1
|
Jakobsen N, Weber NR, Larsen I, Pedersen KS. Diagnostic utility of acute phase proteins and their ability to guide antibiotic usage in pigs, horses, and cattle: a mapping review. Acta Vet Scand 2024; 66:45. [PMID: 39237955 PMCID: PMC11378633 DOI: 10.1186/s13028-024-00766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
To mitigate the use of antibiotics for many of the multifactorial diseases seen in pigs, horses and cattle, new diagnostic tools are needed. Acute phase protein (APP) measurements can, in humans, be used to guide antibiotic treatment initiation, evaluate treatment efficacy, and make a prognosis. The aim of this review is to collect evidence on the clinical functionality of APP measurements as a tool to guide antibiotic treatment in pigs, horses, and cattle. Literature was retrieved using Medline, CAB Abstracts and Google Scholar. The acute phase response has been investigated for a plethora of diseases and clinical signs and the major acute phase proteins are elevated in diseased compared to healthy animals. Few studies correlated acute phase response with aetiology, antibiotic treatment efficacy, prognosis, or severity of disease. The existing research does not support that APP can be used to guide antibiotic treatment, but the reported studies indicate that C-reactive protein (CRP) might be able to differentiate between bacterial and non-bacterial causes of disease in pigs. Serum amyloid A (SAA) might reflect underlying aetiology in horses and infectious or non-infectious cases of mastitis in cows.
Collapse
Affiliation(s)
- Nadia Jakobsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark.
| | | | - Inge Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark
| | - Ken Steen Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark
- Ø-Vet A/S, Køberupvej 33, 4700, Næstved, Denmark
| |
Collapse
|
2
|
Jensen LK, Jensen HE, Gottlieb H. Intraoperative tissue sampling for histology in chronic osteomyelitis shows high neutrophil infiltration centrally and low remains in debrided presumed infection-free regions. Injury 2024; 55:111178. [PMID: 37952476 DOI: 10.1016/j.injury.2023.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Histology of debrided bone tissue is a confirmatory diagnostic criterion for fracture related infection (FRI) and prosthetic joint infection (PJI). The aim of the present study was to describe the histopathology of the first and last debrided bone tissue in chronic osteomyelitis (CO) according to the international diagnostic guidelines for FRI and PJI. METHODS 15 patients with CO were allocated to surgical treatment using a one-stage protocol including extensive debridement. Suspected infected bone tissue eradicated early in the debridement procedure was collected as a clearly infected sample (S1). Likewise, the last eradicated bone tissue was collected as a suspected non-infected sample (S2). The samples were processed for histology. HE-stained sections were patho-morphologically examinated. Immunohistochemistry with MAC-387 antibodies towards calprotectin was used for estimation of neutrophil granulocyte (NP) score (0, 1, 2 or 3). RESULTS S1 samples showed a mean NP score of 2.6 (3 is confirmatory for infection). Following debridement, the NP score was significantly (p = 0.005) reduced to a mean NP score of 1.6. The S1 samples showed a mix of fibrovascular tissue, dense fibrosis, viable bone, bone necrosis and bone debris. S2 samples contained mostly viable bone tissue, however, often small fragments of necrotic bone or bone debris were present. CONCLUSION The inflammatory response of CO still exists after debridement, although the response fades from the center. Therefore, sampling of debrided bone tissue for histology must be performed initially during surgery, otherwise there is a risk for underestimation of NP infiltration. The present results might also be highly relevant for FRI and PJI.
Collapse
Affiliation(s)
- Louise Kruse Jensen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark.
