1
|
Mohammadzadeh M, Hamishehkar H, Vatanparast M, Akhavan Sales ZH, Nabi A, Mazaheri F, Mohseni F, Talebi AR. The effect of testosterone and antioxidants nanoliposomes on gene expressions and sperm parameters in asthenospermic individuals. Drug Dev Ind Pharm 2022; 47:1733-1743. [PMID: 35156468 DOI: 10.1080/03639045.2022.2042552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND antioxidants that used for the infertility treatment cannot have their complete effectiveness, because of their instability in the culture medium. SIGNIFICANCE one of the most advances, in the drug delivery systems, is nanoliposomes-loaded, as biodegradable and bioavailable carriers. Hormonal and antioxidant agents encapsulating inside the nanoliposomes were used, to increase the effectiveness of antioxidants in the sperm culture medium. MATERIALS Semen sample from 15 asthenospermia were divided into 10 equal parts. After preparation, the sperms were incubated with free form of drugs and nanocarriers contained resveratrol, catalase, resveratrol-catalase and testosterone for 45 min. All sperm parameters, sperm DNA and gene expressions were evaluated before and after freezing. RESULTS Before freezing, all nanocarriers and free testosterone showed higher sperm motility compared to free drugs (P=.000). Free Testosterone and free resveratrol-catalase had higher DNA damage compared to nanocarriers (P=.000). Before freezing, the blank nanoliposome and testosterone nanoliposomes had the lowest HSP70 gene expression respectively (P = 0.005) (P = 0.001). After freezing, a significant reduction in sperm motility was observed in the free resveratrol-catalase group (P=.003). Also, a significant increase in sperm viability was observed in the free testosterone and nanoliposomes of blank and testosterone (P > 0.05). The least DNA damage was related to catalase nanoliposomes (P=.000). All nanoliposomes, especially catalase, had the highest percentage of class I morphology compared to the control group (P=.000). CONCLUSIONS Nanoliposomes could improve the sperm parameters and DNA integrity before and after freezing, by increasing the effectiveness of antioxidants. So, it can be recommended in the ART lab.
Collapse
Affiliation(s)
- Masoomeh Mohammadzadeh
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, and Research committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - ZHima Akhavan Sales
- Department of immunology, international campus, shahid sadoughi universirt of medical sciences, yazd, iran
| | - Ali Nabi
- Andrology research center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fahimeh Mazaheri
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Mohseni
- Department of Medical Education, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Talebi
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Abdolahi-Majd M, Hassanshahi G, Vatanparast M, Karimabad MN. Investigation of the effect of Prunus Amygdalus Amara on the expression of some genes of apoptosis and immortality in breast cancer cells (MCF-7). Curr Drug Res Rev 2021; 14:73-79. [PMID: 34856918 DOI: 10.2174/2589977513666211202094433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anti-cancer effects of almond nuts or oil have been approved, but there are a few pieces of research that have evaluated, in detail, almond and other seeds' effects on cancer. Therefore, in the present project, the aim was to explore the regulatory effect of the bitter almond extract (Prunus amygdalus Batsch) on the apoptotic and anti-cancer potency of MCF-7 cells. OBJECTIVES In the current experimental research, the Almond effect on MCF7 cells was evaluated by investigating the expression and the balance between Bcl-2, Bax genes to unmark the potential molecular mechanism. METHODS For 24 and 48h, the MCF7 cells were treated with the bitter almond extract (187.5-3000 µg/mL). MTT assay was used to assess the viability, and Real-time-PCR was applied to determine the expression of Bax and Bcl-2, facing β-actin. RESULTS Our results revealed a significant difference between different extract concentrations on the viability of MCF7 cell lines in 24 and 48 h; cell viability decreased time-dependently (P < 0.05). After 24 and 48h of extract facing MCF7 cells, the evaluated IC50 value was 3000 and 1500 µg/mL, respectively. Based on Real Time-PCR analysis, after 24 and 48 h, the mRNA levels of BCL-2 decreased by the extract, whereas BAX was in the MCF-7 cell line. CONCLUSION From the results, it can be concluded that bitter almond extract has anti-cancer properties that may influence the apoptotic pathways by regulating relative gene expression.
