1
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
2
|
Norton J, Stiff P. CAR-T therapy toxicities: the importance of macrophages in their development and possible targets for their management. Discov Oncol 2025; 16:49. [PMID: 39812904 PMCID: PMC11735762 DOI: 10.1007/s12672-025-01776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
CAR-T cell therapies have risen to prominence over the last decade, and their indications are increasing with several products approved as early as second line in Large B Cell non-Hodgkin Lymphomas. Their major toxicities are the cytokine release syndrome (CRS) and the Immune-effector Cell Associated Neurotoxicity Syndrome (ICANS). These entities involve a hyperinflammatory cascade which is amplified through the mononuclear phagocytic system (MPS). Herein, we review the immune mediated adverse events related to CAR therapy, including their pathophysiologies, and current therapies. In particular, we discuss the emerging role of the MPS in both the toxicity and efficacy of CAR-T therapy, and possible avenues for the modulation of the MPS to optimize efficacy while minimizing toxicity.
Collapse
Affiliation(s)
- Joseph Norton
- Internal Medicine Department, Division of Hematology, Oncology, and Transplant, University of Minnesota, 516 Delaware Street SE, PWB 14-100, Minneapolis, MN, 55455, USA.
| | - Patrick Stiff
- Internal Medicine Department, Division of Hematology-Oncology, Loyola University Medical Center, 2160 S 1St Ave, Maywood, IL, 60153, USA
| |
Collapse
|
3
|
Mousa AM, Enk AH, Hassel JC, Reschke R. Immune Checkpoints and Cellular Landscape of the Tumor Microenvironment in Non-Melanoma Skin Cancer (NMSC). Cells 2024; 13:1615. [PMID: 39404378 PMCID: PMC11475876 DOI: 10.3390/cells13191615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) is primarily categorized into basal cell carcinoma (BCC), the most prevalent form of skin cancer, and cutaneous squamous cell carcinoma (cSCC), the second most common type. Both BCC and cSCC represent a significant health burden, particularly in immunocompromised individuals and the elderly. The immune system plays a pivotal role in the development and progression of NMSC, making it a critical focus for therapeutic interventions. This review highlights key immunological targets in BCC and cSCC, with a focus on immune checkpoint molecules such as PD-1/PD-L1 and CTLA-4, which regulate T cell activity and contribute to immune evasion. This review also highlights anti-tumor immune cell subsets within the tumor microenvironment (TME), such as tumor-infiltrating lymphocytes (TILs) and dendritic cells. Additionally, it examines the immunosuppressive elements of the TME, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs), as well as their roles in NMSC progression and resistance to therapy. Emerging strategies targeting these immune elements, such as monoclonal antibodies, are also discussed for their potential to enhance anti-tumor immune responses and improve clinical outcomes. By elucidating the immunological landscape of BCC and cSCC and drawing comparisons to melanoma, this review highlights the transformative potential of immunotherapy in treating these malignancies.
Collapse
Affiliation(s)
- Ahmed M. Mousa
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Alexander H. Enk
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Robin Reschke
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kaushal A, Gupta S. Vaccine development: Current trends and technologies. Life Sci 2024; 336:122331. [PMID: 38070863 DOI: 10.1016/j.lfs.2023.122331] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Despite the effectiveness of vaccination in reducing or eradicating diseases caused by pathogens, there remain certain diseases and emerging infections for which developing effective vaccines is inherently challenging. Additionally, developing vaccines for individuals with compromised immune systems or underlying medical conditions presents significant difficulties. As well as traditional vaccine different methods such as inactivated or live attenuated vaccines, viral vector vaccines, and subunit vaccines, emerging non-viral vaccine technologies, including viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer new strategies to address the existing challenges in vaccine development. These advancements have also greatly enhanced our understanding of vaccine immunology, which will guide future vaccine development for a broad range of diseases, including rapidly emerging infectious diseases like COVID-19 and diseases that have historically proven resistant to vaccination. This review provides a comprehensive assessment of emerging non-viral vaccine production methods and their application in addressing the fundamental and current challenges in vaccine development.
Collapse
Affiliation(s)
- Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, 01-142 Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| |
Collapse
|
5
|
Gray G, Scroggins DG, Wilson KT, Scroggins SM. Cellular Immunotherapy in Mice Prevents Maternal Hypertension and Restores Anti-Inflammatory Cytokine Balance in Maternal and Fetal Tissues. Int J Mol Sci 2023; 24:13594. [PMID: 37686399 PMCID: PMC10487605 DOI: 10.3390/ijms241713594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Preeclampsia is the leading cause of maternal-fetal morbidity worldwide. The concept that persistent feto-placental intolerance is important in the pathogenesis of preeclampsia (PreE) has been demonstrated by our lab and others. Arginine vasopressin (AVP) infusion during pregnancy induces cardiovascular, renal, and T helper (TH) cell alterations in mice consistent with human PreE. In addition to their conventional immuno-stimulatory role, dendritic cells (DCs) also play a vital role in immune tolerance. In contrast to conventional DCs, regulatory DCs (DCregs) express low levels of co-stimulatory markers, produce anti-inflammatory cytokines, induce T regulatory (Treg) cells, and promote tolerance. In mice, DCregs prevent pro-inflammatory responses and induce antigen-specific tolerance. Given these known functions of DCregs, we hypothesize that DCregs will prevent the development of AVP-induced PreE in mice. C57BL/6J females were infused with AVP (24 ng/h) or saline throughout gestation via an osmotic minipump. Bone-marrow-derived DCregs were injected into AVP-infused dams at the time of the pump implantation or on gestational day (GD) 7. The blood pressure of the mice was taken throughout their pregnancy. The maternal urine proteins and TH-associated cytokines in maternal and fetal tissues were measured on GD 18. The treatment with DCregs effectively prevented the elevation of maternal blood pressure, proteinuria, and fetal growth restriction that were observed in AVP-infused dams. Furthermore, we noted a reduction in the pro-inflammatory TH-associated cytokines IFNγ and IL-17, while anti-inflammatory cytokines IL-4, IL-10, and TGFβ showed an increase following DCreg treatment. These outcomes provide strong evidence supporting the potential of DCregs as a valuable therapeutic approach in addressing PreE.
Collapse
Affiliation(s)
- Gabrielle Gray
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas G. Scroggins
- School of Medicine, Department of Biomedical Sciences, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Katlin T. Wilson
- School of Medicine, Department of Biomedical Sciences, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Sabrina M. Scroggins
- School of Medicine, Department of Biomedical Sciences, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
6
|
Saeidi V, Doudican N, Carucci JA. Understanding the squamous cell carcinoma immune microenvironment. Front Immunol 2023; 14:1084873. [PMID: 36793738 PMCID: PMC9922717 DOI: 10.3389/fimmu.2023.1084873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Primary cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with a rising incidence of about 1.8 million in the United States annually. Primary cSCC is usually curable by surgery; however, in some cases, cSCC eventuates in nodal metastasis and death from disease specific death. cSCC results in up to 15,000 deaths each year in the United States. Until recently, non-surgical options for treatment of locally advanced or metastatic cSCC were largely ineffective. With the advent of checkpoint inhibitor immunotherapy, including cemiplimab and pembrolizumab, response rates climbed to 50%, representing a vast improvement over chemotherapeutic agents used previously. Herein, we discuss the phenotype and function of SCC associated Langerhans cells, dendritic cells, macrophages, myeloid derived suppressor cells and T cells as well as SCC-associated lymphatics and blood vessels. Possible role(s) of SCC-associated cytokines in progression and invasion are reviewed. We also discuss the SCC immune microenvironment in the context of currently available and pipeline therapeutics.
Collapse
Affiliation(s)
- Vahide Saeidi
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| | - Nicole Doudican
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| | - John A Carucci
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Giudice A, Aliberti SM, Barbieri A, Pentangelo P, Bisogno I, D'Arena G, Cianciola E, Caraglia M, Capunzo M. Potential Mechanisms by which Glucocorticoids Induce Breast Carcinogenesis through Nrf2 Inhibition. FRONT BIOSCI-LANDMRK 2022; 27:223. [PMID: 35866405 DOI: 10.31083/j.fbl2707223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2025]
Abstract
Breast cancer is the most common malignancy among women worldwide. Several studies indicate that, in addition to established risk factors for breast cancer, other factors such as cortisol release related to psychological stress and drug treatment with high levels of glucocorticoids may also contribute significantly to the initiation of breast cancer. There are several possible mechanisms by which glucocorticoids might promote neoplastic transformation of breast tissue. Among these, the least known and studied is the inhibition of the nuclear erythroid factor 2-related (Nrf2)-antioxidant/electrophile response element (ARE/EpRE) pathway by high levels of glucocorticoids. Specifically, Nrf2 is a potent transcriptional activator that plays a central role in the basal and inducible expression of many cytoprotective genes that effectively protect mammalian cells from various forms of stress and reduce the propensity of tissues and organisms to develop disease or malignancy including breast cancer. Consequently, a loss of Nrf2 in response to high levels of gluco-corticoids may lead to a decrease in cellular defense against oxidative stress, which plays an important role in the initiation of human mammary carcinogenesis. In the present review, we provide a comprehensive overview of the current state of knowledge of the cellular mechanisms by which both glucocorticoid pharmacotherapy and endogenous GCs (cortisol in humans and corticosterone in rodents) may contribute to breast cancer development through inhibition of the Nrf2-ARE/EpRE pathway and the protective role of melatonin against glucocorticoid-induced apoptosis in the immune system.