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Hans Gottlieb
- Department of Orthopedic Surgery, Herlev Hospital, 2730, Herlev, Denmark
| |
Collapse
|
3
|
Huang S, Wen J, Zhang Y, Bai X, Cui ZK. Choosing the right animal model for osteomyelitis research: Considerations and challenges. J Orthop Translat 2023; 43:47-65. [PMID: 38094261 PMCID: PMC10716383 DOI: 10.1016/j.jot.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 03/22/2024] Open
Abstract
Osteomyelitis is a debilitating bone disorder characterized by an inflammatory process involving the bone marrow, bone cortex, periosteum, and surrounding soft tissue, which can ultimately result in bone destruction. The etiology of osteomyelitis can be infectious, caused by various microorganisms, or noninfectious, such as chronic nonbacterial osteomyelitis (CNO) and chronic recurrent multifocal osteomyelitis (CRMO). Researchers have turned to animal models to study the pathophysiology of osteomyelitis. However, selecting an appropriate animal model that accurately recapitulates the human pathology of osteomyelitis while controlling for multiple variables that influence different clinical presentations remains a significant challenge. In this review, we present an overview of various animal models used in osteomyelitis research, including rodent, rabbit, avian/chicken, porcine, minipig, canine, sheep, and goat models. We discuss the characteristics of each animal model and the corresponding clinical scenarios that can provide a basic rationale for experimental selection. This review highlights the importance of selecting an appropriate animal model for osteomyelitis research to improve the accuracy of the results and facilitate the development of novel treatment and management strategies.
Collapse
Affiliation(s)
| | | | - Yiqing Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Dewey MJ, Collins AJ, Tiffany A, Barnhouse VR, Lu C, Kolliopoulos V, Mutreja I, Hickok NJ, Harley BAC. Evaluation of bacterial attachment on mineralized collagen scaffolds and addition of manuka honey to increase mesenchymal stem cell osteogenesis. Biomaterials 2023; 294:122015. [PMID: 36701999 PMCID: PMC9928779 DOI: 10.1016/j.biomaterials.2023.122015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
The design of biomaterials to regenerate bone is likely to increasingly require modifications that reduce bacterial attachment and biofilm formation as infection during wound regeneration can significantly impede tissue repair and typically requires surgical intervention to restart the healing process. Further, much research on infection prevention in bone biomaterials has focused on modeling of non-resorbable metal alloy materials, whereas an expanding direction of bone regeneration has focused on development of bioresorbable materials. This represents a need for the prevention and understanding of infection in resorbable biomaterials. Here, we investigate the ability of a mineralized collagen biomaterial to natively resist infection and examine how the addition of manuka honey, previously identified as an antimicrobial agent, affects gram positive and negative bacterial colonization and mesenchymal stem cell osteogenesis and vasculature formation. We incorporate manuka honey into these scaffolds via either direct fabrication into the scaffold microarchitecture or via soaking the scaffold in a solution of manuka honey after fabrication. Direct incorporation results in a change in the surface characteristics and porosity of mineralized collagen scaffolds. Soaking scaffolds in honey concentrations higher than 10% had significant negative effects on mesenchymal stem cell metabolic activity. Soaking or incorporating 5% honey had no impact on endothelial cell tube formation. Although solutions of 5% honey reduced metabolic activity of mesenchymal stem cells, MSC-seeded scaffolds displayed increased calcium and phosphorous mineral formation, osteoprotegerin release, and alkaline phosphatase activity. Bacteria cultured on mineralized collagen scaffolds demonstrated surfaces covered in bacteria and no method of preventing infection, and using 10 times the minimal inhibitory concentration of antibiotics did not completely kill bacteria within the mineralized collagen scaffolds, indicating bioresorbable scaffold materials may act to shield bacteria from antibiotics. The addition of 5% manuka honey to scaffolds was not sufficient to prevent P. aeruginosa attachment or consistently reduce the activity of methicillin resistant staphylococcus aureus, and concentrations above 7% manuka honey are likely necessary to impact MRSA. Together, our results suggest bioresorbable scaffolds may create an environment conducive to bacterial growth, and potential trade-offs exist for the incorporation of low levels of honey in scaffolds to increase osteogenic potential of osteoprogenitors while high-levels of honey may be sufficient to reduce gram positive or negative bacteria activity but at the cost of reduced osteogenesis.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Victoria R Barnhouse
