1
|
Tortola L, Piattini F, Hausmann A, Ampenberger F, Rosenwald E, Heer S, Hardt WD, Rülicke T, Kisielow J, Kopf M. KappaBle fluorescent reporter mice enable low-background single-cell detection of NF-κB transcriptional activity in vivo. Mucosal Immunol 2022; 15:656-667. [PMID: 35589985 PMCID: PMC9259492 DOI: 10.1038/s41385-022-00525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor with a key role in a great variety of cellular processes from embryonic development to immunity, the outcome of which depends on the fine-tuning of NF-κB activity. The development of sensitive and faithful reporter systems to accurately monitor the activation status of this transcription factor is therefore desirable. To address this need, over the years a number of different approaches have been used to generate NF-κB reporter mice, which can be broadly subdivided into bioluminescence- and fluorescence-based systems. While the former enables whole-body visualization of the activation status of NF-κB, the latter have the potential to allow the analysis of NF-κB activity at single-cell level. However, fluorescence-based reporters frequently show poor sensitivity and excessive background or are incompatible with high-throughput flow cytometric analysis. In this work we describe the generation and analysis of ROSA26 knock-in NF-κB reporter (KappaBle) mice containing a destabilized EGFP, which showed sensitive, dynamic, and faithful monitoring of NF-κB transcriptional activity at the single-cell level of various cell types during inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Luigi Tortola
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.
| | - Federica Piattini
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Annika Hausmann
- Department of Biology, Institute of Microbiology, ETH, Zurich, Switzerland
| | - Franziska Ampenberger
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Esther Rosenwald
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Sebastian Heer
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | | | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.
| |
Collapse
|
2
|
Hunter TTJ, Fear D, Lavender P, Spencer J, Peakman M, Ibrahim MAA. Quantitative assessment of NFκB transcription factor activity. J Immunol Methods 2021; 492:112954. [PMID: 33388338 DOI: 10.1016/j.jim.2020.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
The Nuclear Factor Kappa B (NFκB) pathway is an important signalling pathway in the immune system. Single gene defects in the NFκB pathway are described in a number of immunodeficiency diseases. These conditions provide a unique opportunity to investigate the mechanisms of NFκB function and how genetic mutations that disrupt this function lead to human disease. Here we describe a robust method for quantifying small differences in the functional activity of the NFκB pathway. Peripheral blood mononuclear cells from healthy donors were stimulated over several days, with a combination of anti-IgM antibody and multimeric CD40 ligand. Nuclear proteins were thereafter extracted and tested for the ability of activated transcription factors, to bind known NFκB DNA binding motifs. Repeatability experiments showed that the DNA binding Activity can be quantified with an average inter and intra assay coefficient of variation of less than 10% (RelB and p52) and less than 15% (p50 and RelA). In healthy individuals there is a significant increase in the DNA binding activity of NFκB transcription factors in response to stimulation, although the magnitude of this response varies across individuals. The kinetics of the DNA binding activity also differs between the canonical and non-canonical transcription factors. P50 and RelA DNA binding activity responds within hours of stimulation, whilst RelB and p52 response was delayed to more than a day after stimulation. Activation of NFκB signalling in response to B cell specific stimulation, can be precisely measured to distinguish individuals with differences in the functional activity of this pathway. This test may prove to be an important biomarker for investigating the functional impact of genetic variants on NFκB signalling.
Collapse
Affiliation(s)
- Terrence T J Hunter
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Immunology & Microbial Sciences, Denmark Hill, London, UK; Viapath LLP, King's College Hospital, Denmark Hill, London, UK
| | - David Fear
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Paul Lavender
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Jo Spencer
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Mark Peakman
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Mohammad A A Ibrahim
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Immunology & Microbial Sciences, Denmark Hill, London, UK.
| |
Collapse
|
3
|
Kuri P, Ellwanger K, Kufer TA, Leptin M, Bajoghli B. A high-sensitivity bi-directional reporter to monitor NF-κB activity in cell culture and zebrafish in real time. J Cell Sci 2016; 130:648-657. [PMID: 27980067 DOI: 10.1242/jcs.196485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (NF)-κB transcription factors play major roles in numerous biological processes including development and immunity. Here, we engineered a novel bi-directional NF-κB-responsive reporter, pSGNluc, in which a high-affinity NF-κB promoter fragment simultaneously drives expression of luciferase and GFP. Treatment with TNFα (also known as TNF) induced a strong, dose-dependent luciferase signal in cell culture. The degree of induction over background was comparable to that of other NF-κB-driven luciferase reporters, but the absolute level of expression was at least 20-fold higher. This extends the sensitivity range of otherwise difficult assays mediated exclusively by endogenously expressed receptors, as we show for Nod1 signaling in HEK293 cells. To measure NF-κB activity in the living organism, we established a transgenic zebrafish line carrying the pSGNluc construct. Live in toto imaging of transgenic embryos revealed the activation patterns of NF-κB signaling during embryonic development and as responses to inflammatory stimuli. Taken together, by integrating qualitative and quantitative NF-κB reporter activity, pSGNluc is a valuable tool for studying NF-κB signaling at high spatiotemporal resolution in cultured cells and living animals that goes beyond the possibilities provided by currently available reporters.