Collapse
Affiliation(s)
- Aldo Giudice
- Animal Facility, Istituto Nazionale Tumori - "Fondazione G. Pascale" - IRCCS, 80131 Naples, Italy
| | - Silvana Mirella Aliberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - "Fondazione G. Pascale" - IRCCS, 80131 Naples, Italy
| | - Paola Pentangelo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Ilaria Bisogno
- Department of Radiological, Oncological and Anatomo-Pathological Science, University of Rome "Sapienza", 00161 Rome, Italy
| | - Giovanni D'Arena
- Hematology Service, San Luca Hospital, ASL Salerno, 84124 Salerno, Italy
| | - Emidio Cianciola
- Anesthesia and Intensive Care Unit, "Immacolata di Sapri" Hospital- ASL Salerno, 84073 Salerno, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
8
|
Landwehr-Kenzel S, Zobel A, Schmitt-Knosalla I, Forke A, Hoffmann H, Schmueck-Henneresse M, Klopfleisch R, Volk HD, Reinke P. Cyclosporine A but Not Corticosteroids Support Efficacy of Ex Vivo Expanded, Adoptively Transferred Human Tregs in GvHD. Front Immunol 2021; 12:716629. [PMID: 34707604 PMCID: PMC8543016 DOI: 10.3389/fimmu.2021.716629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Reshaping the immune balance by adoptive transfer of regulatory T-cells (Tregs) has emerged as a promising strategy to combat undesired immune reactions, including in Graft-versus-Host Disease (GvHD), which is the most lethal non-relapse complication of allogeneic hematopoietic stem cell transplantation. Currently however, little is known about the potentially inhibitory in vivo effects of conventional immunosuppressive drugs, which are routinely used to treat GvHD, on adoptively transferred Tregs. Here we demonstrate drug-specific effects of the conventional immunosuppressive drugs Cyclosporine A, Mycophenolate mofetil and methylprednisolone on adoptively transferred Tregs in a humanized NOD/SCID/IL2Rgamma-/- GvHD mouse model. The clinical course of GvHD and postmortem organ histology, including cellular organ infiltration, showed that co-administration of Cyclosporine A and Tregs is highly beneficial as it enhanced Treg accumulation at inflammatory sites like lung and liver. Similarly, co-administration of Mycophenolate mofetil and Tregs improved clinical signs of GvHD. In contrast, co-administration of methylprednisolone and Tregs resulted in reduced Treg recruitment to inflammatory sites and the fast deterioration of some animals. Consequently, when clinical trials investigating safety and efficacy of adjunctive Treg therapy in GvHD are designed, we suggest co-administering Cyclosporine A, whereas high doses of glucocorticosteroids should be avoided.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Zobel
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Isabela Schmitt-Knosalla
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Forke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Henrike Hoffmann
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Toll-like receptor-4 null mutation causes fetal loss and fetal growth restriction associated with impaired maternal immune tolerance in mice. Sci Rep 2021; 11:16569. [PMID: 34400677 PMCID: PMC8368181 DOI: 10.1038/s41598-021-95213-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Maternal immune adaptation to accommodate pregnancy depends on sufficient availability of regulatory T (Treg) cells to enable embryo implantation. Toll-like receptor 4 is implicated as a key upstream driver of a controlled inflammatory response, elicited by signals in male partner seminal fluid, to initiate expansion of the maternal Treg cell pool after mating. Here, we report that mice with null mutation in Tlr4 (Tlr4−/−) exhibit impaired reproductive outcomes after allogeneic mating, with reduced pregnancy rate, elevated mid-gestation fetal loss, and fetal growth restriction, compared to Tlr4+/+ wild-type controls. To investigate the effects of TLR4 deficiency on early events of maternal immune adaptation, TLR4-regulated cytokines and immune regulatory microRNAs were measured in the uterus at 8 h post-mating by qPCR, and Treg cells in uterus-draining lymph nodes were evaluated by flow cytometry on day 3.5 post-coitum. Ptgs2 encoding prostaglandin-endoperoxide synthase 2, cytokines Csf2, Il6, Lif, and Tnf, chemokines Ccl2, Cxcl1, Cxcl2, and Cxcl10, and microRNAs miR-155, miR-146a, and miR-223 were induced by mating in wild-type mice, but not, or to a lesser extent, in Tlr4−/− mice. CD4+ T cells were expanded after mating in Tlr4+/+ but not Tlr4−/− mice, with failure to expand peripheral CD25+FOXP3+ NRP1− or thymic CD25+FOXP3+ NRP1+ Treg cell populations, and fewer Treg cells expressed Ki67 proliferation marker and suppressive function marker CTLA4. We conclude that TLR4 is an essential mediator of the inflammation-like response in the pre-implantation uterus that induces generation of Treg cells to support robust pregnancy tolerance and ensure optimal fetal growth and survival.
Collapse
|
10
|
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol 2020; 11:583077. [PMID: 33101309 PMCID: PMC7554600 DOI: 10.3389/fimmu.2020.583077] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Natalie Kirk
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
- Comparative Molecular Biosciences Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| |
Collapse
|
11
|
Chen S, Liu L, Zhang W, Sun L, Wang F, Zhao Y, Liu S, Zhao L, Xu Y. Suppressed dendritic cell functions by cystatin C lead to compromised immunity in vivo. Cell Immunol 2020; 349:104049. [PMID: 32057353 DOI: 10.1016/j.cellimm.2020.104049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 12/30/2022]
Abstract
Pathogenic microorganisms utilize multiple approaches to break down host immunity in favor of their invasion, of which, cystatin C is one of the soluble factors secreted by parasites reported to affect host immunity in vivo. The cellular targets and mechanisms of action in vivo of cystatin C, however, are far from clear. As professional antigen-presenting cells, dendritic cells (DCs) are first immune cells that contact foreign pathogenic agents or their products to initiate immune responses. We previously reported that cystatin C can regulate the functions of DCs in terms of suppressed CD4+ T cell activation but enhanced Th1/Th17 differentiation via different mechanisms. Here, we further verified these regulatory effects of cystatin C on DCs in vivo. We found that the suppressive role of DC-mediated CD4+ T cell proliferation by cystatin C was partly cell-contact independent and extended to CD8+ T cells in vivo. Although cystatin C-overexpressing DCs trafficked equally as their mock-transduced counterparts, their adoptive transfer suppressed CD8+ T cell immunity and resulted in compromised tumor rejection in both vaccination and treatment regimes. Compared with their role in promoting Th17 differentiation in vivo, cystatin C-transduced DCs had far greater ability to induce T regulatory cells (Tregs), leading to collectively a higher Treg/Th17 ratio in an adoptively transferred disease model, and thus relieved Th17-dependent autoimmunity. Collectively, these data demonstrated strong in vivo evidences for immune regulatory roles of cystatin C in DCs and provided theoretical basis for the application of cystatin C-transduced cell therapy in the treatment or remission of certain autoimmune diseases. (246).
Collapse
Affiliation(s)
- Shun Chen
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
12
|
Wang B, Tian Q, Guo D, Lin W, Xie X, Bi H. Activated γδ T Cells Promote Dendritic Cell Maturation and Exacerbate the Development of Experimental Autoimmune Uveitis (EAU) in Mice. Immunol Invest 2020; 50:164-183. [PMID: 31985304 DOI: 10.1080/08820139.2020.1716786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our previous study reveals that gamma delta (γδ) T cells were activated and dendritic cells (DCs) underwent maturation during the inflammation phase in experimental autoimmune uveitis (EAU) mice, and the interaction between DCs and γδ T cells may significantly exacerbate the development of EAU. However, the interactions between DCs and γδ T cells that can affect DCs maturation to influence EAU development must be further addressed. In this study we showed that mature DC numbers in TCR-δ-/- (KO) EAU mice were lower than those in wild-type (WT) C57BL/6 (B6) mice. The γδ T cells harvested from WT EAU mice secreted more interferon-γ (IFN-γ), however, after blocking IFN-γ, the maturation of DCs was significantly downregulated. By contrast, the percentage of IFN-γ- and IL-17-producing CD4+ T cells in KO EAU mice decreased to a greater extent than that in WT EAU mice during the inflammatory phase. Additionally, the levels of IFN-γ/IL-17 in serum were in agreement with those of CD4+ T cells. Furthermore, after activated γδ T cells injection, the inflammatory symptoms of EAU mice were more aggravated. In vitro co-cultures of both cell types showed that activated γδ T cells may induce DCs to generate higher levels of intracellular cell adhesion molecule-1 (ICAM-1/CD54), CD80, CD83, and CD86. Moreover, co-culture of the two cells may induce the activation of CD4+ T cells. Taken together, our results demonstrated that activated γδ T cells may promote DCs maturation and further enhance the generation of Th1/Th17 cells in EAU mice, resulting in exacerbated EAU.
