1
|
Huang Y, Huang Y, Xiao J, Ma Y, Liu Y, Sun H, Dai Y, Ren Q, Wang S. Mechanisms of Nrf2 suppression and Camkk1 upregulation in Echinococcus granulosus-induced bone loss. Int J Biol Macromol 2025; 288:138521. [PMID: 39674449 DOI: 10.1016/j.ijbiomac.2024.138521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Osteoclast differentiation is essential for maintaining bone metabolism, and its dysregulation, particularly in the context of Echinococcus granulosus (CE) infection, can lead to severe bone loss. This study explores a novel mechanism by which CE protoscolices (PSC) drive osteoclast differentiation through the inhibition of Nrf2, followed by the upregulation of Camkk1. Transcriptome sequencing revealed a significant down-regulation of Nrf2 in cells treated with PSC. This was confirmed by Western blot and Q-PCR assays showing reduced Nrf2 protein and gene levels. In vivo studies with Nrf2 knockout mice demonstrated that the absence of Nrf2 exacerbates bone loss induced by PSC in both the spine and lower limbs, as observed through Micro-CT imaging and TRAP staining.Further investigations identified Camkk1 as a key downstream target of Nrf2. Using high-throughput sequencing and CO-IP experiments, we established that Nrf2 directly interacts with and regulates Camkk1. Functional assays indicated that PSC-induced upregulation of Camkk1 is significantly enhanced by Nrf2 knockdown, while silencing Camkk1 alone inhibits osteoclast differentiation.The therapeutic potential of this pathway was evaluated by screening small molecule inhibitors of Camkk1, with Crenolani emerging as a potent compound. In vivo administration of Crenolani in PSC-treated mice significantly alleviated bone loss in a dose-dependent manner.These findings elucidate a crucial molecular mechanism in osteoclast differentiation driven by CE infection and propose a promising therapeutic strategy for combating CE-induced bone destruction. This study advances our understanding of bone.
Collapse
Affiliation(s)
- Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shanxi Province 710000, China
| | - Yiping Huang
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Jun Xiao
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Yibo Ma
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Yaqing Liu
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Haohao Sun
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Yi Dai
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Qian Ren
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shanxi Province 710000, China.
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shanxi Province 710000, China.
| |
Collapse
|
2
|
Mendjargal A, Narmandakh S, Zinamyadar M, Amartuvshin E, Bold J, Garmaa N, Sundui E, Dorjkhuu A, Amgalanbaatar A, Odkhuu E. The inhibitory effect of salidroside on RANKL-induced osteoclast formation via NFκB suppression. In Vitro Cell Dev Biol Anim 2025; 61:59-66. [PMID: 39476282 DOI: 10.1007/s11626-024-00981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 02/06/2025]
Abstract
Bone fractures are a prevalent clinical issue, and recent studies highlighted the promising potential of natural bone healing agents in enhancing fracture repair and regeneration. The regulatory interaction mechanism between osteoblasts and osteoclasts is crucial for bone cell biology and bone disease. In Mongolian medicine, people have used the Rhodiola rosea (R. rosea) extract to accelerate bone healing in bone fractures. Salidroside is a bioactive compound of R. rosea. Salidroside is known to regulate bone metabolism and inhibit the activation of osteoclast cells, but how it affects the differentiation of osteoclasts is unknown. We examined the effect of R. rosea extract and its bioactive compound salidroside on the RANKL-induced osteoclast formation in RAW 264.7 cells. The present study observed that salidroside directly inhibits RANKL-induced TRAP-positive osteoclast formation. Immunoblotting analysis revealed that salidroside inhibited the expression of c-Fos and NFATc1, osteoclastogenic key transcription factors, by suppressing late activation of p65 NFκB. Further, the ethanol extracts of R. rosea significantly reduced the RANKL-induced osteoclasts in a dose-dependent manner. In conclusion, salidroside inhibits RANKL-induced osteoclast formation via suppressing the NFκB/c-Fos/NFATc1 signalling pathway. R. rosea, a primary source of salidroside, is helpful for bone healing via its inhibitory effect on osteoclast formation.