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Crislyn Lu
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vasiliki Kolliopoulos
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isha Mutreja
- Department of Restorative Science, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Biosecurity and Lairage Time versus Pork Meat Quality Traits in a Farm-Abattoir Continuum. Animals (Basel) 2022; 12:ani12233382. [PMID: 36496903 PMCID: PMC9738693 DOI: 10.3390/ani12233382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The modern pig production chain is increasingly focused on biosecurity, quality, and safety of meat and is associated with many challenges impacting world meat markets, such as animal disease outbreaks and sanitary restrictions, trade regulations and quality requirements. To overcome such challenges and assure more consistent pork meat quality (and safety), there is a need to develop an effective and reliable monitoring system in a farm-abattoir continuum that can be based on selected biomarkers. This study assessed interrelations of selected stress and inflammation biomarkers (acute phase proteins (APP)) between farm biosecurity score versus pork meat quality traits after two different lairage periods. Briefly, the maximum recorded levels of stress hormones (436.2 and 241.2 ng/mL, for cortisol and Chromogranin A (CgA), respectively) and APP (389.4 and 400.9 μg/mL, Pig Major Acute Proteins (MAP) and Haptoglobin (Hp), respectively) at four commercial farms were within the recommended threshold values. Cortisol and APP were negatively correlated to the internal and total biosecurity scores of farms. The increase of level of both sets of biomarkers was found at bleeding (after transportation and lairage period), but with lower values after long (18-20 h) versus short (1-3 h) lairage lay-over time. In general, negative correlation was confirmed between stress and inflammation biomarkers and carcass/meat quality traits. The farm total biosecurity level significantly affected chilling yield, meat temperature, and a* value. Pig-MAP emerged as a good biomarker with a promising potential for assessment and anticipation of broad aspects in the pork meat chain. It can be used for detection of failures in the pig production system and might be incorporated in certification programs for the pork meat industry.
Collapse
|
6
|
Jensen N, Jensen HE, Aalbaek B, Blirup-Plum SA, Soto SM, Cepas V, López Y, Gabasa Y, Gutiérrez-del-Río I, Villar CJ, Lombó F, Iglesias MJ, Soengas R, López Ortiz F, Jensen LK. Synthesis of the cyanobacterial halometabolite Chlorosphaerolactylate B and demonstration of its antimicrobial effect in vitro and in vivo. Front Microbiol 2022; 13:950855. [PMID: 36246241 PMCID: PMC9557163 DOI: 10.3389/fmicb.2022.950855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chlorosphaerolactylate B, a newly discovered antimicrobial halometabolite from the cyanobacterium Sphaerospermopsis sp. LEGE 00249 has been synthesized in three steps by using 12-bromododecanoic acid as starting material. A total of 0.5 g was produced for in vitro and in vivo antimicrobial efficacy testing. In vitro, the minimal inhibitory concentration (MIC) was estimated to be 256 mg/L for Staphylococcus aureus, while the minimal biofilm inhibitory concentration (MBIC) was estimated to be 74 mg/L. The in vivo study utilized a porcine model of implant-associated osteomyelitis. In total, 12 female pigs were allocated into 3 groups based on inoculum (n = 4 in each group). An implant cavity (IC) was drilled in the right tibia and followed by inoculation and insertion of a steel implant. All pigs were inoculated with 10 μL containing either: 11.79 mg synthetic Chlorosphaerolactylate B + 104 CFU of S. aureus (Group A), 104 CFU of S. aureus (Group B), or pure saline (Group C), respectively. Pigs were euthanized five days after inoculation. All Group B animals showed macroscopic and microscopic signs of bone infection and both tissue and implant harbored S. aureus bacteria (mean CFU on implants = 1.9 × 105). In contrast, S. aureus could not be isolated from animals inoculated with saline. In Group A, two animals had a low number of S. aureus (CFU = 6.7 × 101 and 3.8 × 101, respectively) on the implants, otherwise all Group A animals were similar to Group C animals. In conclusion, synthetic Chlorosphaerolactylate B holds potential to be a novel antimicrobial and antibiofilm compound.