Collapse
Affiliation(s)
- Beibei Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Qingmei Tian
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Wei Lin
- Department of Microbiology, Shandong Academy of Medical Sciences , Jinan, People's Republic of China
| | - Xiaofeng Xie
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Hongsheng Bi
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| |
Collapse
|
13
|
Nasi G, Ahmed T, Rasini E, Fenoglio D, Marino F, Filaci G, Cosentino M. Dopamine inhibits human CD8+ Treg function through D 1-like dopaminergic receptors. J Neuroimmunol 2019; 332:233-241. [PMID: 30954278 DOI: 10.1016/j.jneuroim.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
CD8+ T regulatory/suppressor cells (Treg) affect peripheral tolerance and may be involved in autoimmune diseases as well as in cancer. In view of our previous data showing the ability of DA to affect adaptive immune responses, we investigated the dopaminergic phenotype of human CD8+ Treg as well as the ability of DA to affect their generation and activity. Results show that CD8+ T cells express both D1-like and D2-like dopaminergic receptors (DR), tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of DA, and vesicular monoamine transporter (VMAT) 2 and contain high levels of intracellular DA. Preferential upregulation of DR mRNA levels in the CD8+CD28- T cell compartment occurs during generation of CD8+ Treg, which is reduced by DA and by the D1-like DR agonist SKF-38393. DA and SKF-38393 also reduce the suppressive activity of CD8+ Treg on human peripheral blood mononuclear cells. Treg are crucial for tumor escape from the host immune system, thus the ability of DA to inhibits Treg function supports dopaminergic pathways as a druggable targets to develop original and innovative antitumor strategies.
Collapse
Affiliation(s)
- Giorgia Nasi
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Tanzeel Ahmed
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| |
Collapse
|
14
|
Zamora V, Rodero M, Andreu-Ballester JC, Mendez S, Cuéllar C. Induction of tolerogenic properties by Anisakis larval antigens on murine dendritic cells. Parasite Immunol 2019; 41:e12616. [PMID: 30719721 DOI: 10.1111/pim.12616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
AIMS The objective of this work is to investigate whether Anisakis simplex larval antigens present immunomodulatory properties by the induction of tolerogenic dendritic cells (DCs) from two strains of mice (BALB/c and C57BL/6J). METHODS AND RESULTS We used mouse bone marrow-derived DCs. We determined their antigen-presenting ability by expression of membrane markers (MHC I and MHC II, CD80, CD86) and intracellular expression levels of IL-10 and IL-12 cytokines. We also analysed whether stimulation with A simplex larval antigens is enhanced by the co-administration of the TLR4 and TLR9 agonists [LPS E coli 026B6 and CpG (ODN1826), respectively]. Two differential types of responses were found in the two mouse strains studied: the BALB/c strain showed an acute and inflammatory response, whereas the C57BL/6J mice developed a more discrete and resistant response. This suggests the coexistence of two opposing responses generated by A simplex larval antigens and confirms that the host genetic basis plays a role in the development of a Th2 or Treg response. CONCLUSION The study of the mechanisms by which Anisakis manipulates the immune response through anti-inflammatory molecules is of interest not only for the direct application on the development of anthelmintic strategies, but also for the development of new anti-inflammatory products.
Collapse
Affiliation(s)
- Vega Zamora
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad Complutense, Madrid, Spain
| | - Marta Rodero
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad Complutense, Madrid, Spain
| | | | - Susana Mendez
- Microbiology Review Branch, DHHS/NIH/NIAID/DEA/SRP, Rockville, Maryland
| | - Carmen Cuéllar
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
15
|
Tvedt THA, Melve GK, Tsykunova G, Ahmed AB, Brenner AK, Bruserud Ø. Immunological Heterogeneity of Healthy Peripheral Blood Stem Cell Donors-Effects of Granulocyte Colony-Stimulating Factor on Inflammatory Responses. Int J Mol Sci 2018; 19:ijms19102886. [PMID: 30249022 PMCID: PMC6213426 DOI: 10.3390/ijms19102886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) contributes to the development of immune-mediated complications after allogeneic stem cell transplantation. However, systemic IL-6 levels also increase during granulocyte colony-stimulating factor (G-CSF) mobilization of hematopoietic stem cells in healthy donors, but it is not known whether this mobilization alters systemic levels of other IL-6 family cytokines/receptors and whether such effects differ between donors. We examined how G-CSF administration influenced C-reactive protein (CRP) levels (85 donors) and serum levels of IL-6 family cytokines/receptors (20 donors). G-CSF increased CRP levels especially in elderly donors with high pretherapy levels, but these preharvesting levels did not influence clinical outcomes (nonrelapse mortality, graft versus host disease). The increased IL-6 levels during G-CSF therapy normalized within 24 h after treatment. G-CSF administration did not alter serum levels of other IL-6-familly mediators. Oncostatin M, but not IL-6, showed a significant correlation with CRP levels during G-CSF therapy. Clustering analysis of mediator levels during G-CSF administration identified two donor subsets mainly characterized by high oncostatin M and IL-6 levels, respectively. Finally, G-CSF could increase IL-6 release by in vitro cultured monocytes, fibroblasts, and mesenchymal stem cells. In summary, G-CSF seems to induce an acute phase reaction with increased systemic IL-6 levels in healthy stem cell donors.
Collapse
Affiliation(s)
- Tor Henrik Anderson Tvedt
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
| | - Guro K Melve
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Galina Tsykunova
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Aymen Bushra Ahmed
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Annette K Brenner
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
16
|
Li SS, Yang M, Chen YP, Tang XY, Zhang SG, Ni SL, Yang NB, Lu MQ. Dendritic cells with increased expression of suppressor of cytokine signaling 1(SOCS1) gene ameliorate lipopolysaccharide/d-galactosamine-induced acute liver failure. Mol Immunol 2018; 101:10-18. [PMID: 29852455 DOI: 10.1016/j.molimm.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/18/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Acute liver failure is a devastating clinical syndrome with extremely terrible inflammation reaction, which is still lack of effective treatment in clinic. Suppressor of Cytokine Signaling 1 protein is inducible intracellular negative regulator of Janus kinases (JAK)/signal transducers and activators of transcription (STAT) pathway that plays essential role in inhibiting excessive intracellular signaling cascade and preventing autoimmune reaction. In this paper, we want to explore whether dendritic cells (DCs) with overexpression of SOCS1 have a therapeutic effect on experimental acute liver failure. Bone marrow derived dendritic cells were transfected with lentivirus encoding SOCS1 and negative control lentivirus, thereafter collected for costimulatory molecules analysis, allogeneic Mixed Lymphocyte Reaction and Western blot test of JAK/STAT pathway. C57BL/6 mice were randomly separated into normal control and treatment groups which respectively received tail vein injection of modified DCs, negative control DCs and normal saline 12 h earlier than acute liver failure induction. Our results indicated that DCs with overexpression of SOCS1 exhibited like regulatory DCs (DCregs) with low level of costimulatory molecules and poor allostimulatory ability in vitro, which was supposed to correlate with block of JAK2/STAT1 signaling. In vivo tests, we found that infusion of modified DCs increased survival rate of acute liver failure mice and alleviate liver injury via inhibition of TLR4/HMGB1 pathway. We concluded that DCs transduced with SOCS1 gene exhibit as DCregs through negative regulation of JAK2/STAT1 pathway and ameliorated lipopolysaccharide/d-galactosamine induced acute liver failure via inhibition of TLR4 pathway.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Min Yang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Yong-Ping Chen
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Xin-Yue Tang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Sheng-Guo Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Shun-Lan Ni
- Department of Infectious Disease, Central Hospital of Jinhua City, Jinhua, 321000, Zhejiang, PR China
| | - Nai-Bin Yang
- Department of Infectious Disease, First Hospital of Ningbo City, Ningbo, 315000, Zhejiang, PR China
| | - Ming-Qin Lu
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China.
| |
Collapse
|
17
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 2018; 9:235. [PMID: 29867767 PMCID: PMC5964134 DOI: 10.3389/fendo.2018.00235] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune response and have been used since decades to treat various inflammatory and autoimmune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in the search for novel therapeutic strategies aimed to reduce pathological signaling and restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are studies suggesting that under certain conditions GCs may also exert pro-inflammatory responses. For these reasons the understanding of the GR basic mechanisms of action on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutrophils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a continuous matter of interest and may reveal novel therapeutic targets for the treatment of immune and inflammatory response.
