1
|
Xu G, Yang Y, Lin Y, Bai Y. GEO dataset mining analysis reveals novel Staphylococcus aureus virulence gene regulatory networks and diagnostic targets in mice. Front Mol Biosci 2024; 11:1381334. [PMID: 38606287 PMCID: PMC11007229 DOI: 10.3389/fmolb.2024.1381334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Staphylococcus (S.) aureus infection is a serious, worldwide health concern, particularly in many communities and hospitals. Understanding the S. aureus pathogenetic regulatory network will provide significant insights into diagnostic target screening to improve clinical treatment of diseases caused by S. aureus. We screened differentially expressed genes between normal mice and S. aureus-infected mice. We used the Gene Expression Omnibus (GEO) DataSets database for functional analysis (GO-analysis) and the DAVID and KEGG databases for signaling pathway analyses. We next integrated the gene and pathway analyses with Transcriptional Regulatory Element Database (TRED) to build an antimicrobial resistance gene regulatory network of S. aureus. We performed association analysis of network genes and diseases using DAVID online annotation tools. We identified a total of 437 virulence genes and 15 transcription factors (TFs), as well as 444 corresponding target genes, in the S. aureus TF regulatory network. We screened seven key network nodes (Met, Mmp13, Il12b, Il4, Tnf, Ptgs2, and Ctsl), four key transcription factors (Jun, C3, Spil, and Il6) and an important signaling pathway (TNF). We hypothesized that the cytokine activity and growth factor activity of S. aureus are combinatorically cross-regulated by Met, Mmp13, Il12b, Il4, Tnf, Ptgs2, and Ctsl genes, the TFs Jun, C3, Spi1, and Il6, as well as the immune response, cellular response to lipopolysaccharide, and inflammatory response. Our study provides information and reference values for the molecular understanding of the S. aureus pathogenetic gene regulatory network.
Collapse
Affiliation(s)
- Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, China
| | - Yue Yang
- College of Pharmacy, Beihua University, Jilin, China
| | - Yan Lin
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Yu Bai
- College of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
2
|
Jung JY, Ahn MH, Kim JW, Suh CH, Han JH, Kim HA. Association between CCR2 and CCL2 expression and NET stimulation in adult-onset Still's disease. Sci Rep 2023; 13:12218. [PMID: 37500699 PMCID: PMC10374521 DOI: 10.1038/s41598-023-39517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by the activation of monocyte-derived cells and the release of neutrophil extracellular traps (NET). C-C motif ligand (CCL) 2 is a chemoattractant that interacts with the C-C motif chemokine receptor (CCR) 2, resulting in monocyte recruitment and activation. CCL2 and CCR2 were measured with enzyme-linked immunosorbent assay (ELISA) at the serum level, and using immunohistochemical staining at the skin and lymph node tissues levels. THP-1 cell lysates were analyzed using western blot and ELISA after NET stimulation in patients with AOSD. Serum CCL2 level was higher in patients with AOSD than in patients with rheumatoid arthritis and healthy controls (HCs). In patients with AOSD, the percentage of CCL2-positive inflammatory cells in the skin tissues and CCR2-positive inflammatory cells in the lymph nodes increased, compared to that in HCs and in patients with reactive lymphadenopathy, respectively. NET induced in patients with AOSD enhanced the secretion of CCR2, higher CCR2 expression in monocytes, and the levels of interleukin (IL)-1β, IL-6, and IL-18 from THP-1 cells. Our findings suggest that upregulation of the CCL2-CCR2 axis may contribute to the clinical and inflammatory characteristics of AOSD.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Mi-Hyun Ahn
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
3
|
Lin F, Wang L, Duan Y, Li K, Zhou J, Guang Z, Wang Y, Yang M, Qin Q, Wang Q. Expression and subcellular analyses of CCR8a/b genes with the identification of response to SGIV viral infect in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2020; 106:628-639. [PMID: 32853761 DOI: 10.1016/j.fsi.2020.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Chemokine receptors are a superfamily of seven transmembrane domain G-coupled receptors, and they play important roles in immune surveillance, inflammation, and development. Recently, nine CC chemokine receptors (CCRs) were identified and cloned from orange-spotted grouper (Epinephelus coioides) and annotated by phylogenetic and syntenic analyses. We detected mRNA transcripts for CCRs in healthy tissues of E. coioides, and CCR genes were highly expressed in the immune-relevant tissues. Analysis of gene expression after Singapore grouper iridovirus (SGIV) infection indicated that CCR genes are regulated in a gene-specific manner. CCR8a and CCR8b were significantly upregulated in the spleen and liver of resistant fish, indicating potential roles in immunity against the pathogen. Fluorescence microscopy revealed that CCR8a and CCR8b were expressed predominantly in the cytoplasm. Overexpression of CCR8a and CCR8b in grouper cells significantly inhibited the replication of SGIV, demonstrating that they delayed the occurrence of cytopathic effects induced by SGIV infection and inhibited viral gene transcription. CCR8a and CCR8b overexpression also significantly increased the expression of interferon (IFN)-related cytokines and activated IFN response element and IFN promoter activities. These results demonstrated that CCR8a and CCR8b might have an antiviral function against SGIV infect.