Collapse
Affiliation(s)
- Nikoline Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Bent Aalbaek
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Amalie Blirup-Plum
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Sara M. Soto
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Virginio Cepas
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yuly López
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ignacio Gutiérrez-del-Río
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Claudio J. Villar
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Felipe Lombó
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María José Iglesias
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Fernando López Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
- *Correspondence: Fernando López Ortiz,
| | - Louise Kruse Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
- Louise Kruse Jensen,
| |
Collapse
|
7
|
Billings C, Anderson DE. Role of Animal Models to Advance Research of Bacterial Osteomyelitis. Front Vet Sci 2022; 9:879630. [PMID: 35558882 PMCID: PMC9087578 DOI: 10.3389/fvets.2022.879630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis is an inflammatory bone disease typically caused by infectious microorganisms, often bacteria, which causes progressive bone destruction and loss. The most common bacteria associated with chronic osteomyelitis is Staphylococcus aureus. The incidence of osteomyelitis in the United States is estimated to be upwards of 50,000 cases annually and places a significant burden upon the healthcare system. There are three general categories of osteomyelitis: hematogenous; secondary to spread from a contiguous focus of infection, often from trauma or implanted medical devices and materials; and secondary to vascular disease, often a result of diabetic foot ulcers. Independent of the route of infection, osteomyelitis is often challenging to diagnose and treat, and the effect on the patient's quality of life is significant. Therapy for osteomyelitis varies based on category and clinical variables in each case. Therapeutic strategies are typically reliant upon protracted antimicrobial therapy and surgical interventions. Therapy is most successful when intensive and initiated early, although infection may recur months to years later. Also, treatment is accompanied by risks such as systemic toxicity, selection for antimicrobial drug resistance from prolonged antimicrobial use, and loss of form or function of the affected area due to radical surgical debridement or implant removal. The challenges of diagnosis and successful treatment, as well as the negative impacts on patient's quality of life, exemplify the need for improved strategies to combat bacterial osteomyelitis. There are many in vitro and in vivo investigations aimed toward better understanding of the pathophysiology of bacterial osteomyelitis, as well as improved diagnostic and therapeutic strategies. Here, we review the role of animal models utilized for the study of bacterial osteomyelitis and their critically important role in understanding and improving the management of bacterial osteomyelitis.
Collapse
|
8
|
Nicolas A, Deplanche M, Commere PH, Diot A, Genthon C, Marques da Silva W, Azevedo V, Germon P, Jamme H, Guédon E, Le Loir Y, Laurent F, Bierne H, Berkova N. Transcriptome Architecture of Osteoblastic Cells Infected With Staphylococcus aureus Reveals Strong Inflammatory Responses and Signatures of Metabolic and Epigenetic Dysregulation. Front Cell Infect Microbiol 2022; 12:854242. [PMID: 35531332 PMCID: PMC9067450 DOI: 10.3389/fcimb.2022.854242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a range of devastating diseases including chronic osteomyelitis, which partially relies on the internalization and persistence of S. aureus in osteoblasts. The identification of the mechanisms of the osteoblast response to intracellular S. aureus is thus crucial to improve the knowledge of this infectious pathology. Since the signal from specifically infected bacteria-bearing cells is diluted and the results are confounded by bystander effects of uninfected cells, we developed a novel model of long-term infection. Using a flow cytometric approach we isolated only S. aureus-bearing cells from mixed populations that allows to identify signals specific to intracellular infection. Here we present an in-depth analysis of the effect of long-term S. aureus infection on the transcriptional program of human osteoblast-like cells. After RNA-seq and KEGG and Reactome pathway enrichment analysis, the remodeled transcriptomic profile of infected cells revealed exacerbated immune and inflammatory responses, as well as metabolic dysregulations that likely influence the intracellular life of bacteria. Numerous