Collapse
Affiliation(s)
- Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maia L. Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Romina Paula Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Anja Steininger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Eduardo Arzt,
| |
Collapse
|
18
|
Neutrophil to Lymphocyte Ratio in Castration-Resistant Prostate Cancer Patients Treated With Daily Oral Corticosteroids. Clin Genitourin Cancer 2017; 15:678-684.e1. [PMID: 28606735 DOI: 10.1016/j.clgc.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The neutrophil to lymphocyte ratio (NLR) has been shown to be highly prognostic across many tumor types, and predictive of treatment outcome in advanced prostate cancer, and has been postulated to be an indirect measure of tumor inflammation. We evaluated the effect of low-dose steroids on NLR in men suffering from castration-resistant prostate cancer (CRPC). PATIENTS AND METHODS The NLR was evaluated in a prospective randomized phase II trial that compared prednisolone 5 mg twice daily and dexamethasone 0.5 mg daily administered to 75 chemotherapy and abiraterone/enzalutamide-naive CRPC patients. NLR was examined at baseline (BL), after 6 and 12 weeks of corticosteroid treatment; associations with >50% prostate-specific antigen (PSA) response, duration of response (PSA progression-free interval), and overall survival (OS) were tested using logistic regression and Cox regression analysis. RESULTS The median NLR for all evaluable patients was 2.6 at BL; 2.9 at 6 weeks; and 4.0 at 12 weeks. After low-dose corticosteroid initiation, 46 patients had a decline in PSA with 24 confirmed responders. BL NLR (log10) associated with a PSA response (odds ratio, .029, 95% confidence interval [CI], .002-.493; P = .014), and with the extent of the PSA decline (P = .009). A favorable BL NLR (less than median) associated with a 5.5-fold higher odds of a PSA >50% response (95% CI, 1.3-23.9; P = .02). Higher BL NLR (log10) associated with a shorter time to PSA progression (hazard ratio [HR], 9.5; 95% CI, 2.3-39.9; P = .002). In multivariate analysis BL NLR as a discrete variable was independently associated with PSA progression (HR, 3.5; 95% CI, 1.5-8.1; P = .003). NLR at 6 weeks was also associated with duration of benefit; in the favorable NLR category time to PSA progression was 10.8 months, for those who converted to an unfavorable (greater than median) category 4.5 months, and for those remaining in a unfavorable category only 1.5 months (95% CI, 0.5-2.5; P = .003). OS was 33.1 months (95% CI, 24.2-42.0) and 21.9 months (95% CI, 19.3-24.4) for those with an favorable and unfavorable BL NLR, respectively. CONCLUSION Treatment-naive CRPC patients with a high BL or during-treatment NLR appear not to benefit from low-dose corticosteroids. The immunological implications of an unfavorable NLR, and whether corticosteroids might drive prostate cancer progression in patients harboring a high NLR, warrant further study.
Collapse
|
19
|
The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part I: Treg properties and functions. Postepy Dermatol Alergol 2017; 34:285-294. [PMID: 28951701 PMCID: PMC5560174 DOI: 10.5114/ada.2017.69305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Treg) can be divided into two types: the natural cells (tTreg), which arise in the thymus, and the induced cells (iTreg), which are produced in peripheral tissues during immune response. The most recently published studies indicate that the supervisory functions of these cells are weakened in the pathogenesis of autoimmune and neoplastic diseases of the skin. This may be a result of the domination of other immune cells in the skin, such as Th1/Th17/Th22 and Tc1 type in psoriasis and Th2 in atopic dermatitis. The excessive activity of Treg cells can lead to immunosuppression and decrease in the number of Th1 cells, which promote the development and progression of skin cancers. In the case of cutaneous T-cell lymphomas, there are suggestions that tumor progression is associated with the acquisition of the suppressor phenotype of malignant cells. There is genetic background of Treg dysfunction in skin disorders. This article describes the types and functions of Treg cells.
Collapse
|
20
|
Histone deacetylase inhibitors suppress immature dendritic cell's migration by regulating CC chemokine receptor 1 expression. Cell Immunol 2017; 316:11-20. [PMID: 28341057 DOI: 10.1016/j.cellimm.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 11/23/2022]
Abstract
The modulation of immature dendritic cells (iDCs), which involves processes such as phagocytosis, migration, and maturation, is considered a beneficial research theme. Once activated by an antigen, iDCs turn to mature DCs (mDCs) and migrate towards secondary lymphoid organs, and initiate the progress of cellular immunity. Histone deacetylase inhibitors (HDACis) are also thought to be a major modulator of cellular immunity. Herein, we demonstrate that HDACis (trichostatin-A (TSA), sodium butylate (SB), scriptaid (ST)) play a central regulatory role in the migratory activity of iDCs. In our results, TSA, SB and ST showed the potent inhibitory effect on the migration of iDCs stimulated by MIP-1α. The inhibitory activities of HDACis were found to be caused by reduction of CCR1 expression on the cell surface, and by the inhibition of phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and c-Jun N-terminal kinase (JNK).
Collapse
|
21
|
Santana AL, Felsen D, Carucci JA. Interleukin-22 and Cyclosporine in Aggressive Cutaneous Squamous Cell Carcinoma. Dermatol Clin 2017; 35:73-84. [PMID: 27890239 PMCID: PMC5409835 DOI: 10.1016/j.det.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) account for up to 10,000 deaths annually in the United States. Most of the more than 700,000 SCCs diagnosed are cured by excision with clear margins; however, metastasis can occur despite seemingly adequate treatment in some cases. Immune-suppressed organ transplant recipients are 60 to 100 times more likely to develop SCC than immune-competent individuals. Transplant-associated SCCs occur more frequently and behave more aggressively, showing higher risk of recurrence and metastasis. This article identifies a potential role for interleukin-22 in driving SCC proliferation, particularly in solid organ transplant recipients taking cyclosporine.
Collapse
Affiliation(s)
- Alexis L Santana
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Diane Felsen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medical College, 1300 York Avenue, Box 94, New York, NY 10065, USA
| | - John A Carucci
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
22
|
Lehmann S, Hiller J, van Bergenhenegouwen J, Knippels LMJ, Garssen J, Traidl-Hoffmann C. In Vitro Evidence for Immune-Modulatory Properties of Non-Digestible Oligosaccharides: Direct Effect on Human Monocyte Derived Dendritic Cells. PLoS One 2015; 10:e0132304. [PMID: 26148091 PMCID: PMC4493044 DOI: 10.1371/journal.pone.0132304] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Infant formulas containing non-digestible oligosaccharides (NDO) similar to the composition in breast milk or a combination of lactic acid bacteria (LAB) and NDO have been shown to harbor preventive effects towards immune-regulatory disorders. The aim of this study was to investigate the immune-modulatory potential of non-digestible short chain galacto- and long chain fructo-oligosaccharides (scGOS/lcFOS) mimicking the natural distribution of oligosaccharides in human breast milk in presence or absence of certain LAB strains in human monocyte derived dendritic cells (MoDC). Immature human MoDC prepared from peripheral blood of healthy non-atopic volunteers were screened in vitro after stimulation with specific scGOS/lcFOS in presence or absence of LAB. IL-10 and IL-12p70 release was analyzed after 24 hours in cell-free supernatants by enzyme-linked immunosorbent assay (ELISA). A luminex-based assay was conducted to assess further cytokine and chemokine release by MoDC. To investigate the resulting T cell response, stimulated MoDC were co-incubated with naïve T cells in allogeneic stimulation assays and intracellular Foxp3 expression, as well as immune-suppressive capacity was determined. Oligosaccharides did not induce relevant amounts of IL-12p70 production, but did promote IL-10 release by MoDC. Furthermore, scGOS/lcFOS mixtures exerted a significant enhancing effect on LAB induced IL-10 secretion by MoDC while no increase in IL-12p70 production was observed. Blocking toll like receptor (TLR)4 abrogated the increase in IL-10 in both the direct stimulation and the LAB stimulation of MoDC, suggesting that scGOS/lcFOS act via TLR4. Finally, scGOS/lcFOS-treated MoDC were shown to upregulate the number of functional suppressive Foxp3 positive T cells following allogeneic stimulation. Our results indicate anti-inflammatory and direct, microbiota independent, immune-modulatory properties of scGOS/lcFOS mixtures on human MoDC suggesting a possible induction of regulatory T cells (Tregs). The tested combinations of LAB and scGOS/lcFOS might represent a useful dietary ingredient for the maintenance of intestinal homeostasis via the induction of Tregs.
Collapse
Affiliation(s)
- Sarah Lehmann
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, Germany
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität & Helmholtz Zentrum München, Munich, Germany
| | - Julia Hiller
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, Germany
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität & Helmholtz Zentrum München, Munich, Germany
| | - Jeroen van Bergenhenegouwen
- Nutricia Research, Department of Immunology, Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Leon M. J. Knippels
- Nutricia Research, Department of Immunology, Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Nutricia Research, Department of Immunology, Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, Germany
- CK CARE-Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
23
|
Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J Interferon Cytokine Res 2015; 35:585-99. [PMID: 25803788 DOI: 10.1089/jir.2014.0149] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them "tolerogenic," which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility.
