1
|
Alcazar-Felix RJ, Jhaveri A, Iqbal J, Srinath A, Bennett C, Bindal A, Vera Cruz D, Romanos S, Hage S, Stadnik A, Lee J, Lightle R, Shenkar R, Koskimäki J, Polster SP, Girard R, Awad IA. A Systematic Review of MicroRNAs in Hemorrhagic Neurovascular Disease: Cerebral Cavernous Malformations as a Paradigm. Int J Mol Sci 2025; 26:3794. [PMID: 40332397 PMCID: PMC12028044 DOI: 10.3390/ijms26083794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Hemorrhagic neurovascular diseases, with high mortality and poor outcomes, urge novel biomarker discovery and therapeutic targets. Micro-ribonucleic acids (miRNAs) are potent post-transcriptional regulators of gene expression. They have been studied in association with disease states and implicated in mechanistic gene interactions in various pathologies. Their presence and stability in circulating fluids also suggest a role as biomarkers. This review summarizes the current state of knowledge about miRNAs in the context of cerebral cavernous malformations (CCMs), a disease involving cerebrovascular dysmorphism and hemorrhage, with known genetic underpinnings. We also review common and distinct miRNAs of CCM compared to other diseases with brain vascular dysmorphism and hemorrhage. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline, queried all peer-reviewed articles published in English as of January 2025 and reported miRNAs associated with four hemorrhagic neurovascular diseases: CCM, arteriovenous malformations, moyamoya disease, and intracerebral hemorrhage. The PubMed systematic search retrieved 154 articles that met the inclusion criteria, reporting a total of 267 unique miRNAs identified in the literature on these four hemorrhagic neurovascular diseases. Of these 267 miRNAs, 164 were identified in preclinical studies, while 159 were identified in human subjects. Seventeen miRNAs were common to CCM and other hemorrhagic diseases. Common and unique disease-associated miRNAs in this systematic review motivate novel mechanistic hypotheses and have potential applications in diagnostic, predictive, prognostic, and therapeutic contexts of use. Much of current research can be considered hypothesis-generating, reflecting association rather than causation. Future areas of mechanistic investigation are proposed alongside approaches to analytic and clinical validations of contexts of use for biomarkers.
Collapse
Affiliation(s)
- Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Aditya Jhaveri
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Javed Iqbal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Carolyn Bennett
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Diana Vera Cruz
- Center for Research Informatics, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Justine Lee
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Janne Koskimäki
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Sean P. Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| |
Collapse
|
2
|
Xu X, Xu Z, Cai Y, Chen X, Huang C. CKIP-1 inhibits M2 macrophage polarization to suppress the progression of gastric cancer by inactivating JAK/STAT3 signaling. Cell Biochem Biophys 2025; 83:1289-1298. [PMID: 39470944 DOI: 10.1007/s12013-024-01562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/01/2024]
Abstract
Gastric cancer (GC) is a frequently occurring malignancy with poor prognosis. Casein kinase 2 interacting protein-1 (CKIP-1) is a PH domain-containing protein implicated in regulating tumorigenesis and macrophage homeostasis. This study aimed to elucidate the role and potential mechanism of CKIP-1 in the progression of GC. CKIP-1 expression in GC tumor and para-carcinoma tissues was detected using RT-qPCR. Then, human monocyte cell line THP-1 was treated with PMA, interleukin (IL)-4 and IL-13 to induce M2-polarized macrophages. CD206, arginase-1 (Arg-1) and transforming growth factorβ1 (TGFβ1) expression in M2-polarized macrophages with or without CKIP-1 overexpression was evaluated. Moreover, GC cell lines (MKN45 and HGC27 cells) were co-cultured with CKIP-1-overexpressed M2-polarized macrophages, and the viability, migration and invasion of GC cells were measured. Additionally, immunoblotting assessed the expression of JAK/STAT3 signaling-related proteins and STAT3 agonist Colivelin was used to treat GC cells to perform the rescue experiments to analyze the changes of malignant phenotypes of GC cells. Results showed that CKIP-1 was downregulated in GC tissues and M2-polarized macrophages. CKIP-1 overexpression inhibited M2 macrophage polarization and decreased TGFβ1 secretion. Besides, elevated CKIP-1 expression in M2-polarized macrophages inhibited the viability, migration and invasion of GC cells. Furthermore, CKIP-1 overexpression inactivated JAK2/STAT3 signaling in GC cells by inhibiting TGFβ1 level. Specifically, Colivelin treatment abrogated the influences of CKIP-1 upregulation on the malignant phenotypes of GC cells. Collectively, CKIP-1 inhibits M2 macrophage polarization to suppress the progression of GC by inactivating JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xuefeng Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Zihong Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Yaowu Cai
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Xintong Chen
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Chaoqing Huang
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China.