Collapse
Affiliation(s)
- Maryam Abdolahi-Majd
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan. Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan. Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan. Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan. Iran
| |
Collapse
|
3
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
4
|
Sajadi MS, Kazemi E, Darehkordi A. Palladium-catalyzed synthesis of novel trifluoromethylated quinazolinone, N-arylquinazoline and N-benzylquinazoline derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Akbarpoor V, Karimabad MN, Mahmoodi M, Mirzaei MR. The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS). GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Mirzahosseini-pourranjbar A, Karimabad MN, Hajizadeh MR, Khoshdel A, Fahmidehkar MA, Mohammad-Sadeghipour M, Afshari-Nesab M, Mahmoodi M. The effect of Prosopis farcta extract on the expression of some key genes of the glycolysis pathway and the genes involved in insulin signaling in HepG2 cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
CXCL9/CXCL10 angiostasis CXC-chemokines in parallel with the CXCL12 as an angiogenesis CXC-chemokine are variously expressed in pre-eclamptic-women and their neonates. Pregnancy Hypertens 2019; 17:36-42. [DOI: 10.1016/j.preghy.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
|
8
|
Karimabad MN, Mahmoodi M, Jafarzadeh A, Darekordi A, Hajizadeh MR, Hassanshahi G. Molecular Targets, Anti-cancer Properties and Potency of Synthetic Indole-3-carbinol Derivatives. Mini Rev Med Chem 2019; 19:540-554. [DOI: 10.2174/1389557518666181116120145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
The indole-3-carbinol (I3C) displays anti-cancer/proliferative activities against human cancer cells. Cellular proliferation is an event associated with the progress and its continuation. This manifest is described by variation in expression and/or functions of genes that are related with cell cycle relevant proteins. The constitutive activation of several signal transduction pathways stimulates cells proliferation as well. The immediate stages in cancer development are accompanied by a fibrogenic response and the progression of the hypoxic environment is in favor of survival and proliferatory functions of cancer stem cells. A main part for prevention of in cancer cells death may manifest through altering cell metabolism. Cellular proliferation and metastasis are reported to be supported with increased generation of responsible hormones (in hormone dependent malignancies), and further promotion the angiogenesis, with epithelial to mesenchymal transition. This may be facilitated by progression of autophagy phenomenon, as well as via taking cues from neighboring stromal cells. Several signaling pathways in association with various factors specific for cellular viability, including hypoxia inducible factor 1, NF-κB, insulin-like growth factor 1 (IGF-1) receptor, Human foreskin fibroblasts (HFF-1), phosphoinositide 3 kinase/Akt, Wnt, cell cycle related protein, with androgen and estrogen receptor signaling are reported to be inhibited by I3C. These evidences, in association with bioinformatics data represent very important information for describing signaling pathways in parallel with molecular targets that may serve as markers for early diagnosis and/or critical targets for designing and development of novel therapeutic regimes alone or combined with drugs, to prevent tumor formation and further progression. In particular, I3C and DIM have been extensively investigated for their importance against numbers human cancers both in vitro and in vivo. We aimed the present manuscript, current study, to review anticancer properties and the miscellaneous mechanisms underlying the antitumorigenicity in an in-depth study for broadening the I3C treating marvel.