genes encoding epigenetic regulators were downregulated. The later included genes coding for components of chromatin-repressive complexes (e.g., NuRD, BAHD1 and PRC1) and epifactors involved in DNA methylation. Sets of genes encoding proteins of cell adhesion or neurotransmission were also deregulated. Our results suggest that intracellular S. aureus infection has a long-term impact on the genome and epigenome of host cells, which may exert patho-physiological dysfunctions additionally to the defense response during the infection process. Overall, these results not only improve our conceptual understanding of biological processes involved in the long-term S. aureus infections of osteoblast-like cells, but also provide an atlas of deregulated host genes and biological pathways and identify novel markers and potential candidates for prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Aurélie Nicolas
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Martine Deplanche
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Pierre-Henri Commere
- Cytometry and Biomarkers Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Clemence Genthon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Unité Service 1426 (US1426), Transcriptome Plateforme Technologique (GeT-PlaGe), Genotoul, Castanet-Tolosan, France
| | - Wanderson Marques da Silva
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pierre Germon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université François Rabelais, Infectiologie et Santé Publique (ISP), Tours, France
| | - Hélène Jamme
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Maisons-Alfort, France
| | - Eric Guédon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Yves Le Loir
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Fréderic Laurent
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Hélène Bierne
- Université Paris-Saclay, Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nadia Berkova
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- *Correspondence: Nadia Berkova,
| |
Collapse
|
9
|
Jensen LK. Implant-associated osteomyelitis: Development, characterisation, and application of a porcine model. APMIS 2021; 129 Suppl 141:1-44. [PMID: 34129250 DOI: 10.1111/apm.13125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Louise Kruse Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
11
|
Ngwa DN, Singh SK, Gang TB, Agrawal A. Treatment of Pneumococcal Infection by Using Engineered Human C-Reactive Protein in a Mouse Model. Front Immunol 2020; 11:586669. [PMID: 33117400 PMCID: PMC7575696 DOI: 10.3389/fimmu.2020.586669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
C-reactive protein (CRP) binds to several species of bacterial pathogens including Streptococcus pneumoniae. Experiments in mice have revealed that one of the functions of CRP is to protect against pneumococcal infection by binding to pneumococci and activating the complement system. For protection, however, CRP must be injected into mice within a few hours of administering pneumococci, that is, CRP is protective against early-stage infection but not against late-stage infection. It is assumed that CRP cannot protect if pneumococci got time to recruit complement inhibitor factor H on their surface to become complement attack-resistant. Since the conformation of CRP is altered under inflammatory conditions and altered CRP binds to immobilized factor H also, we hypothesized that in order to protect against late-stage infection, CRP needed to change its structure and that was not happening in mice. Accordingly, we engineered CRP molecules (E-CRP) which bind to factor H on pneumococci but do not bind to factor H on any host cell in the blood. We found that E-CRP, in cooperation with wild-type CRP, was protective regardless of the timing of administering E-CRP into mice. We conclude that CRP acts via two different conformations to execute its anti-pneumococcal function and a model for the mechanism of action of CRP is proposed. These results suggest that pre-modified CRP, such as E-CRP, is therapeutically beneficial to decrease bacteremia in pneumococcal infection. Our findings may also have implications for infections with antibiotic-resistant pneumococcal strains and for infections with other bacterial species that use host proteins to evade complement-mediated killing.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Toh B Gang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
12
|