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China.
| |
Collapse
|
3
|
Zhang BW, Sun KH, Liu T, Zou W. The Crosstalk Between Immune Cells After Intracerebral Hemorrhage. Neuroscience 2024; 537:93-104. [PMID: 38056621 DOI: 10.1016/j.neuroscience.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
The inflammatory mechanism of intracerebral hemorrhage (ICH) has been widely studied, and it is believed that the regulation of this mechanism is of great significance to the prognosis. In the early stage of the acute phase of ICH, the release of a large number of inflammatory factors around the hematoma can recruit more inflammatory cells to infiltrate the area, further release inflammatory factors, cause an inflammatory cascade reaction, aggravate the volume of cerebral hematoma and edema and further destroy the blood-brain barrier (BBB), according to this, the crosstalk between cells may be of great significance in secondary brain injury (SBI). Because most of the cells recruited are inflammatory immune cells, this paper mainly discusses the cells based on the inflammatory mechanism to discuss their functions after ICH, we found that among the main cells inherent in the brain, glial cells account for the majority, of which microglia are the most widely studied and it can interact with a variety of cells, which is reflected in the literature researches on its pathogenesis and treatment. We believe that exploring multi-mechanism and multi-cell regulated drugs may be the future development trend, and the existing research, the comparison and unification of modeling methods, and the observation of long-term efficacy may be the first problem that researchers need to solve.
Collapse
Affiliation(s)
- Bai-Wen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ke-Han Sun
- Rehabilitation Department, Maternal and Child Health Hospital of Xing-an League, Ulanhot City, Inner Mongolia 137400, China
| | - Ting Liu
- Rehabilitation Department, Pengzhou Traditional Chinese Medicine Hospital, Chengdu 611930, China
| | - Wei Zou
- The Third Acupuncture Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
4
|
Huang X, Xiao J, Wang H, Peng Y, Liu H, Ma L, Wang X, Cao Z. CKIP-1 mediates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells partially via p38 signaling pathway. J Oral Microbiol 2023; 15:2236427. [PMID: 37483640 PMCID: PMC10360982 DOI: 10.1080/20002297.2023.2236427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES Casein kinase 2 interacting protein-1 (CKIP-1) is a versatile player involved in various biological processes. However, whether CKIP-1 mediates the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) under Porphyromonas gingivalis (Pg) stimulation remains unknown. MATERIAL AND METHODS The effect of Pg on PDLC differentiation was first verified. CKIP-1 expression in Pg-infected PDLCs or in PDL of apical periodontitis (AP) mice was detected. The changes of CKIP-1 during PDLC differentiation was also determined. PDLC differentiation capacity in CKIP-1 knockout (KO) mice and CKIP-1-silenced PDLCs with or without Pg stimulation were further studied. Inhibitor was finally applied to verify the involvement of p38 signaling pathway in PDLC differentiation. RESULTS The suppression effect of Pg on PDLC differentiation was demonstrated. CKIP-1 increased in the PDL of AP mice and Pg-induced PDLCs, and decreased gradually during PDLC differentiation. Increased OSX and RUNX2 expression in PDL were observed in CKIP-1 KO mice. Also, CKIP-1 silencing facilitated and rescued Pg-inhibited PDLC differentiation. Inhibitor for p38 signaling pathway blocked CKIP-1 silencing-facilitated PDLC differentiation. CONCLUSIONS CKIP-1 mediated the osteogenic/cementogenic differentiation of PDLCs partially through p38 signaling pathway, which may provide evidence for the regeneration of periodontal hard tissues damaged by Pg.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Feng X, Li X, Feng J, Xia J. Intracranial hemorrhage management in the multi-omics era. Heliyon 2023; 9:e14749. [PMID: 37101482 PMCID: PMC10123201 DOI: 10.1016/j.heliyon.2023.e14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Intracranial hemorrhage (ICH) is a devastating disorder. Neuroprotective strategies that prevent tissue injury and improve functional outcomes have been identified in multiple animal models of ICH. However, these potential interventions in clinical trials produced generally disappointing results. With progress in omics, studies of omics data, including genomics, transcriptomics, epigenetics, proteomics, metabolomics, and the gut microbiome, may help promote precision medicine. In this review, we focused on introducing the applications of all omics in ICH and shed light on all of the considerable advantages to systematically analyze the necessity and importance of multiple omics technology in ICH.