Collapse
Affiliation(s)
- Paola Kuri
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany .,Institute of Genetics, University of Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany.,EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Baubak Bajoghli
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
4
|
Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, Hatakeyama S. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci 2016; 73:1085-101. [PMID: 26363554 PMCID: PMC11108475 DOI: 10.1007/s00018-015-2040-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
NFκB is one of the central regulators of cell survival, immunity, inflammation, carcinogenesis and organogenesis. The activation of NFκB is strictly regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. Several types of ubiquitination play important roles in multi-step regulations of the NFκB pathway. Some of the tripartite motif-containing (TRIM) proteins functioning as E3 ubiquitin ligases are known to regulate various biological processes such as inflammatory signaling pathways. One of the TRIM family proteins, TRIM39, for which the gene has single nucleotide polymorphisms, has been identified as one of the genetic factors in Behcet's disease. However, the role of TRIM39 in inflammatory signaling had not been fully elucidated. In this study, to elucidate the function of TRIM39 in inflammatory signaling, we performed yeast two-hybrid screening using TRIM39 as a bait and identified Cactin, which has been reported to inhibit NFκB- and TLR-mediated transcriptions. We show that TRIM39 stabilizes Cactin protein and that Cactin is upregulated after TNFα stimulation. TRIM39 knockdown also causes activation of the NFκB signal. These findings suggest that TRIM39 negatively regulates the NFκB signal in collaboration with Cactin induced by inflammatory stimulants such as TNFα.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Dai Takagi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Fukuda
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
5
|
Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling. Mol Cell Biol 2015; 35:2007-23. [PMID: 25825523 DOI: 10.1128/mcb.00159-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/22/2015] [Indexed: 01/03/2023] Open
Abstract
Wnt signaling pathways are tightly regulated by ubiquitination, and dysregulation of these pathways promotes tumorigenesis. It has been reported that the ubiquitin ligase RNF43 plays an important role in frizzled-dependent regulation of the Wnt/β-catenin pathway. Here, we show that RNF43 suppresses both Wnt/β-catenin signaling and noncanonical Wnt signaling by distinct mechanisms. The suppression of Wnt/β-catenin signaling requires interaction between the extracellular protease-associated (PA) domain and the cysteine-rich domain (CRD) of frizzled and the intracellular RING finger domain of RNF43. In contrast, these N-terminal domains of RNF43 are not required for inhibition of noncanonical Wnt signaling, but interaction between the C-terminal cytoplasmic region of RNF43 and the PDZ domain of dishevelled is essential for this suppression. We further show the mechanism by which missense mutations in the extracellular portion of RNF43 identified in patients with tumors activate Wnt/β-catenin signaling. Missense mutations of RNF43 change their localization from the endosome to the endoplasmic reticulum (ER), resulting in the failure of frizzled-dependent suppression of Wnt/β-catenin signaling. However, these mutants retain the ability to suppress noncanonical Wnt signaling, probably due to interaction with dishevelled. RNF43 is also one of the potential target genes of Wnt/β-catenin signaling. Our results reveal the molecular role of RNF43 and provide an insight into tumorigenesis.
Collapse
|
6
|
Chishti AA, Baumstark-Khan C, Hellweg CE, Reitz G. Imaging of nuclear factor κB activation induced by ionizing radiation in human embryonic kidney (HEK) cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:599-610. [PMID: 24880906 DOI: 10.1007/s00411-014-0541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Ionizing radiation modulates several signaling pathways resulting in transcription factor activation. Nuclear factor kappa B (NF-κB) is one of the most important transcription factors that respond to changes in the environment of a mammalian cell. NF-κB plays a key role not only in inflammation and immune regulation but also in cellular radiation response. In response to DNA damage, NF-κB might inhibit apoptosis and promote carcinogenesis. Our previous studies showed that ionizing radiation is very effective in inducing biological damages. Therefore, it is important to understand the radiation-induced NF-κB signaling cascade. The current study aims to improve existing mammalian cell-based reporter assays for NF-κB activation by the use of DD-tdTomato which is a destabilized variant of red fluorescent protein tdTomato. It is demonstrated that exposure of recombinant human embryonic kidney cells (HEK/293 transfected with a reporter constructs containing NF-κB binding sites in its promoter) to ionizing radiation induces NF-κB-dependent DD-tdTomato expression. Using this reporter assays, NF-κB signaling in mammalian cells was monitored by flow cytometry and fluorescence microscopy. Activation of NF-κB by the canonical pathway was found to be quicker than by the genotoxin- and stress-induced pathway. X-rays activate NF-κB in HEK cells in a dose-dependent manner, and the extent of NF-κB activation is higher as compared to camptothecin.