Collapse
Affiliation(s)
- Palash Bhattacharya
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Isadore Budnick
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Medha Singh
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Muthusamy Thiruppathi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Khaled Alharshawi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Hatem Elshabrawy
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Mark J Holterman
- 2 Department of Surgery, College of Medicine, University of Illinois , Chicago, Illinois
| | - Bellur S Prabhakar
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| |
Collapse
|
24
|
Cavone L, Peruzzi B, Caporale R, Chiarugi A. Long-term suppression of EAE relapses by pharmacological impairment of epitope spreading. Br J Pharmacol 2014; 171:1501-9. [PMID: 24730062 DOI: 10.1111/bph.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Immune events sustaining dendritic cell (DC)-dependent epitope spreading (ES) are of key relevance to the development of relapses during multiple sclerosis (MS). Although no drugs are currently available to target ES, its inhibition would represent a major advancement in MS therapy. Inhibitors of the enzyme PARP-1 afford protection in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). These drugs epigenetically impair antigen presentation by DCs, but whether these drugs affect ES is unknown. Here, we investigated whether short-term treatments with these compounds would impair ES, thereby preventing EAE relapses. EXPERIMENTAL APPROACH We used a model of relapsing EAE in SJL mice and also adopted in vivo and ex vivo models of DC-dependent T-cell polarization. The effect of PARP-1 inhibitors on ES was evaluated at the humoral and cellular level. KEY RESULTS Short-term treatments with PARP-1 inhibitors during the acute phase of relapsing EAE of mice induced, at later times, more tolerogenic DCs, increased numbers of Treg cells and impairment of ES at the humoral and cellular level. These effects are followed by long-lasting reduction of relapse severity and incidence, although drug treatment had been discontinued for several weeks. PARP-1 inhibitors also induced tolerogenic DCs and increased Treg cells number and function in a model of ovalbumin immunization. CONCLUSIONS AND IMPLICATIONS Our data emphasize the therapeutic potential of PARP-1 inhibitors in the treatment of relapsing-remitting MS and additional ES-driven autoimmune disorders.
Collapse
|
25
|
Bellavance MA, Rivest S. The HPA - Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Front Immunol 2014; 5:136. [PMID: 24744759 PMCID: PMC3978367 DOI: 10.3389/fimmu.2014.00136] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022] Open
Abstract
In response to physiological and psychogenic stressors, the hypothalamic–pituitary–adrenal (HPA) axis orchestrates the systemic release of glucocorticoids (GCs). By virtue of nearly ubiquitous expression of the GC receptor and the multifaceted metabolic, cardiovascular, cognitive, and immunologic functions of GCs, this system plays an essential role in the response to stress and restoration of an homeostatic state. GCs act on almost all types of immune cells and were long recognized to perform salient immunosuppressive and anti-inflammatory functions through various genomic and non-genomic mechanisms. These renowned effects of the steroid hormone have been exploited in the clinic for the past 70 years and synthetic GC derivatives are commonly used for the therapy of various allergic, autoimmune, inflammatory, and hematological disorders. The role of the HPA axis and GCs in restraining immune responses across the organism is however still debated in light of accumulating evidence suggesting that GCs can also have both permissive and stimulatory effects on the immune system under specific conditions. Such paradoxical actions of GCs are particularly evident in the brain, where substantial data support either a beneficial or detrimental role of the steroid hormone. In this review, we examine the roles of GCs on the innate immune system with a particular focus on the CNS compartment. We also dissect the numerous molecular mechanisms through which GCs exert their effects and discuss the various parameters influencing the paradoxical immunomodulatory functions of GCs in the brain.
Collapse
Affiliation(s)
- Marc-André Bellavance
- Faculty of medicine, Department of Molecular Medicine, Neuroscience Laboratory, CHU de Québec Research Center, Laval University , Québec, QC , Canada
| | - Serge Rivest
- Faculty of medicine, Department of Molecular Medicine, Neuroscience Laboratory, CHU de Québec Research Center, Laval University , Québec, QC , Canada
| |
Collapse
|
26
|
Huang HM, Hsiao G, Fan CK, Lin CL, Leu SJ, Chiang BL, Lee YL. Notch ligand delta-like 4-pretreated dendritic cells alleviate allergic airway responses by enhancing IL-10 production. PLoS One 2013; 8:e63613. [PMID: 23696838 PMCID: PMC3656003 DOI: 10.1371/journal.pone.0063613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
The Notch pathway plays a role in the processes of cell proliferation, differentiation, and apoptosis, which affect the development and function of various organs. Dendritic cells (DCs), as professional antigen-presenting cells (APCs), induce T cell activation and promote T cell differentiation by antigen stimulation. Research has shown that Notch ligand delta-like 4 (Dll4) in APCs is associated with stimulation of a Th1-type response. However, the regulatory roles of Dll4 in the activation and function of DCs have yet to be clearly elucidated. In this study, we demonstrated that activation of Dll4-pretreated bone marrow-derived DCs by performing ovalbumin (OVA) stimulation expressed a high level of interleukin (IL)-10 without diminishing IL-12 production. By contrast, the proinflammatory cytokines, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, decreased in Dll4-pretreated DCs by performing either lipopolysaccharide (LPS) or OVA stimulation. Compared to fully mature DCs, lower levels of MHC class II CD40 and higher levels of CD80 and CD86 molecules were expressed in these semi-mature like DCs. Dll4 Notch signaling also enhanced Notch ligand mRNA expression of Dll1, Dll4, and Jagged1 in DCs. Dll4-modified DCs exhibited a reduced capacity to stimulate the proliferation of OVA-specific CD4(+) T cells, but actively promoted large amounts of IL-10 production in these activated T cells. Furthermore, immunomodulatory effects of Dll4-modified DCs were examined in an established asthmatic animal model. After adoptive transfer of OVA-pulsed plus Dll4-pretreated DCs in OVA-immunized mice, OVA challenge induced lower OVA-specific immunoglobulin E (IgE) and higher IgG2a antibody production, lower eotaxin, keratinocyte-derived chemokine (KC), IL-5, and IL-13 release in bronchial alveolar lavage fluid, attenuated airway hyper-responsiveness, and promoted higher IL-10 and interferon (IFN)-γ production in the spleen. In summary, our findings elucidate the new role of Dll4 in the phenotype and function of DCs and provide a novel approach for manipulating T cell-driven deleterious immune diseases.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Kwung Fan
- Department of Parasitology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Lun Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sy-Jye Leu
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Zhang S, Fujita H, Mitsui H, Yanofsky VR, Fuentes-Duculan J, Pettersen JS, Suárez-Fariñas M, Gonzalez J, Wang CQF, Krueger JG, Felsen D, Carucci JA. Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS One 2013; 8:e62154. [PMID: 23667456 PMCID: PMC3646982 DOI: 10.1371/journal.pone.0062154] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/18/2013] [Indexed: 12/25/2022] Open
Abstract
Immune suppressed organ transplant recipients suffer increased morbidity and mortality from primary cutaneous SCC. We studied tumor microenvironment in transplant-associated SCC (TSCC), immune-competent SCC and normal skin by IHC, IF and RT-PCR on surgical discard. We determined T cell polarization in TSCC and SCC by intracellular cytokine staining of T cell crawl outs from human skin explants. We studied the effects of IL-22, an inducer of keratinocyte proliferation, on SCC proliferation in vitro. SCC and TSCC are both associated with significantly higher numbers of CD3(+) and CD8(+) T cells compared to normal skin. TSCC showed a higher proportion of Foxp3(+) T regs to CD8(+) T cells compared to SCC and a lower percentage of IFN-γ producing CD4(+) T cells. TSCC, however, had a higher percentage of IL-22 producing CD8(+) T cells compared to SCC. TSCC showed more diffuse Ki67 and IL-22 receptor (IL-22R) expression by IHC. IL-22 induced SCC proliferation in vitro despite serum starvation. Diminished cytotoxic T cell function in TSCC due to decreased CD8/T-reg ratio may permit tumor progression. Increased IL-22 and IL-22R expression could accelerate tumor growth in transplant patients. IL-22 may be an attractive candidate for targeted therapy of SCC without endangering allograft survival.
Collapse
MESH Headings
- CD3 Complex/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Count
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunocompetence/immunology
- Interleukins/pharmacology
- Organ Transplantation/adverse effects
- Phosphoproteins/metabolism
- Receptors, Interleukin/metabolism
- STAT3 Transcription Factor/metabolism
- Skin/cytology
- Skin/immunology
- Skin/pathology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/cytology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Up-Regulation/drug effects
- Up-Regulation/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Shali Zhang
- Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, New York, United States of America
| | - Hideki Fujita
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Valerie R. Yanofsky
- Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Judilyn Fuentes-Duculan
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Julia S. Pettersen
- Department of Dermatology, Weill Cornell Medical College, New York, New York, United States of America
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Juana Gonzalez
- Translational Immunomonitoring Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Claire Q. F. Wang
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - James G. Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Diane Felsen
- Institute for Pediatric Urology, Weill Cornell Medical College, New York, New York, United States of America
| | - John A. Carucci
- Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, New York, United States of America
| |
Collapse
|
28
|
Cai M, Wu J, Mao C, Ren J, Li P, Li X, Zhong J, Xu C, Zhou T. A Lectin-EGF antibody promotes regulatory T cells and attenuates nephrotoxic nephritis via DC-SIGN on dendritic cells. J Transl Med 2013; 11:103. [PMID: 23627732 PMCID: PMC3651349 DOI: 10.1186/1479-5876-11-103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/25/2013] [Indexed: 02/02/2023] Open
Abstract
Background Interactions between dendritic cells (DCs) and T cells play a critical role in the development of glomerulonephritis, which is a common cause of chronic kidney disease. DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), an immune-regulating molecule of the C-type lectin family, is mainly expressed on DCs and mediates DC adhesion and migration, inflammation, activation of primary T cells. DC-SIGN triggers immune responses and is involved in the immune escape of pathogens and tumours. In addition, ligation of DC-SIGN on DCs actively primes DCs to induce Tregs. Under certain conditions, DC-SIGN signalling may result in inhibition of DC maturation, by promoting regulatory T cell (Treg) function and affecting Th1/Th2 bias. Methods A rat model of nephrotoxic nephritis was used to investigate the therapeutic effects of an anti-lectin-epidermal growth factor (EGF) antibody on glomerulonephritis. DCs were induced by human peripheral blood mononuclear cells in vitro. The expression of DC surface antigens were detected using flow cytometry; the levels of cytokines were detected by ELISA and qPCR, respectively; the capability of DCs to stimulate T cell proliferation was examined by mixed lymphocyte reaction; PsL-EGFmAb targeting to DC-SIGN on DCs was identified by immunoprecipitation. Results Anti-Lectin-EGF antibody significantly reduced global crescent formation, tubulointerstitial injury and improved renal function impairment through inhibiting DC maturation and modulating Foxp3 expression and the Th1/Th2 cytokine balance in kidney. Binding of anti-Lectin-EGF antibody to DC-SIGN on human DCs inhibited DC maturation, increased IL-10 production from DCs and enhanced CD4+CD25+ Treg functions. Conclusions Our results suggest that treatment with anti-Lectin-EGF antibody modulates DCs to suppressive DCs and enhances Treg functions, contributing to the attenuation of renal injury in a rat model of nephrotoxic nephritis.