Collapse
Affiliation(s)
- Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Neurology, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, China
| |
Collapse
|
6
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front Mol Neurosci 2022; 15:1013706. [PMID: 36304999 PMCID: PMC9592761 DOI: 10.3389/fnmol.2022.1013706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in neurological diseases, including intracerebral hemorrhage (ICH). Microglia are activated to acquire either pro-inflammatory or anti-inflammatory phenotypes. After the onset of ICH, pro-inflammatory mediators produced by microglia at the early stages serve as a crucial character in neuroinflammation. Conversely, switching the microglial shift to an anti-inflammatory phenotype could alleviate inflammatory response and incite recovery. This review will elucidate the dynamic profiles of microglia phenotypes and their available shift following ICH. This study can facilitate an understanding of the self-regulatory functions of the immune system involving the shift of microglia phenotypes in ICH. Moreover, suggestions for future preclinical and clinical research and potential intervention strategies are discussed.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Wubin Guo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuanxia Zou
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Li Wang Nathupakorn Dechsupa
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Li Wang Nathupakorn Dechsupa
| |
Collapse
|
8
|
Wen K, Ni K, Guo J, Bu B, Liu L, Pan Y, Li J, Luo M, Deng L. MircroRNA Let-7a-5p in Airway Smooth Muscle Cells is Most Responsive to High Stretch in Association With Cell Mechanics Modulation. Front Physiol 2022; 13:830406. [PMID: 35399286 PMCID: PMC8990250 DOI: 10.3389/fphys.2022.830406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: High stretch (strain >10%) can alter the biomechanical behaviors of airway smooth muscle cells which may play important roles in diverse lung diseases such as asthma and ventilator-induced lung injury. However, the underlying modulation mechanisms for high stretch-induced mechanobiological responses in ASMCs are not fully understood. Here, we hypothesize that ASMCs respond to high stretch with increased expression of specific microRNAs (miRNAs) that may in turn modulate the biomechanical behaviors of the cells. Thus, this study aimed to identify the miRNA in cultured ASMCs that is most responsive to high stretch, and subsequently investigate in these cells whether the miRNA expression level is associated with the modulation of cell biomechanics. Methods: MiRNAs related to inflammatory airway diseases were obtained via bioinformatics data mining, and then tested with cultured ASMCs for their expression variations in response to a cyclic high stretch (13% strain) simulating in vivo ventilator-imposed strain on airways. Subsequently, we transfected cultured ASMCs with mimics and inhibitors of the miRNA that is most responsive to the high stretch, followed by evaluation of the cells in terms of morphology, stiffness, traction force, and mRNA expression of cytoskeleton/focal adhesion-related molecules. Results: 29 miRNAs were identified to be related to inflammatory airway diseases, among which let-7a-5p was the most responsive to high stretch. Transfection of cultured human ASMCs with let-7a-5p mimics or inhibitors led to an increase or decrease in aspect ratio, stiffness, traction force, migration, stress fiber distribution, mRNA expression of α-smooth muscle actin (SMA), myosin light chain kinase, some subfamily members of integrin and talin. Direct binding between let-7a-5p and ItgαV was also verified in classical model cell line by using dual-luciferase assays. Conclusion: We demonstrated that high stretch indeed enhanced the expression of let-7a-5p in ASMCs, which in turn led to changes in the cells’ morphology and biomechanical behaviors together with modulation of molecules associated with cytoskeletal structure and focal adhesion. These findings suggest that let-7a-5p regulation is an alternative mechanism for high stretch-induced effect on mechanobiology of ASMCs, which may contribute to understanding the pathogenesis of high stretch-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- *Correspondence: Mingzhi Luo, ; Linhong Deng,
| | | |
Collapse
|
9
|
Kashif H, Shah D, Sukumari-Ramesh S. Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. Int J Mol Sci 2021; 22:8115. [PMID: 34360881 PMCID: PMC8347974 DOI: 10.3390/ijms22158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.