Collapse
Affiliation(s)
- Arif Ali Chishti
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Linder Höhe, 51147, Köln, Germany,
| | | | | | | |
Collapse
|
7
|
Kondo T, Watanabe M, Hatakeyama S. TRIM59 interacts with ECSIT and negatively regulates NF-κB and IRF-3/7-mediated signal pathways. Biochem Biophys Res Commun 2012; 422:501-7. [DOI: 10.1016/j.bbrc.2012.05.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 01/08/2023]
|
8
|
Shibata M, Sato T, Nukiwa R, Ariga T, Hatakeyama S. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation. Biochem Biophys Res Commun 2012; 423:104-9. [PMID: 22634006 DOI: 10.1016/j.bbrc.2012.05.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 02/06/2023]
Abstract
The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin-proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.
Collapse
Affiliation(s)
- Mio Shibata
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | |
Collapse
|
9
|
Tsukiyama T, Matsuda-Tsukiyama M, Bohgaki M, Terai S, Tanaka S, Hatakeyama S. Ymer acts as a multifunctional regulator in nuclear factor-κB and Fas signaling pathways. Mol Med 2012; 18:587-97. [PMID: 22331027 DOI: 10.2119/molmed.2011.00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 01/08/2023] Open
Abstract
The nuclear factor (NF)-κB family of transcription factors regulates diverse cellular functions, including inflammation, oncogenesis and apoptosis. It was reported that A20 plays a critical role in the termination of NF-κB signaling after activation. Previously, we showed that Ymer interacts and collaborates with A20, followed by degradation of receptor-interacting protein (RIP) and attenuation of NF-κB signaling. Here we show the function of Ymer in regulation of several signaling pathways including NF-κB on the basis of results obtained by using Ymer transgenic (Ymer Tg) mice. Ymer Tg mice exhibited impaired immune responses, including NF-κB and mitogen-activated protein kinase (MAPK) activation, cell proliferation and cytokine production, to tumor necrosis factor (TNF)-α, polyI:C or lipopolysaccharide (LPS) stimulation. Ymer Tg mice were more resistant to LPS-induced septic shock than wild-type mice. Transgene of Ymer inhibited the onset of glomerulonephritis in lpr/lpr mice as an autoimmune disease model. In contrast to the inflammatory immune response to LPS, Fas-mediated cell death was strongly induced in liver cells of Ymer Tg mice in which Ymer is abundantly expressed. These findings suggest that Ymer acts as a regulator downstream of several receptors and that Ymer functions as a positive or negative regulator in a signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Bohgaki M, Matsumoto M, Atsumi T, Kondo T, Yasuda S, Horita T, Nakayama KI, Okumura F, Hatakeyama S, Koike T. Plasma gelsolin facilitates interaction between β2 glycoprotein I and α5β1 integrin. J Cell Mol Med 2011; 15:141-51. [PMID: 19840195 PMCID: PMC3822501 DOI: 10.1111/j.1582-4934.2009.00940.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antiphospholipid syndrome (APS) is characterized by thrombosis and the presence of antiphospholipid antibodies (aPL) that directly recognizes plasma β2-glycoprotein I (β2GPI). Tissue factor (TF), the major initiator of the extrinsic coagulation system, is induced on monocytes by aPL in vitro, explaining in part the pathophysiology in APS. We previously reported that the mitogen-activated protein kinase (MAPK) pathway plays an important role in aPL-induced TF expression on monocytes. In this study, we identified plasma gelsolin as a protein associated with β2GPI by using immunoaffinity chromatography and mass spectrometric analysis. An in vivo binding assay showed that endogenous β2GPI interacts with plasma gelsolin, which binds to integrin a5β1 through fibronectin. The tethering of β2GPI to monoclonal anti-β2GPI autoantibody on the cell surface was enhanced in the presence of plasma gelsolin. Immunoblot analysis demonstrated that p38 MAPK protein was phosphorylated by monoclonal anti-β2GPI antibody treatment, and its phosphorylation was attenuated in the presence of anti-integrin a5β1 antibody. Furthermore, focal adhesion kinase, a downstream molecule of the fibronectin-integrin signalling pathway, was phosphorylated by anti-β2GPI antibody treatment. These results indicate that molecules including gelsolin and integrin are involved in the anti-β2GPI antibody-induced MAPK pathway on monocytes and that integrin is a possible therapeutic target to modify a prothrombotic state in patients with APS.
Collapse
Affiliation(s)
- Miyuki Bohgaki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|