Collapse
Affiliation(s)
- Minchao Cai
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Arkema EV, Hart JE, Bertrand KA, Laden F, Grodstein F, Rosner BA, Karlson EW, Costenbader KH. Exposure to ultraviolet-B and risk of developing rheumatoid arthritis among women in the Nurses' Health Study. Ann Rheum Dis 2013; 72:506-11. [PMID: 23380431 PMCID: PMC3678095 DOI: 10.1136/annrheumdis-2012-202302] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To examine the association between ultraviolet-B (UV-B) light exposure and rheumatoid arthritis (RA) risk among women in two large prospective cohort studies, the Nurses' Health Study (NHS) and the Nurses' Health Study II (NHSII). METHODS A total of 106 368 women from NHS, aged 30-55 years in 1976, and 115 561 women from NHSII, aged 25-42 in 1989, were included in the analysis. We identified women with incident RA from the start of each cohort until 2008 (NHS) and 2009 (NHSII). Cumulative average UV-B flux, a composite measure of ambient UV exposure based on latitude, altitude and cloud cover, was estimated according to state of residence and categorised as low, medium or high. Estimates of UV-B at birth and age 15 years were also examined. We used multivariable-adjusted Cox proportional hazards models to estimate HR and 95% CI. RESULTS 1314 incident RA cases were identified in total. Among NHS participants, higher cumulative average UV-B exposure was associated with decreased RA risk; those in the highest versus lowest category had a 21% decreased RA risk (HR (95% CI); 0.79 (0.66 to 0.94)). UV-B was not associated with RA risk among younger women in NHSII (1.12 (0.87 to 1.44)). Results were similar for UV-B at birth and at age 15. CONCLUSIONS These results suggest that ambient UV-B exposure is associated with a lower RA risk in NHS, but not NHSII. Differences in sun-protective behaviours (eg, greater use of sun block in younger generations) may explain the disparate results.
Collapse
Affiliation(s)
- Elizabeth V Arkema
- Correspondence to Dr Elizabeth V Arkema, Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 9th Floor, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Teles A, Zenclussen AC, Schumacher A. Regulatory T cells are baby's best friends. Am J Reprod Immunol 2013; 69:331-9. [PMID: 23289369 DOI: 10.1111/aji.12067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Regulatory T cells (Treg) are one of the most and best studied immune cell population during human and murine pregnancy, and there is a general consent about their expansion during pregnancy. However, the identification of new and more reliable Treg markers during the last years resulted in some controversies about the kinetics of various Treg subsets at different pregnancy stages. No doubt exists regarding the importance of Treg for a normal pregnancy as pregnancy complications like spontaneous abortion and preeclampsia could be associated with a reduced Treg number and activity. In future, more attention should be paid to bring established data from the bench to the bedside to force the development of adequate therapies for treatment of pregnancy complications. In this article, we summarize previous and recent data on several aspects of Treg biology during human and murine pregnancy.
Collapse
Affiliation(s)
- Ana Teles
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
31
|
Zhang C, Zhang X, Chen XH. Cellular mechanism for granulocyte-colony stimulating factor in the prevention of graft-versus-host disease in combined bone marrow and peripheral blood transplantation for hematological malignancies: the composition in collection. Transfus Apher Sci 2012; 48:3-9. [PMID: 23279971 DOI: 10.1016/j.transci.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 08/16/2012] [Indexed: 01/29/2023]
Abstract
Despite improvements in transplant immunology and clinical and supportive care, acute graft-versus-host disease (aGVHD) remains a clinical challenge and a major cause of morbidity and mortality for patients after allogeneic hematopoietic stem cell transplantation (HSCT). Many ways have been used to prevent and treat aGVHD, however, long-term survival remains poor. The key to improve aGVHD outcomes may, in fact, rest upon successful initial therapy. The HLA-matched HSCT was limited by the shortage of suitable donors. Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells and G-CSF-mobilized bone marrow as a stronger aGVHD inhibition and graft-versus-leukemia effect, has been developed as an alternative transplantation strategy for patients with hematologic malignancies for the advantage of immediate donor availability, ability to select the best of many relatives, controlled graft composition and immediate access to donor-derived cellular therapies if required after transplantation. G-CSF is a potent hematopoietic cytokine, which is produced by fibroblasts, monocytes, and endothelial cells. G-CSF regulates production of neutrophils within the bone marrow and affects neutrophil progenitor proliferation, maturation and is also involved in mobilization of granulocytes, stem and progenitor cells, which has an important role in this transplantation. In this article, we review the possible mechanism for this combined G-CSF-mobilized HSCT in the prevention of aGVHD. Monocytes, T cells, Tregs cells, DC, adhesive molecule, NK cell/KIR ligand mismatching and mesenchymal stem cells may be involved in this transplantation.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | | | | |
Collapse
|
32
|
Chen H, Gao N, Fan D, Wu J, Zhu J, Li J, Wang J, Chen Y, An J. Suppressive effects on the immune response and protective immunity to a JEV DNA vaccine by co-administration of a GM-CSF-expressing plasmid in mice. PLoS One 2012; 7:e34602. [PMID: 22493704 PMCID: PMC3321030 DOI: 10.1371/journal.pone.0034602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/02/2012] [Indexed: 01/07/2023] Open
Abstract
As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Cell Proliferation/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Encephalitis Virus, Japanese/drug effects
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
Abstract
The discovery of dynamic populations of regulatory T cells in the corpus luteum opens new possibilities for immune regulation of early pregnancy.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Gulubova MV, Ananiev JR, Vlaykova TI, Yovchev Y, Tsoneva V, Manolova IM. Role of dendritic cells in progression and clinical outcome of colon cancer. Int J Colorectal Dis 2012; 27:159-69. [PMID: 22065108 DOI: 10.1007/s00384-011-1334-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE The dendritic cells (DCs) are key players in the initiation and regulation of immune responses including antitumor immunity. In the current study, we aimed to elucidate the role of different subtypes of DCs infiltrating the tumor stroma and invasive margin for tumor progression and survival of patients with colon cancer. METHODS The presence of immature (CD1a- and S100 protein+) and mature (CD83- and HLA-DR+) DCs was evaluated by immunohistochemistry in tissue samples from 145 patients with colon cancer. Patients were dichotomized according to the number of DCs in the tumor stroma and invasive margin, and clinical, histological, and survival data were compared between the two groups of patients. RESULTS The number of the mature CD83+ DCs in the tumor stroma and in the invasive margin significantly correlated with the tumor stage: the lower level of infiltration was found in patients that have advanced tumor stage. The frequency of distant metastases was higher in patients who had lower numbers of immature CD1a+ DCs in tumor stroma and of CD83+ DCs in invasive margin. Patients showing a relatively high number of S100+ DCs in the tumor stroma and HLA-DR+ DCs in the invasive margin had a longer overall survival (p < 0.05). Patients with lower CD83+ DCs infiltration in invasive margin had worse prognosis after surgical therapy compared with those with higher CD83+ DCs infiltration (p = 0.0397). CONCLUSIONS Our results demonstrate that the infiltration of colon cancer with DCs is related with tumor progression and patient prognosis, suggesting a central role for DCs in controlling local antitumor immunity.