Collapse
Affiliation(s)
| | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (D.S.)
| |
Collapse
|
10
|
Chen L, Li Q, Jiang Z, Li C, Hu H, Wang T, Gao Y, Wang D. Chrysin Induced Cell Apoptosis Through H19/let-7a/ COPB2 Axis in Gastric Cancer Cells and Inhibited Tumor Growth. Front Oncol 2021; 11:651644. [PMID: 34150620 PMCID: PMC8209501 DOI: 10.3389/fonc.2021.651644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Background Chrysin is a natural flavone that is present in honey and has exhibited anti-tumor properties. It has been widely studied as a therapeutic agent for the treatment of various types of cancers. The objectives of this present study were to elucidate how chrysin regulates non-coding RNA expression to exert anti-tumor effects in gastric cancer cells. Methods Through the use of RNA sequencing, we investigated the differential expression of mRNAs in gastric cancer cells treated with chrysin. Furthermore, COPB2, H19 and let-7a overexpression and knockdown were conducted. Other features, including cell growth, apoptosis, migration and invasion, were also analyzed. Knockout of the COPB2 gene was generated using the CRISPR/Cas9 system for tumor growth analysis in vivo. Results Our results identified COPB2 as a differentially expressed mRNA that is down-regulated following treatment with chrysin. Moreover, the results showed that chrysin can induce cellular apoptosis and inhibit cell migration and invasion. To further determine the underlying mechanism of COPB2 expression, we investigated the expression of the long non-coding RNA (lncRNA) H19 and microRNA let-7a. Our results showed that treatment with chrysin significantly increased let-7a expression and reduced the expression of H19 and COPB2. In addition, our results demonstrated that reduced expression of COPB2 markedly promotes cell apoptosis. Finally, in vivo data suggested that COPB2 expression is related to tumor growth. Conclusions This study suggests that chrysin exhibited anti-tumor effects through a H19/let-7a/COPB2 axis.
Collapse
Affiliation(s)
- Lin Chen
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Haobo Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yan Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
11
|
Liu J, Liu L, Wang X, Jiang R, Bai Q, Wang G. Microglia: A Double-Edged Sword in Intracerebral Hemorrhage From Basic Mechanisms to Clinical Research. Front Immunol 2021; 12:675660. [PMID: 34025674 PMCID: PMC8135095 DOI: 10.3389/fimmu.2021.675660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS). It is well established that microglia are activated and polarized to acquire different inflammatory phenotypes, either pro-inflammatory or anti-inflammatory phenotypes, which act as a critical component in the neuroinflammation following intracerebral hemorrhage (ICH). Microglia produce pro-inflammatory mediators at the early stages after ICH onset, anti-inflammatory microglia with neuroprotective effects appear to be suppressed. Previous research found that driving microglia towards an anti-inflammatory phenotype could restrict inflammation and engulf cellular debris. The principal objective of this review is to analyze the phenotypes and dynamic profiles of microglia as well as their shift in functional response following ICH. The results may further the understanding of the body's self-regulatory functions involving microglia following ICH. On this basis, suggestions for future clinical development and research are provided.