Collapse
Affiliation(s)
- Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdolah Jafarzadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Darekordi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mohamad Reza Hajizadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
9
|
Rot S, Kaune T, Taubert H, Greither T, Kotrba J, Güttler A, Wichmann H, Bilkenroth U, Wienke A, Al-Nawas B, Bache M, Vordermark D, Wickenhauser C, Bethmann D, Eckert AW, Kappler M. Prognostic impact of mRNA levels of LGR5 transcript variants in OSCC patients. BMC Cancer 2019; 19:155. [PMID: 30770730 PMCID: PMC6377725 DOI: 10.1186/s12885-019-5327-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background The human leucine-rich, repeat-containing G protein-coupled receptor 5 (LGR5) is a stem cell marker in numerous adult tissues and is overexpressed in a large number of human carcinoma including colon cancer, breast cancer and oral squamous cell carcinomas (OSCC). The role of the full length transcript (LGR5FL) in progression and prognosis of several cancers was reported. However, the biological function of three splice variants of LGR5 (LGR5Δ5, LGR5Δ8 and LGR5Δ5–8) has yet to be thoroughly investigated. Methods Seventy-eight frozen tumor samples from adult OSCC patients were studied using quantitative real-time TaqMan™ PCR analysis. The mRNA levels of full length LGR5, the splice variant of LGR5 lacking exon 5 (LGR5Δ5), the splice variant of LGR5 lacking exon 8 (LGR5Δ8) and the mRNA level of all known transcript variants together (LGR5all) were quantified and correlated to overall and disease-specific survival of OSCC patients, clinical parameters and the mRNA level of different tumor-associated markers. Results An elevated level of tumoral LGR5Δ5 mRNA, but not LGR5FL, LGR5Δ8 or LGR5all mRNA was significantly associated with a poor prognosis for the overall and disease-specific survival of OSCC patients (hazard ratio (HR) = 2.0; p = 0.02; 95% CI: 1.1–3.7; HR = 3.2; p = 0.01; 95% CI: 1.3–8.0; multivariable Cox regression), respectively. Additionally, a higher tumoral level of LGR5Δ5 mRNA in primary tumors was associated with the occurrence of regional lymph node metastases in OSCC patients (odds ratio (OR) = 3.1; p = 0.022; 95% CI: 1.2–7.9; binary logistic regression). Furthermore, the mRNA levels of all investigated LGR5 transcript variants were significantly correlated with the mRNA expression of Wnt-target genes and markers of epithelial-to-mesenchymal transition (EMT). Conclusion The mRNA level of the LGR5 splice variant LGR5Δ5 is an independent negative prognostic marker for overall and disease-specific survival and metastasis in OSCC patients. Additionally, we suggest, all LGR5 transcript variants are involved in the EMT process mainly through activating the Wnt-signalling pathway.
Collapse
Affiliation(s)
- Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str, 40 06097, Halle/Saale, Germany.
| | - Tom Kaune
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str, 40 06097, Halle/Saale, Germany.,Present address: Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Helge Taubert
- Clinic of Urology and Pediatric Urology, FA University Hospital Erlangen, FA University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Greither
- Centre for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johanna Kotrba
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str, 40 06097, Halle/Saale, Germany.,Present address: Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Antje Güttler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Henri Wichmann
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str, 40 06097, Halle/Saale, Germany
| | | | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str, 40 06097, Halle/Saale, Germany.,Present address: Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander W Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str, 40 06097, Halle/Saale, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str, 40 06097, Halle/Saale, Germany
| |
Collapse
|
10
|
Hosseini FS, Noroozi Karimabad M, Hajizadeh MR, Khoshdel A, Khanamani Falahati-Pour S, Mirzaei MR, Mirmohamadi SM, Mahmoodi M. Evaluating of Induction of Apoptosis by Cornus mass L. Extract in the Gastric Carcinoma Cell Line (AGS). Asian Pac J Cancer Prev 2019; 20:123-130. [PMID: 30678391 PMCID: PMC6485578 DOI: 10.31557/apjcp.2019.20.1.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/06/2018] [Indexed: 11/25/2022] Open
