1
|
Bresler P, Tejerina E, Jacob JM, Legrand A, Quellec V, Ezine S, Peduto L, Cherrier M. T cells regulate lymph node-resident ILC populations in a tissue and subset-specific way. iScience 2021; 24:102158. [PMID: 33665576 PMCID: PMC7907429 DOI: 10.1016/j.isci.2021.102158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Innate lymphoid cells (ILCs) have been shown to be significantly affected in the small intestine lamina propria and secondary lymphoid organs (SLOs) of conventional lymphopenic mice. How ILCs are regulated by adaptive immunity in SLOs remains unclear. In T cell-deficient mice, ILC2s are significantly increased in the mesenteric lymph nodes (MLNs) at the expense of CCR6+ ILC3s, which are nonetheless increased in the peripheral lymph nodes (PLNs). Here, we show that T cells regulate lymph node-resident ILCs in a tissue- and subset-specific way. First, reducing microbial colonization from birth restored CCR6+ ILC3s in the MLNs of T cell-deficient mice. In contrast, T cell reconstitution resulted in the contraction of both MLNs ILC2s and PLNs ILC3s, whereas antagonizing microbial colonization from birth had no impact on these populations. Finally, the accumulation of MLNs ILC2s was partly regulated by T cells through stroma-derived IL-33.
Collapse
Affiliation(s)
- Priscillia Bresler
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Emmanuel Tejerina
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Jean Marie Jacob
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Inserm U1224, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Agnès Legrand
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Véronique Quellec
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Sophie Ezine
- Institut Necker Enfants Malades, Université Paris Descartes, INSERM U1151, CNRS UMR 8253, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Lucie Peduto
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Inserm U1224, Paris, France
| | - Marie Cherrier
- Institut Imagine, Université Paris Descartes, INSERM U1163, Laboratory of Intestinal Immunity, 24 Boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
2
|
Vojkovics D, Kellermayer Z, Gábris F, Schippers A, Wagner N, Berta G, Farkas K, Balogh P. Differential Effects of the Absence of Nkx2-3 and MAdCAM-1 on the Distribution of Intestinal Type 3 Innate Lymphoid Cells and Postnatal SILT Formation in Mice. Front Immunol 2019; 10:366. [PMID: 30891037 PMCID: PMC6413488 DOI: 10.3389/fimmu.2019.00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 01/08/2023] Open
Abstract
Seeding of leukocytes to developing lymphoid tissues in embryonic and early postnatal age and to the mucosa throughout adulthood depends on the interaction between endothelial MAdCAM-1 addressin and its cognate ligand α4β7 integrin. Nkx2-3 as a transcriptional regulator of MAdCAM-1 controls vascular patterning in visceral lymphoid tissues in mice, and has been identified as a susceptibility factor for inflammatory bowel diseases in humans, associated with lymphoid neogenesis in the inflamed intestines. The role of Nkx2-3 in the organogenesis of the solitary intestinal lymphoid tissues (SILTs) involving type 3 innate lymphoid cells (ILC3) is still unknown. Here we investigated the effect of Nkx2-3 on the postnatal distribution of intestinal ILC3s and the development of SILTs, comparing these to mice lacking MAdCAM-1, but preserving Nkx2-3. At 1 week of age small intestines (SI) contained significantly higher number of ILC3s relative to the colon, with a substantial reduction in MAdCAM-1−/− mice compared to C57BL/6 controls. One week later SI ILC3 number decreased in all genotypes, the number of colonic ILC3 of both Nkx2-3-deficient and Nkx2-3-heterozygous mice significantly increased. On the fourth postnatal week a further reduction of SI ILC3s was observed in both Nkx2-3-deficient and Nkx2-3-heterozygous mice, while in the colon the number of ILC3s showed a significant reduction in all genotypes. At 1 week of age only sporadic SILT components were present in all genotypes. By the second week mice deficient for either Nkx2-3 or MAdCAM-1 showed absence of SILT maturation compared to their relevant controls, lacking mature isolated lymphoid follicles (ILF). By the fourth week both Nkx2-3-deficient and Nkx2-3-heterozygous mice showed a similar distribution of ILFs relative to cryptopatches (CP), whereas in MAdCAM-1−/− mice CPs and immature ILFs were present, mature ILFs were scarce. Our data demonstrate that the complete absence of MAdCAM-1 partially impairs intestinal seeding of ILC3s and causes partial blockade of SILT maturation, without affecting peripheral lymph node development. In contrast, the inactivation of Nkx2-3 permits postnatal seeding, and its blocking effect on SILT maturation prevails at later stage, thus other adhesion molecules may compensate for the intestinal homing of ILC3s in the absence of MAdCAM-1.
Collapse
Affiliation(s)
- Dóra Vojkovics
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Fanni Gábris
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Angela Schippers
- Department of Pediatrics, University Hospital RWTH, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital RWTH, Aachen, Germany
| | - Gergely Berta
- Central Electron Microscope Laboratory, Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Kornélia Farkas
- Department of Bioanalytics, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|