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Lirong Liu
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Xiaoyu Wang
- Xiangya Medical College of Central South University, Changsha, China
| | - Rundong Jiang
- Xiangya Medical College of Central South University, Changsha, China
| | - Qinqin Bai
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Gaiqing Wang
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| |
Collapse
|
12
|
Walsh KB, Zimmerman KD, Zhang X, Demel SL, Luo Y, Langefeld CD, Wohleb E, Schulert G, Woo D, Adeoye O. miR-181a Mediates Inflammatory Gene Expression After Intracerebral Hemorrhage: An Integrated Analysis of miRNA-seq and mRNA-seq in a Swine ICH Model. J Mol Neurosci 2021; 71:1802-1814. [PMID: 33755911 DOI: 10.1007/s12031-021-01815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Inflammation after ICH contributes to clinical outcomes, but the relevant molecular mechanisms remain poorly understood. In studies of peripheral leukocyte counts and mRNA-sequencing (mRNA-seq), our group previously reported that monocytes and Interleukin-8 (IL-8) were important contributors to post-ICH inflammation. microRNA (miRNA) are powerful regulators of gene expression and promising therapeutic targets. We now report findings from an integrated analysis of miRNA-seq and mRNA-seq in peripheral blood mononuclear cells (PBMCs) from a swine ICH model. In 10 pigs, one PBMC sample was collected immediately prior to ICH induction and a second 6 h later; miRNA-seq and mRNA-seq were completed for each sample. An aggregate score calculation determined which miRNA regulated the differentially expressed mRNA. Networks of molecular interactions were generated for the combined miRNA/target mRNA. A total of 227 miRNA were identified, and 46 were differentially expressed after ICH (FDR < 0.05). The anti-inflammatory miR-181a was decreased post-ICH, and it was the most highly connected miRNA in the miRNA/mRNA bioinformatic network analysis. miR-181a has interconnected pathophysiology with IL-8 and monocytes; in prior studies, we found that IL-8 and monocytes contributed to post-ICH inflammation and ICH clinical outcome, respectively. miR-181a was a significant mediator of post-ICH inflammation and is promising for further study, including as a potential therapeutic target. This investigation also demonstrated feasible methodology for miRNA-seq/mRNA-seq analysis in swine that is innovative, and with unique challenges, compared with transcriptomics research in more established species.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Kip D Zimmerman
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Stacie L Demel
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Grant Schulert
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
microRNA signatures in prodromal REM sleep behavior disorder and early Parkinson's disease as noninvasive biomarkers. Sleep Med 2021; 78:160-168. [PMID: 33444973 DOI: 10.1016/j.sleep.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The flow of gene expression or "The central dogma of molecular biology": DNA - RNA - protein, proposed by Watson & Crick sixty years ago, is a tightly controlled cell process. In the middle of this journey, the mRNA molecule is regulated by "RNA interference" (RNAi), a posttranscriptional gene silencing mechanism. A microRNA is an endogenous short double-stranded RNA that down-regulates hundreds of mRNAs by RNAi, maintaining healthy cell physiology. In contrast, aberrant expressions of microRNAs play a role in Parkinson's disease (PD) pathogenesis. The damage may start at an early period of brain degeneration, in the non-motor or "prodromal" stage, where autonomic, mood and sleep changes are often manifested. REM-sleep behavior disorder (RBD) is the prodromal manifestation with the highest odds for conversion into PD, thereby a valuable phenotype for disease prediction. The present review focuses on microRNAs' role in the pathogenesis of PD and RBD, summarizing the state-of-the-art of these RNA molecules as noninvasive biomarkers for non-motor prodromal (RBD) and early PD.
Collapse
|
14
|
Wang YY, Zhang HY, Jiang WJ, Liu F, Li L, Deng SM, He ZY, Wang YZ. Genetic polymorphisms in pri-let-7a-2 are associated with ischemic stroke risk in a Chinese Han population from Liaoning, China: a case-control study. Neural Regen Res 2021; 16:1302-1307. [PMID: 33318409 PMCID: PMC8284288 DOI: 10.4103/1673-5374.301019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke is a complicated disease, and its pathogenesis has been attributed to the occurrence of genetic polymorphisms. Evidence has suggested that the microRNA let-7a is involved in the pathogenesis of ischemic stroke. Pri-miRNA is the primary transcript, which undergoes several processing steps to generate pre-miRNA and, later, mature miRNAs. In this case-control study, we analyzed the distribution of pri-let-7a-2 variants in patients at a high risk for ischemic stroke and the interactions of pri-let-7a-2 variants and environmental factors. Blood samples and clinical information were collected from 1086 patients with ischemic stroke and 836 healthy controls between December 2013 and December 2015 at the First Affiliated Hospital of China Medical University. We found that the rs1143770 CC genotype and the C allele were associated with a decreased risk of ischemic stroke, whereas the rs629367 CC genotype was associated with an increased risk for ischemic stroke. Moreover, these two single-nucleotide polymorphisms were in linkage disequilibrium in this study sample. We analyzed gene-environment interactions and found that rs1143770 exerted a combined effect on the pathogenesis of ischemic stroke, together with alcohol use, smoking, and a history of hypertension. Therefore, the detection of pri-let-7a-2 polymorphisms may increase the awareness of ischemic stroke risk. This study was approved by the Institutional Ethics Committee of the First Affiliated Hospital of China Medical University, China (approval No. 2012-38-1) on February 20, 2012, and was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-COC-17013559) on December 27, 2017.
