1
|
Chen JY, Meng QY, Qian W, Qu YF. Effects of Bacterial Infections under Heatwaves on Chinese Soft-Shelled Turtles and Their Single-Cell Transcriptomic Landscapes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8357-8367. [PMID: 40274607 DOI: 10.1021/acs.est.4c09111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The intensification of global warming could precipitate the widespread dissemination of opportunistic pathogens, exerting a bidirectional strain on wildlife populations and potentially hastening the process of species extinction. In this study, we integrated indicators from peripheral blood single-cell transcriptome, behavior, and physiological indices in Chinese soft-shelled turtles (Pelodiscus sinensis) to explore the impact of dual stress caused by bacterial infections and/or heatwaves on the turtles. Turtles were randomly divided into four groups based on constant temperature at 28 °C and heatwave exposure, as well as whether they were infected with bacteria (Bacillus cereus). Principal component analysis-based cell clustering revealed that the 14 cell clusters were classified into seven distinct cell types: erythrocytes, monocytes, thrombocytes, T cells, B cells, basophils, and heterophils. All cell types participated in the host immune response to heatwaves and bacterial infection, but these cells exhibited significant group-specific differences in their gene expression patterns. Bacterial infections and heatwaves altered turtle behavior and physiology indexes. The dual stresses inhibited the expression of antioxidant enzymes and immune genes, potentially jeopardizing turtle survival. Overall, this study provides valuable insights into peripheral blood cell profiles of Chinese soft-shelled turtles under different environmental conditions, enhancing the understanding of their immune responses and potential stressors.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Qing-Yan Meng
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Wei Qian
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yan-Fu Qu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
2
|
Zhang J, Yu S, Hu W, Wang M, Abudoureyimu D, Luo D, Li T, Long L, Zeng H, Cheng C, Lei Z, Teng J, Kang X. Comprehensive Analysis of Cell Population Dynamics and Related Core Genes During Vitiligo Development. Front Genet 2021; 12:627092. [PMID: 33679890 PMCID: PMC7933673 DOI: 10.3389/fgene.2021.627092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Vitiligo is a common immune-related depigmentation condition, and its pathogenesis remains unclear. This study used a combination of bioinformatics methods and expression analysis techniques to explore the relationship between immune cell infiltration and gene expression in vitiligo. Previously reported gene expression microarray data from the skin (GSE53146 and GSE75819) and peripheral blood (GSE80009 and GSE90880) of vitiligo patients and healthy controls was used in the analysis. R software was used to filter the differentially expressed genes (DEGs) in each dataset, and the KOBAS 2.0 server was used to perform functional enrichment analysis. Compared with healthy controls, the upregulated genes in skin lesions and peripheral blood leukocytes of vitiligo patents were highly enriched in immune response pathways and inflammatory response signaling pathways. Immunedeconv software and the EPIC method were used to analyze the expression levels of marker genes to obtain the immune cell population in the samples. In the lesional skin of vitiligo patients, the proportions of macrophages, B cells and NK cells were increased compared with healthy controls. In the peripheral blood of vitiligo patients, CD8+ T cells and macrophages were significantly increased. A coexpression analysis of the cell populations and DEGs showed that differentially expressed immune and inflammation response genes had a strong positive correlation with macrophages. The TLR4 receptor pathway, interferon gamma-mediated signaling pathway and lipopolysaccharide-related pathway were positively correlated with CD4+ T cells. Regarding immune response-related genes, the overexpression of IFITM2, TNFSF10, GZMA, ADAMDEC1, NCF2, ADAR, SIGLEC16, and WIPF2 were related to macrophage abundance, while the overexpression of ICOS, GPR183, RGS1, ILF2 and CD28 were related to CD4+ T cell abundance. GZMA and CXCL10 expression were associated with CD8+ T cell abundance. Regarding inflammatory response-related genes, the overexpression of CEBPB, ADAM8, CXCR3, and TNIP3 promoted macrophage infiltration. Only ADORA1 expression was associated with CD4+ T cell infiltration. ADAM8 and CXCL10 expression were associated with CD8+ T cell abundance. The overexpression of CCL18, CXCL10, FOS, NLRC4, LY96, HCK, MYD88, and KLRG1, which are related to inflammation and immune responses, were associated with macrophage abundance. We also found that immune cells infiltration in vitiligo was associated with antigen presentation-related genes expression. The genes and pathways identified in this study may point to new directions for vitiligo treatment.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Shirong Yu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Wen Hu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Man Wang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dilinuer Abudoureyimu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Dong Luo
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Tingting Li
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Linglong Long
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Hui Zeng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Zixian Lei
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Jianan Teng
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Medical School, Shihezi University, Shihezi, China
| | - Xiaojing Kang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| |
Collapse
|