Collapse
Affiliation(s)
- Maya V Gulubova
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, Armeiska str. 11, Stara Zagora, 6000, Bulgaria.
| | | | | | | | | | | |
Collapse
|
35
|
Bauer K, Michel S, Reuschenbach M, Nelius N, von Knebel Doeberitz M, Kloor M. Dendritic cell and macrophage infiltration in microsatellite-unstable and microsatellite-stable colorectal cancer. Fam Cancer 2012; 10:557-65. [PMID: 21598004 DOI: 10.1007/s10689-011-9449-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High level microsatellite instability (MSI-H) is a hallmark of Lynch syndrome-associated colorectal cancer (CRC). MSI-H CRC express immunogenic tumour antigens as a consequence of DNA mismatch repair deficiency-induced frameshift mutations. Consequently, frameshift antigen-specific immune responses are commonly observed in patients with Lynch syndrome-associated MSI-H CRC. Dendritic cells (DC) and macrophages play a crucial role in the induction and modulation of immune responses. We here analysed DC and macrophage infiltration in MSI-H and microsatellite-stable CRC. Sixty-nine CRC (MSI-H, n = 33; microsatellite-stable, n = 36) were examined for the density of tumour-infiltrating DC, Foxp3-positive regulatory T cells, and CD163-positive macrophages. In MSI-H lesions, S100-positive and CD163-positive cell counts were significantly higher compared to microsatellite-stable lesions (S100: epithelium P = 0.018, stroma P = 0.042; CD163: epithelium P < 0.001, stroma P = 0.046). Additionally, numbers of CD208-positive mature DC were significantly elevated in the epithelial compartment of MSI-H CRC (P = 0.027). High numbers of tumour-infiltrating Foxp3-positive T cells were detected in tumours showing a low proportion of CD208-positive, mature DC among the total number of S100-positive cells. Our study demonstrates that infiltration with DC, mature DC, and macrophages is elevated in MSI-H compared to microsatellite-stable CRC. The positive correlation of Foxp3-positive Treg cell density with a low proportion of mature DC suggests that impaired DC maturation may contribute to local immune evasion in CRC. Our results demonstrate that DC and macrophages in the tumour environment likely play an important role in the induction of antigen-specific immune responses in Lynch syndrome. Moreover, impaired DC maturation might contribute to local immune evasion in CRC.
Collapse
Affiliation(s)
- Kathrin Bauer
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 220, 69120, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Vázquez MB, Sureda M, Rebollo J. Células dendríticas I: aspectos básicos de su biología y funciones. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.inmuno.2011.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Xu Y, He H, Li C, Shi Y, Wang Q, Li W, Song W. Immunosuppressive effect of progesterone on dendritic cells in mice. J Reprod Immunol 2011; 91:17-23. [PMID: 21856019 DOI: 10.1016/j.jri.2011.06.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/06/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022]
Abstract
Progesterone has been demonstrated to be involved in maintaining pregnancy by regulating immunocytes. Dendritic cells (DCs), the most potent triggers of the adaptive immune response, express receptors for steroid hormones and are regarded as one of the primary targets of progesterone. However, the functional modification of DCs by progesterone remains poorly understood. Here, we report that progesterone does not affect the morphology or apoptosis of murine bone marrow-derived DCs. Progesterone-treated DCs were characterized by decreased expression of Ia (MHC class II), CD80 and CD86, increased production of IL-10, and decreased secretion of IL-12. Compared with mature DCs (mDCs), activated progesterone-treated DCs had a reduced capacity to stimulate CD4(+) T cell proliferation. The observation that progesterone-treated DCs could attenuate delayed-type hypersensitivity (DTH) responses in vivo suggests that progesterone mediates suppressive DC activity. However, transfer of progesterone-treated DCs into the peritoneal cavity of mice did not elevate the percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Overall, our study helps to increase understanding of the role of DCs exposed to progesterone in the maintenance of pregnancy.
Collapse
Affiliation(s)
- Yingping Xu
- Department of Immunology, Taishan Medical University, Taian 271016, Shandong Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Ghorpade DS, Kaveri SV, Bayry J, Balaji KN. Cooperative regulation of NOTCH1 protein-phosphatidylinositol 3-kinase (PI3K) signaling by NOD1, NOD2, and TLR2 receptors renders enhanced refractoriness to transforming growth factor-beta (TGF-beta)- or cytotoxic T-lymphocyte antigen 4 (CTLA-4)-mediated impairment of human dendritic cell maturation. J Biol Chem 2011; 286:31347-60. [PMID: 21768114 DOI: 10.1074/jbc.m111.232413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for "decoding" these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-β- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-β-suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKCδ-MAPK-dependent activation of NF-κB. This study provides mechanistic and functional insights into TLR2- and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Collapse
Affiliation(s)
- Devram Sampat Ghorpade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
39
|
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335:2-13. [PMID: 20398732 PMCID: PMC3047790 DOI: 10.1016/j.mce.2010.04.005] [Citation(s) in RCA: 1186] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 02/08/2023]
Abstract
Since the discovery of glucocorticoids in the 1940s and the recognition of their anti-inflammatory effects, they have been amongst the most widely used and effective treatments to control inflammatory and autoimmune diseases. However, their clinical efficacy is compromised by the metabolic effects of long-term treatment, which include osteoporosis, hypertension, dyslipidaemia and insulin resistance/type 2 diabetes mellitus. In recent years, a great deal of effort has been invested in identifying compounds that separate the beneficial anti-inflammatory effects from the adverse metabolic effects of glucocorticoids, with limited effect. It is clear that for these efforts to be effective, a greater understanding is required of the mechanisms by which glucocorticoids exert their anti-inflammatory and immunosuppressive actions. Recent research is shedding new light on some of these mechanisms and has produced some surprising new findings. Some of these recent developments are reviewed here.
Collapse
Affiliation(s)
| | - Karen E. Chapman
- Corresponding author. Tel.: +44 131 242 6736; fax: +44 131 242 6779.
| |
Collapse
|
40
|
Hermansson A, Johansson DK, Ketelhuth DFJ, Andersson J, Zhou X, Hansson GK. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 2011; 123:1083-91. [PMID: 21357823 DOI: 10.1161/circulationaha.110.973222] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease characterized by a massive intimal accumulation of low-density lipoprotein that triggers chronic vascular inflammation with an autoimmune response to low-density lipoprotein components. METHODS AND RESULTS To dampen the inflammatory component of atherosclerosis, we injected hypercholesterolemic huB100(tg) × Ldlr(-/-) mice (mice transgenic for human apolipoprotein B100 [ApoB100] and deficient for the low-density lipoprotein receptor) intravenously with dendritic cells (DCs) that had been pulsed with the low-density lipoprotein protein ApoB100 in combination with the immunosuppressive cytokine interleukin-10. DCs treated with ApoB100 and interleukin-10 reduced proliferation of effector T cells, inhibited production of interferon-γ, and increased de novo generation of regulatory T cells in vitro. Spleen cells from mice treated with DCs plus ApoB100 plus interleukin-10 showed diminished proliferative responses to ApoB100 and significantly dampened T-helper 1 and 2 immunity to ApoB100. Spleen CD4(+) T cells from these mice suppressed activation of ApoB100-reactive T cells in a manner characteristic of regulatory T cells, and mRNA analysis of lymphoid organs showed induction of transcripts characteristic of these cells. Treatment of huB100(tg) × Ldlr(-/-) mice with ApoB100-pulsed tolerogenic DCs led to a significant (70%) reduction of atherosclerotic lesions in the aorta, with decreased CD4(+) T-cell infiltration and signs of reduced systemic inflammation. CONCLUSIONS Tolerogenic DCs pulsed with ApoB100 reduced the autoimmune response against low-density lipoprotein and may represent a novel possibility for treatment or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Andreas Hermansson
- Department of Medicine at Karolinska University Hospital Solna, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
3G11 expression in CD4+ T cell-mediated autoimmunity and immune tolerance. Int Immunopharmacol 2010; 11:593-6. [PMID: 21084064 DOI: 10.1016/j.intimp.2010.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/21/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022]
Abstract
3G11 is a sialylated carbohydrate epitope of the disialoganglioside molecule expressed on mouse CD4(+) T cells. Recent research showed that 3G11 expression is related to the modulation of T cell function, i.e., 3G11(-) T cells exhibit anergic/Treg characteristics and efficiently inhibit autoimmunity in the central nervous system. The relationship between 3G11 expression and immune tolerance is summarized in this literature review.