Abstract
Aim and objectives: Natural products and derivatives of medicinal vegetation can play an important role to the cure tumor. The Present study was focused to determine the effect of Cornus mass L. extract on the induction of apoptosis in AGS gastric carcinoma cell line in compared to L929 cells. Methods: In this experimental study, AGS and L929 cells were cultured and treated with different concentrations (0–10 mg/ml) of Cornus mass L. extract for 48 and 72 hours. Cell proliferation was assessed by MTT assay. The optical density of the colored solution was quantified at 570 nm wavelengths by an ELISA Reader. Making use of the apoptosis detection kit of Annexin V-FITC, PI and double staining with Annexin V-FITC were carried out for flow cytometry investigations. Data were analyzed by ANOVA. Variations with a P-value less than 0.05 were considered significant. Results: shows a noticeable deviation among various concentrations of extract when cells were treated for 48, 72 h declined cell viability in AGS cell line in comparison L929 cell lines in a dose and time-dependent manner (P < 0.05). This extract also displayed approximately several-fold increased anti-cancer potency in AGS compared to L929 cells. The IC50 value in AGS cells (evaluated after 48,72h) of the extract against AGS cells was 5/44, 2/44 mg/ml (p≤0.05). The analysis results of flow cytometry indicated that apoptosis was induced by the extract in AGS cells treated, compared with L929 cells. Conclusion: Each of our results implicates the reality that Cornus mass L. extract acts as a novel, potent inhibitor of cancer proliferation in in vitro. This may result in developing a promising therapeutic agent for the treatment of indole-sensitive cancers.
Collapse
Affiliation(s)
- Farzaneh Sadat Hosseini
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sheikhrezaei Z, Heydari P, Farsinezhad A, Fatemi A, Khanamani Falahati-Pour S, Darakhshan S, Noroozi Karimabad M, Darekordi A, Khorramdelazad H, Hassanshahi G. A New Indole Derivative Decreased SALL4 Gene Expression in Acute Promyelocytic Leukemia Cell Line (NB4). IRANIAN BIOMEDICAL JOURNAL 2017; 22:99-106. [PMID: 28800701 PMCID: PMC5786664 DOI: 10.22034/ibj.22.2.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Acute myeloblastic leukemia (AML) is a clonal disorder due to bone marrow failure and uncontrolled proliferation of myeloid lineage. Acute promyelocytic leukemia (APL) is a subtype of AML. Heterocyclic compounds, such as indole, are considered as attractive candidates for cancer therapy, due to their abundance in nature and known biological activity. Sal-like protein (SALL4) is a zinc finger transcription factor involving in the multi-potency of stem cells, in the NB4 cell line. This study was aimed to evaluate the effects of basal indole and its new derivative, 2-(1-((2, 4-Aril)imino)-2,2,2-trifluoroethyl) phenyl-1H Indole-3- carbaldehyde (TFPHC), on the expression of SALL4. Methods: Cells were cultured and treated with different concentrations (75, 150, and 300 µg/mL) of the new indole derivative and DMSO, as a vehicle control, for 24 and 48 hours. Cell proliferation was evaluated by using Trypan blue exclusion and MTT assays. The percentage of apoptotic cells was determined by flowcytometry analysis using the Annexin V/PI apoptosis detection kit; mRNA expression of SALL4 was studied using absolute quantitative RT-PCR. Results: Our findings demonstrated the effects of new indole derivatives on SALL4 mRNA expression. Expression of SALL4 mRNA was significantly decreased at 75, 150, and 300 µg/mL concentrations. Conclusion: SALL4 plays a role in the survival of APL cells. SALL4 expression could be suppressed by the novel indole derivative. Additionally, SALL4 gene suppression can serve as a target in APL therapy.
Collapse
Affiliation(s)
- Zahra Sheikhrezaei
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Heydari
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Fatemi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Shokoofeh Darakhshan
- Department of Pediatrics, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Ali Darekordi
- Department of Chemistry, Faculty of Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|