Collapse
Affiliation(s)
- Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Li Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yanchuang Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Keqi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jingxin Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhi Guang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yuxin Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, People's Republic of China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, People's Republic of China.
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, People's Republic of China.
| |
Collapse
|
4
|
Dutta P, Sultana S, Dey R, Bishayi B. Regulation of Staphylococcus aureus-induced CXCR1 expression via inhibition of receptor mobilization and receptor shedding during dual receptor (TNFR1 and IL-1R) neutralization. Immunol Res 2020; 67:241-260. [PMID: 31290001 DOI: 10.1007/s12026-019-09083-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our earlier studies proposed a radically new idea suggesting interdependency between TNF-α/TNFR1 and IL-1β/IL-1R pathways in modulation of Staphylococcus aureus-induced CXCL8/CXCR1 axis. However, the effects of inhibition of cytokine receptor mobilization at intracellular level and surface TNFR1 and IL-1R shedding on S. aureus-induced CXCR1 expression have not been studied so far in peritoneal macrophages. This study aimed to investigate the role of inhibition of receptor mobilization from the intracellular pool (using brefeldin A) and surface receptor shedding (using TAPI-1) on CXCR1 expression during dual receptor (TNFR1 plus IL-1R) neutralization in peritoneal macrophages isolated from wild-type Swiss Albino mice. Release of superoxide anion, nitric oxide, and hydrogen peroxide was measured and cytokine production was done by ELISA. Expression of surface receptors (TNFR1, IL-1R, and CXCR1) and inflammatory mediators was studied by Western blot. It was observed that S. aureus-infected macrophages showed elevated ROS production, secretion of TNF-α, IL-1β, and CXCL8, along with increased expression of surface receptors (TNFR1, IL-1R, and CXCR1), and inflammatory markers (iNOS and COX-2) compared with control or treated groups (p < 0.05). However, prior treatment of macrophages with BFA or TAPI-1 in the presence of anti-TNFR1 antibody and IRAP during S. aureus infection showed significant reduction of all these parameters (p < 0.05). We can conclude that targeting of TNFR1 and IL-1R (with major focus on surface expression study) either through blockage of intracellular receptor trafficking pathway or via surface receptor shedding diminishes TNFR1/IL-1R interaction and consequently downregulates CXCR1 expression along with inflammatory signalling pathways during bacterial infections.
Collapse
Affiliation(s)
- Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Sahin Sultana
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India.
| |
Collapse
|
5
|
Bishayi B, Adhikary R, Sultana S, Dey R, Nandi A. Altered expression of CXCR1 (IL-8R) in macrophages utilizing cell surface TNFR1 and IL-1 receptor during Staphylococcus aureus infection. Microb Pathog 2017; 113:460-471. [DOI: 10.1016/j.micpath.2017.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/04/2017] [Accepted: 11/18/2017] [Indexed: 01/28/2023]
|