Collapse
Affiliation(s)
- Adilsaikhan Mendjargal
- Mongolia Japan Hospital, Mongolian National University of Medical Sciences, Botanic garden, Ulaanbaatar, 13270, Mongolia
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
| | - Shijir Narmandakh
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- Department of Anatomy, School of Biomedicine, Mongolian National University of Medical Sciences, Post-48/111, S.Zorig Street, Ulaanbaatar, 14210, Mongolia
- Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Munkhjargal Zinamyadar
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- Department of Morphology, Ach International Hospital, Ach Medical University, Ulaanbaatar, Mongolia
| | - Egshiglen Amartuvshin
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Juramt Bold
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- Department of Anatomy, School of Biomedicine, Mongolian National University of Medical Sciences, Post-48/111, S.Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Nandin Garmaa
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- Department of Anatomy, School of Biomedicine, Mongolian National University of Medical Sciences, Post-48/111, S.Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Enebish Sundui
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- Department of Morphology, Ach International Hospital, Ach Medical University, Ulaanbaatar, Mongolia
| | - Amgalanbaatar Dorjkhuu
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- Department of Anatomy, School of Biomedicine, Mongolian National University of Medical Sciences, Post-48/111, S.Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Avirmed Amgalanbaatar
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia
- Department of Anatomy, School of Biomedicine, Mongolian National University of Medical Sciences, Post-48/111, S.Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Erdenezaya Odkhuu
- Mongolian Society for Human Anatomy, Ulaanbaatar, Mongolia.
- Department of Anatomy, School of Biomedicine, Mongolian National University of Medical Sciences, Post-48/111, S.Zorig Street, Ulaanbaatar, 14210, Mongolia.
- Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, S.Zorig Street, Post-48/111, Ulaanbaatar, 14210, Mongolia.
| |
Collapse
|
3
|
Lu DZ, Dong W, Feng XJ, Chen H, Liu JJ, Wang H, Zang LY, Qi MC. CaMKII(δ) regulates osteoclastogenesis through ERK, JNK, and p38 MAPKs and CREB signalling pathway. Mol Cell Endocrinol 2020; 508:110791. [PMID: 32173349 DOI: 10.1016/j.mce.2020.110791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are a group of important molecules mediating calcium signal transmission and have been proved to participate in osteoclastogenesis regulation. CaMKII, a subtype of CaMKs is expressed during osteoclast differentiation, but its role in osteoclastogenesis regulation remains controversial. In the present study, we identified that both mRNA and protein levels of CaMKII (δ) were upregulated in a time-dependent manner during osteoclast differentiation. CaMKII (δ) gene silencing significantly inhibited osteoclast formation, bone resorption, and expression of osteoclast-related genes, including nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and c-Src. Furthermore, CaMKII (δ) gene silencing downregulated phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK, and p38, which were transiently activated by RANKL. Specific inhibitors of ERK, JNK, and p38 also markedly inhibited expression of osteoclast-related genes, osteoclast formation, and bone resorption like CaMKII (δ) gene silencing. Additionally, CaMKII (δ) gene silencing also suppressed RANKL-triggered CREB phosphorylation. Collectively, these data demonstrate the important role of CaMKII (δ) in osteoclastogenesis regulation through JNK, ERK, and p38 MAPKs and CREB pathway.
Collapse
Affiliation(s)
- Da-Zhuang Lu
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China
| | - Wei Dong
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China
| | - Xiao-Jie Feng
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China
| | - Hui Chen
- Department of Oral & Maxillofacial Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan City, 063000, Hebei Province, PR China
| | - Juan-Juan Liu
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China
| | - Hui Wang
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China
| | - Lu-Yang Zang
- Department of Endocrinology (Section 1), Tangshan Gongren Hospital, Tangshan City, 063000, Hebei Province, PR China
| | - Meng-Chun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China.
| |
Collapse
|
4
|
Ishii N, Araki K, Yokobori T, Hagiwara K, Gantumur D, Yamanaka T, Handa T, Tsukagoshi M, Igarashi T, Watanabe A, Kubo N, Harimoto N, Masamune A, Umezawa K, Kuwano H, Shirabe K. Conophylline suppresses pancreatic cancer desmoplasia and cancer-promoting cytokines produced by cancer-associated fibroblasts. Cancer Sci 2019; 110:334-344. [PMID: 30353606 PMCID: PMC6317962 DOI: 10.1111/cas.13847] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in cancer treatment, pancreatic cancer is a highly malignant tumor type with a dismal prognosis and it is characterized by dense desmoplasia in the cancer tissue. Cancer-associated fibroblasts (CAF) are responsible for this fibrotic stroma and promote cancer progression. We previously reported that a novel natural compound conophylline (CnP) extracted from the leaves of a tropical plant reduced liver and pancreatic fibrosis by suppression of stellate cells. However, there have been no studies to investigate the effects of CnP on CAF, which is the aim of this work. Here, we showed that CAF stimulated indicators of pancreatic cancer malignancy, such as proliferation, invasiveness, and chemoresistance. We also showed that CnP suppressed CAF activity and proliferation, and inhibited the stimulating effects of CAF on pancreatic cancer cells. Moreover, CnP strongly decreased the various cytokines involved in cancer progression, such as interleukin (IL)-6, IL-8, C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand 12 (CXCL12), secreted by CAF. In vivo, CAF promoted tumor proliferation and desmoplastic formation in a mouse xenograft model, CnP reduced desmoplasia of tumors composed of pancreatic cancer cells + CAF, and combination therapy of CnP with gemcitabine remarkably inhibited tumor proliferation. Our findings suggest that CnP is a promising therapeutic strategy of combination therapy with anticancer drugs to overcome refractory pancreatic cancers.