Leuchsenring AB, Karlsson C, Bundgaard L, Malmström J, Heegaard PMH. Targeted mass spectrometry for Serum Amyloid A (SAA) isoform profiling in sequential blood samples from experimentally Staphylococcus aureus infected pigs. J Proteomics 2020; 227:103904. [PMID: 32702520 DOI: 10.1016/j.jprot.2020.103904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Serum amyloid A (SAA) is a well-described acute phase protein induced during the acute phase response (APR) to infection. Four isoform specific genes are found in most mammals. Depending on species, SAA3 and SAA4 are generally preferentially expressed extrahepatically whereas SAA1 and SAA2 are hepatic isoforms dominating the SAA serum pool. Little is known about how specific infections affect the serum SAA isoform profile, as SAA isoform discriminating antibodies are not generally available. An antibody independent, quantitative targeted MS method (Selected Reaction Monitoring, SRM) based on available information on porcine SAA isoform genes was developed and used to profile SAA in serum samples from pigs experimentally infected with Staphylococcus aureus (Sa). While results suggest SAA2 as the main circulating porcine SAA isoform, induced around 10 times compared to non-infected controls, total SAA serum concentrations reached only around 4 μg/mL, much lower than established previously by immunoassays. This might suggest that SAA isoform variants not detected by the SRM method might be present in porcine serum. The assay allows monitoring host responses to experimental infections, infectious diseases and inflammation states in the pig at an unprecedented level of detail. It can also be used in a non-calibrated (relative quantification) format. SIGNIFICANCE: We developed an SRM MS method which for the first time allowed the specific quantification of each of the circulating porcine SAA isoforms (SAA2, SAA3, SAA4). It was found that SAA2 is the dominating circulating isoform of SAA in the pig and that, during the acute phase response to Sa infection SAA2, SAA3 and SAA4 are induced approx. 10, 15 and 2 times, respectively. Absolute levels of the isoforms as determined by SRM MS were much lower than reported previously for total SAA quantified by immunosassays, suggesting the existence of hitherto non-described SAA variants. SRM MS holds great promise for the study of the basic biology of SAA isoforms with the potential to study an even broader range of SAA variants.
Collapse
Affiliation(s)
- Anna Barslund Leuchsenring
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Christofer Karlsson
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Johan Malmström
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Peter M H Heegaard
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
13
|
Bue M, Bergholt NL, Jensen LK, Jensen HE, Søballe K, Stilling M, Hanberg P. Inflammatory proteins in infected bone tissue - An explorative porcine study. Bone Rep 2020; 13:100292. [PMID: 32637468 PMCID: PMC7330156 DOI: 10.1016/j.bonr.2020.100292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/01/2022] Open
Abstract
Objective To explore the in situ inflammatory proteins in the local extracellular fluid of infected bone tissue. Material and methods Seven pigs went through a two-step surgery performing a traumatically implant-associated Staphylococcus aureus osteomyelitis in the proximal tibia. Five days later, microdialysis catheters (membrane cut off: 20 kDa) were placed in the implant cavity, infected and healthy cancellous bone, and infected and healthy subcutaneous tissue. Plasma samples were collected simultaneously. We employed an antibody-based proximity extension assay (Olink Inflammatory panel) for the measurement of inflammatory molecules within plasma and extracellular fluid of the investigated tissue compartments. Results A higher normalized protein expression in the infected bone tissue in comparison to healthy bone tissue was identified for proteins associated with angiogenesis and bone remodeling: OPG, TGFα, MCP-1, VEGFA, and uPA. Moreover, a parallel detectability of the systemic range of cytokines and chemokines as from the investigated local tissue compartments was demonstrated, indicating the same occurrence of proteins in the local environment as within plasma. Conclusion An angiogenic and osteogenic inflammatory protein composition within the extracellular fluid of infected bone tissue was described. The findings support the current histopathological knowledge and, therefore, microdialysis may represent a valid method for sampling of material for protein investigation of the in vivo inflammatory composition within the extracellular environment in infected bone tissue.
Collapse
Affiliation(s)
- Mats Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Natasja Leth Bergholt
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Kjeld Søballe
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Stilling
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Pelle Hanberg
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| |
Collapse
|