. Louis, MO, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
8
|
de Alencar JB, Zacarias JMV, Tsuneto PY, de Souza VH, Silva CDOE, Visentainer JEL, Sell AM. Influence of inflammasome NLRP3, and IL1B and IL2 gene polymorphisms in periodontitis susceptibility. PLoS One 2020; 15:e0227905. [PMID: 31978095 PMCID: PMC6980600 DOI: 10.1371/journal.pone.0227905] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of periodontitis (PD) involves several molecules of the immune system that interact in a network to eliminate the periodontopathogens, yet, they contribute to periodontal tissue destruction. The different mechanisms that lead to periodontal tissue damage are not clear. Despite this, immune response genes have been related to the development of PD previously, such as those involved in inflammasomes which are multiprotein complexes and cytokines including Interleukin-1. The aim of the study was to evaluate the polymorphisms in NLRP3 inflammasome, cytokine and receptor of cytokines genes in the development of periodontitis. This case-control study was conducted in 186 patients with PD (stage II and III and grade B) and 208 controls (localized gingivitis and periodontally healthy individuals). Genotyping was performed using PCR-RFLP for the SNP rs4612666 in NLRP3 and using PCR-SSP for IL1A, IL1B, IL1R, IL1RN, IL4RA, INFG, TGFB1, TNF, IL2, IL4, IL6, and IL10. Cytokine serum levels were measured using Luminex technology. SNPStats and OpenEpi software were used to perform statistical analysis. The higher frequencies of NLRP3 T/C and IL1B -511 T/T genotypes and IL2 (+166, -330) GT haplotype were observed in patients with PD compared to controls. The SNPs in NLRP3, IL1R +1970, IL6–174, TNF -308, IL2 +166 and -330, TGFB1 +869 and +915, IL4RA +1902, IL4–1098 and -590 were associated to PD in men. In conclusion, polymorphisms in NLRP3, IL1B and IL2 genes were associated to PD susceptibility. Men carrying the NLRP3, IL1R, IL6, TNF, IL2, TGFB1, IL4RA and IL4 polymorphisms had greater susceptibility than women for developing PD.
Collapse
Affiliation(s)
- Josiane Bazzo de Alencar
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- * E-mail:
| | - Joana Maira Valentini Zacarias
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | - Patrícia Yumeko Tsuneto
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | - Victor Hugo de Souza
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Jeane Eliete Laguila Visentainer
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Maria Sell
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|