Collapse
Affiliation(s)
- Norihiro Ishii
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Kenichiro Araki
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Takehiko Yokobori
- Research Program for Omics‐based Medical ScienceDivision of Integrated Oncology ResearchGunma University Initiative for Advanced Research (GIAR)MaebashiJapan
| | - Kei Hagiwara
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Dorgormaa Gantumur
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Takahiro Yamanaka
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Tadashi Handa
- Department of Diagnostic PathologyGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Mariko Tsukagoshi
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Takamichi Igarashi
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Akira Watanabe
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Norio Kubo
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Norifumi Harimoto
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Atsushi Masamune
- Division of GastroenterologyGraduate School of MedicineTohoku UniversitySendaiJapan
| | - Kazuo Umezawa
- Department of Molecular Target MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Hiroyuki Kuwano
- Division of Gastroenterological SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Ken Shirabe
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of General Surgical ScienceGraduate School of MedicineGunma UniversityMaebashiJapan
| |
Collapse
|
5
|
Wang L, Jia H, Tower RJ, Levine MA, Qin L. Analysis of short-term treatment with the phosphodiesterase type 5 inhibitor tadalafil on long bone development in young rats. Am J Physiol Endocrinol Metab 2018; 315:E446-E453. [PMID: 29920215 PMCID: PMC6230700 DOI: 10.1152/ajpendo.00130.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic GMP (cGMP) is an important intracellular regulator of endochondral bone growth and skeletal remodeling. Tadalafil, an inhibitor of the phosphodiesterase (PDE) type 5 (PDE5) that specifically hydrolyzes cGMP, is increasingly used to treat children with pulmonary arterial hypertension (PAH), but the effect of tadalafil on bone growth and strength has not been previously investigated. In this study, we first analyzed the expression of transcripts encoding PDEs in primary cultures of chondrocytes from newborn rat epiphyses. We detected robust expression of PDE5 as the major phosphodiesterase hydrolyzing cGMP. Time-course experiments showed that C-type natriuretic peptide increased intracellular levels of cGMP in primary chondrocytes with a peak at 2 min, and in the presence of tadalafil the peak level of intracellular cGMP was 37% greater ( P < 0.01) and the decline was significantly attenuated. Next, we treated 1-mo-old Sprague Dawley rats with vehicle or tadalafil for 3 wk. Although 10 mg·kg-1·day-1 tadalafil led to a significant 52% ( P < 0.01) increase in tissue levels of cGMP and a 9% reduction ( P < 0.01) in bodyweight gain, it did not alter long bone length, cortical or trabecular bone properties, and histological features. In conclusion, our results indicate that PDE5 is highly expressed in growth plate chondrocytes, and short-term tadalafil treatment of growing rats at doses comparable to those used in children with PAH has neither obvious beneficial effect on long bone growth nor any observable adverse effect on growth plate structure and trabecular and cortical bone structure.
Collapse
Affiliation(s)
- Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Department of Orthopaedics, Shandong University Qilu Hospital, Shandong University , Jinan , China
| | - Haoruo Jia
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Department of Orthopaedics, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China
| | - Robert J Tower
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Michael A Levine
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Therapeutic activity of plant-derived alkaloid conophylline on metabolic syndrome and neurodegenerative disease models. Hum Cell 2017; 31:95-101. [PMID: 29249016 DOI: 10.1007/s13577-017-0196-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
Increasing metabolic syndromes including type-2 diabetes mellitus, obesity, and steatohepatitis are serious problems in most countries in the world. Neurodegenerative diseases such as Alzheimer, Parkinson's, and Huntington's diseases are increasing in many countries. However, therapy for these diseases is not sufficient yet. Thus, effective chemotherapy for these diseases is being expected. Conophylline is an alkaloid isolated from the leaves of Ervatamia microphylla and related plants. It was found to induce beta-cell differentiation in the precursor pancreatic cells. Oral administration of this compound ameliorated type-2 diabetes mellitus model in mice and rats. Later, fibrosis of the pancreatic islets was found to be greatly reduced by conophylline in the pancreatic islets. It also inhibited chemically induced liver cirrhosis. Further study indicated that conophylline inhibited non-alcoholic steatohepatitis in the model mice. On the one hand, loss of autophagy often causes protein aggregation to give neural cell death. Conophylline was found to activate autophagy in cultured neural cells. Activation of autophagy ameliorated cellular models of Parkinson's and Huntington's diseases. Thus, conophylline is likely to be useful for the development of chemotherapy for metabolic and neurodegenerative diseases.