Collapse
|
42
|
Abbi KK, Rizvi SM, Sivik J, Thyagarajan S, Loughran T, Drabick JJ. Guillain–Barré syndrome after use of alemtuzumab (Campath) in a patient with T-cell prolymphocytic leukemia: A case report and review of the literature. Leuk Res 2010; 34:e154-6. [DOI: 10.1016/j.leukres.2010.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/22/2010] [Accepted: 02/27/2010] [Indexed: 11/25/2022]
|
43
|
Zheng J, Liu Y, Lau YL, Tu W. CD40-activated B cells are more potent than immature dendritic cells to induce and expand CD4(+) regulatory T cells. Cell Mol Immunol 2010; 7:44-50. [PMID: 20081875 DOI: 10.1038/cmi.2009.103] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
CD4(+) regulatory T cells (Tregs) play an important role in maintaining immune tolerance by suppressing pathologic immune responses. The generation of large numbers of antigen-specific Tregs ex vivo is critical for the development of clinical immunotherapy based on the adoptive transfer of Tregs. Both CD40-activated B cells (CD40-B) and immature dendritic cells (imDCs) have been used as professional antigen-presenting cells (APCs) to generate antigen-specific Tregs. However, the efficiencies of CD40-B and imDCs to generate CD4(+) Tregs have not been compared directly and the mechanism driving the generation of these Tregs remains largely unknown. In this study, we found that CD40-B exhibited mature phenotypes and were more able to induce and expand CD4(high)CD25(+) Tregs than imDCs. Moreover, Tregs induced by CD40-B had greater suppressive capacity than those induced by imDCs. The generation of CD4(high)CD25(+) Tregs by CD40-B and imDCs is cell-cell contact dependent and partially relies on the expression of human leukocyte antigen (HLA)-DR and CD80/86. Differences in CD4(high)CD25(+) Treg generation efficiency were largely explained by the production of endogenous IL-2 by CD40-B. Our results suggest that CD40-B is better able to generate large numbers of antigen-specific Tregs than imDCs. Additionally, using CD40-B to generate Tregs may accelerate the clinical use of Treg-based immunotherapy in the treatment of allograft rejection, graft versus host disease (GVHD) and autoimmune diseases.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
44
|
Dobrogosz WJ, Peacock TJ, Hassan HM. Evolution of the Probiotic Concept. ADVANCES IN APPLIED MICROBIOLOGY 2010; 72:1-41. [DOI: 10.1016/s0065-2164(10)72001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Lodato F, Azzaroli F, Tamè MR, Girolamo MD, Buonfiglioli F, Mazzella N, Cecinato P, Roda E, Mazzella G. G-CSF in Peg-IFN induced neutropenia in liver transplanted patients with HCV recurrence. World J Gastroenterol 2009; 15:5449-54. [PMID: 19916175 PMCID: PMC2778101 DOI: 10.3748/wjg.15.5449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy of granulocyte colony stimulating factors (G-CSF) in liver transplanted patients with hepatitis C (HCV) recurrence and Pegylated-IFN α-2b induced neutropenia, and to evaluate the impact of G-CSF administration on virological response.
METHODS: Sixty-eight patients undergoing antiviral treatment for post-liver transplantation (OLT) HCV recurrence were enrolled. All patients developing neutropenia received G-CSF.
RESULTS: Twenty three (34%) received G-CSF. Mean neutrophil count at the onset of neutropenia was 700/mmc (range 400-750/mmc); after 1 mo of G-CSF it increased to 1210/mmc (range 300-5590/mmc) (P < 0.0001). Three patients did not respond to G-CSF. Treatment duration was similar in neutropenic and non-neutropenic patients. No differences in the rate of discontinuation, infections or virological response were observed between the two groups. G-CSF was protective for the onset of de novo autoimmune hepatitis (P < 0.003).
CONCLUSION: G-CSF administration is effective in the case of Peg-IFN induced neutropenia increasing neutrophil count, prolonging treatment and leading to sustained virological response (SVR) rates comparable to non-neutropenic patients. It prevents the occurrence of de novo autoimmune hepatitis.
Collapse
|
46
|
Pedersen CD, Fang JJ, Pedersen AE. A comparative study of transfection methods for RNA interference in bone marrow-derived murine dendritic cells. Scand J Immunol 2009; 70:447-56. [PMID: 19874549 DOI: 10.1111/j.1365-3083.2009.02320.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective gene silencing using RNA interference (RNAi) has been shown to be an efficient method for manipulation of cellular functions. In this study, we compare three previously established methods for transfection of murine bone marrow-derived DC (BM-DC). We tested the efficacy of electroporation with the Mouse Nucleofector kit((R)) from Amaxa Biosystems and lipid-based transfection methods using transfection reagents from Santa Cruz Biotechnology or Genlantis. To analyse the transfection efficacy we used FITC-conjugated siRNA as a positive control together with CD80 and CD86 specific siRNA. We show that electroporation using the Mouse Nucleofector kit((R)) from Amaxa Biosystems was not an efficient method to transfect BM-DC with siRNA in our hands. Transfection with Santa Cruz Biotechnology reagents resulted in up to 59% FITC-siRNA positive cells, but did not result in effective silencing of CD80 surface expression. In contrast, the most effective method was the lipid-based method using the siRNA transfection reagent GeneSilencer((R)) from Genlantis. This protocol resulted in up to 92% FITC-siRNA positive cells after 4 h which declined to 62% and 59% 24 and 48 h post-transfection, respectively. The transfected BM-DC remained CD11c positive, expressed high MHC class II and intermediate CD40 and were functional as APC. In conclusion, this protocol was effective for manipulation of murine BM-DC function through the use of specific siRNA and such methods can be important for the future study of DC-T cell interactions.
Collapse
Affiliation(s)
- C D Pedersen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
47
|
Pozo D, Anderson P, Gonzalez-Rey E. Induction of Alloantigen-Specific Human T Regulatory Cells by Vasoactive Intestinal Peptide. THE JOURNAL OF IMMUNOLOGY 2009; 183:4346-59. [DOI: 10.4049/jimmunol.0900400] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Chamorro S, García-Vallejo JJ, Unger WWJ, Fernandes RJ, Bruijns SCM, Laban S, Roep BO, 't Hart BA, van Kooyk Y. TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. THE JOURNAL OF IMMUNOLOGY 2009; 183:2984-94. [PMID: 19648269 DOI: 10.4049/jimmunol.0801155] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tolerogenic dendritic cells (TDC) offer a promising therapeutic potential to ameliorate autoimmune diseases. Reported to inhibit adaptive immune responses, little is known about their innate immunity receptor repertoire. In this study, we compared three types of human TDC (IL-10-DC, dexamethasone (DX)-DC, and 1,25(OH)(2)D(3)-DC) by their TLR expression and response to a set of TLR ligands. TDC are endowed with the same TLR set as standard monocyte-derived dendritic cells but respond differentially to the TLR stimuli Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and flagellin. TDC expressed low or no IL-12-related cytokines and remarkably elevated IL-10 levels. Interestingly, only TDC up-regulated the expression of TLR2 upon stimulation. This boosted the tolerogenic potential of these cells, because IL-10 production was up-regulated in TLR2-stimulated, LPS-primed DX-DC, whereas IL-12 and TNF-alpha secretion remained low. When comparing the TDC subsets, DX-DC and 1,25(OH)(2)D(3)-DC up-regulated TLR2 irrespective of the TLR triggered, whereas in IL-10-DC this effect was only mediated by LPS. Likewise, DX-DC and 1,25(OH)(2)D(3)-DC exhibited impaired ability to mature, reduced allostimulatory properties, and hampered capacity to induce Th1 differentiation. Therefore, both DX-DC and 1,25(OH)(2)D(3)-DC display the strongest tolerogenic and anti-inflammatory features and might be most suitable tools for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sonia Chamorro
- Department of Molecular Cell Biology and Immunology, Vrije University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wei L, Wei-Min L, Cheng G, Bao-Guo Z. Upregulation of CD4+CD25+T lymphocyte by adenovirus-mediated gene transfer of CTLA4Ig fusion protein in experimental autoimmune myocarditis. Autoimmunity 2009; 39:289-98. [PMID: 16891217 DOI: 10.1080/08916930600758035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the effects of adenovirus vector-mediated gene transfer of CTLA4Ig fusion protein on CD4+CD25+ T cells in experimental autoimmune myocarditis (EAM). METHODS EAM was induced by porcine cardiac myosin as previously described. Adenovirus vector-mediated CTLA4Ig gene was administrated intravenously in EAM rats on days 1, 4 and 7, with EGFP as control. On day 21, myocardium histopathology was examined and CD4+CD25+ T cells were isolated. Proliferation and suppression assays were used to evaluate the suppressive capacity of CD4+CD25+ T cells in vitro. Relative mRNA level of Foxp3 and TGF-beta was determined by quantitative real-time RT-PCR; expression of CTLA-4, B7-1 and B7-2 protein was compared with Western blot in CD4+CD25+ Tregs. RESULTS Severe inflammatory lesions were observed in the hearts of EGFP-treated EAM rats and the untreated ones, while Ad-CMV-CTLA4Ig alleviated the myocarditis histologically. Adenovirus vector-mediated CTLA4Ig gene transfer up-regulated the proportion of CD4+CD25+ Tregs significantly. T cell proliferation was greatly inhibited in the CTLA4Ig group compared with the untreated and EGFP-treated groups in vitro. CTLA-4 and B7-2 proteins were down-regulated in the CTLA4Ig group, Foxp3 and TGF-beta mRNA was up-regulated significantly by CTLA4Ig treatment. CONCLUSIONS Adenovirus vector-mediated CTLA4Ig gene transfer alleviated inflammation in EAM, one of the potential mechanisms is up-regulation of CD4+CD25+ Tregs.
Collapse
Affiliation(s)
- Liu Wei
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Heilongjiang 150001, People's Republic of China.
| | | | | | | |
Collapse
|
50
|
Abstract
Dendritic cells (DC) have been implicated both in initiation of immunity and in immune tolerance. The mechanisms whereby tolerogenic DC may induce and maintain peripheral tolerance include the generation or expansion of regulatory T cells (Treg) and the promotion of T-cell anergy or deletion. A wide spectrum of hematopoietic growth factors and cytokines are endowed with the ability to differentiate tolerogenic DC both in vitro and in vivo. Based on this knowledge, therapeutic vaccination with cytokine-modulated tolerogenic DC has been applied to animal models of autoimmune disorders. This article will review the current experimental evidence underpinning DC dysfunction in rheumatic autoimmune diseases and will discuss how the manipulation of DC and Treg number and function may control undesired T-cell responses.
Collapse
|