Collapse
|
7
|
Bhattarai G, Kook SH, Kim JH, Poudel SB, Lim SS, Seo YK, Lee JC. COMP-Ang1 prevents periodontitic damages and enhances mandible bone growth in an experimental animal model. Bone 2016; 92:168-179. [PMID: 27612438 DOI: 10.1016/j.bone.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent enhancing tissue regeneration with increased angiogenesis. However, the effect of COMP-Ang1 on periodontitic tissue damages and the related mechanisms are not yet investigated. We initially explored whether a local delivery of COMP-Ang1 protects lipopolysaccharide (LPS)/ligature-induced periodontal destruction in rats. As the results, μCT and histological analyses revealed that COMP-Ang1 inhibits LPS-mediated degradation of periodontium. COMP-Ang1 also suppressed osteoclast number and the expression of osteoclast-specific and inflammation-related molecules in the inflamed region of periodontitis rats. Implanting a COMP-Ang1-impregnated scaffold into critical-sized mandible bone defects enhanced the amount of bone in the defects with increased expression of bone-specific markers. The addition of COMP-Ang1 prevented significantly osteoclast differentiation and activation in LPS-stimulated RAW264.7 macrophages and inhibited the phosphorylation of c-Jun, mitogen-activated protein kinases, and cAMP response element-binding protein in the cells. On contrary, COMP-Ang1 increased the level of phosphatidylinositol 3-kinase (PI3K) in LPS-exposed macrophages and a pharmacological PI3K inhibitor diminished the anti-osteoclastogenic effect of COMP-Ang1. Similarly, COMP-Ang1 blocked the expression of inflammation-related molecules in LPS-stimulated human periodontal ligament fibroblasts (hPLFs). Further, the COMP-Ang1 enhanced differentiation of hPLFs into osteoblasts by stimulating the expression of bone-specific markers, Tie2, and activator protein-1 subfamily. Collectively, our findings may support the therapeutic potentials of COMP-Ang1 in preventing inflammatory periodontal damages and in stimulating new bone growth.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea
| | - Jae-Hwan Kim
- Chonnam National University Dental Hospital, Kwangju 61186, South Korea
| | - Sher Bahadur Poudel
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Shin-Saeng Lim
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology, Dongguk University, Seoul 04620, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
8
|
Ando T, Komatsu T, Naiki Y, Takahashi K, Yokochi T, Watanabe D, Koide N. GSK2656157, a PERK inhibitor, reduced LPS-induced IL-1β production through inhibiting Caspase 1 activation in macrophage-like J774.1 cells. Immunopharmacol Immunotoxicol 2016; 38:298-302. [PMID: 27251848 DOI: 10.1080/08923973.2016.1192191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
IL-1β is one of the inflammatory cytokines and is cleaved from pro-IL-1β proteolytically by activated Caspase 1. For the activation of Caspase 1, inflammasome was formed by two signals, what is called, priming and triggering signals. In this study, it was found that mouse macrophage J774.1 cells, when treated by single large amount of lipopolysaccharide (LPS), produced a significant amount of IL-1β. On the other hand, IL-1β production was not detected when treated by a single, small amount of LPS. Then, focusing on endoplasmic reticulum (ER) stress response among stress responses induced by a large amount of LPS, when GSK2656157, a PERK inhibitor, was used for inhibition of ER stress, GSK2656157 reduced IL-1β production dose-dependently. Next, when Thapsigargin, an ER stress reagent, was added with LPS, IL-1β production increased more than by LPS alone. Thus, these results suggested that ER stress was involved in LPS-induced IL-1β production. When the activation of Caspase 1 was examined by fluorescence activated cell sorter analysis, it was found that GSK2656157 inhibited LPS-induced Caspase 1 activation. Further, it was confirmed that GSK2656157 did not affect LPS-induced TNF-α production and activation of NF-κB and specifically inhibited the PERK/eIF-2α pathway. Therefore, it was found that GSK2656157 specifically inhibited ER stress induced by large amount of LPS and reduced LPS-induced IL-1β production through inhibition of Caspase 1 activation.
Collapse
Affiliation(s)
- Takashi Ando
- a Department of Dermatology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Takayuki Komatsu
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Yoshikazu Naiki
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Kazuko Takahashi
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Takashi Yokochi
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Daisuke Watanabe
- a Department of Dermatology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Naoki Koide
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| |
Collapse
|
9
|
Pretreatment of LPS inhibits IFN-β-induced STAT1 phosphorylation through SOCS3 induced by LPS. Biomed Pharmacother 2015; 76:1-5. [DOI: 10.1016/j.biopha.2015.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023] Open
|
10
|
Koide N, Kaneda A, Yokochi T, Umezawa K. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide. Int Immunopharmacol 2015; 25:162-8. [DOI: 10.1016/j.intimp.2015.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 01/11/2023]
|