Collapse
Affiliation(s)
- Yu-Ye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He-Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong Province, China
| | - Wen-Juan Jiang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Li
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu-Min Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan-Zhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
15
|
Modulation of microglial phenotypes improves sepsis-induced hippocampus-dependent cognitive impairments and decreases brain inflammation in an animal model of sepsis. Clin Sci (Lond) 2020; 134:765-776. [PMID: 32219335 DOI: 10.1042/cs20191322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND In order to modulate microglial phenotypes in vivo, M1 microglia were depleted by administration of gadolinium chloride and the expression of M2 microglia was induced by IL-4 administration in an animal model of sepsis to better characterize the role of microglial phenotypes in sepsis-induced brain dysfunction. METHODS Wistar rats were submitted to sham or cecal ligation and perforation (CLP) and treated with IL-4 or GdCl3. Animals were submitted to behavioral tests 10 days after surgery. In a separated cohort of animals at 24 h, 3 and 10 days after surgery, hippocampus was removed and cytokine levels, M1/M2 markers and CKIP-1 levels were determined. RESULTS Modulation of microglia by IL-4 and GdCl3 was associated with an improvement in long-term cognitive impairment. When treated with IL-4 and GdCl3, the reduction of pro-inflammatory cytokines was apparent in almost all analyzed time points. Additionally, CD11b and iNOS were increased after CLP at all time points, and both IL-4 and GdCl3 treatments were able to reverse this. There was a significant decrease in CD11b gene expression in the CLP+GdCl3 group. IL-4 treatment was able to decrease iNOS expression after sepsis. Furthermore, there was an increase of CKIP-1 in the hippocampus of GdCl3 and IL-4 treated animals 10 days after CLP induction. CONCLUSIONS GdCl3 and IL-4 are able to manipulate microglial phenotype in an animal models of sepsis, by increasing the polarization toward an M2 phenotype IL-4 and GdCl3 treatment was associated with decreased brain inflammation and functional recovery.
Collapse
|
16
|
Zhang L, Yu J, Ye M, Zhao H. Upregulation of CKIP- 1 inhibits high-glucose induced inflammation and oxidative stress in HRECs and attenuates diabetic retinopathy by modulating Nrf2/ ARE signaling pathway: an in vitro study. Cell Biosci 2019; 9:67. [PMID: 31462987 PMCID: PMC6708125 DOI: 10.1186/s13578-019-0331-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the underlying mechanisms of diabetic retinopathy (DR) development. METHODS Real-Time qPCR was used to detect Casein kinase 2 interacting protein-1 (CKIP-1) and Nuclear factor E2-related factor 2 (Nrf2) mRNA levels. Western Blot was employed to detect protein levels. Malondialdehyde (MDA) assay kit, superoxide dismutase (SOD) kit and glutathione peroxidase (GSH-Px) kit were used to evaluate oxidative stress in high-glucose treated human retinal endothelial cells (HRECs). Calcein-AM/propidium iodide (PI) double stain kit was employed to detect cell apoptosis. Enzyme-linked ImmunoSorbent Assay (ELISA) was used to detect inflammation associated cytokines secretion. Co-immunoprecipitation (CO-IP) was performed to investigate the interactions between CKIP-1 and Nrf2. Luciferase reporter gene system was used to detect the transcriptional activity of Nrf2. RESULTS CKIP-1 was significantly downregulated in either DR tissues or high-glucose treated HRECs comparing to the Control groups. Besides, high-glucose (25 mM) inhibited HRECs viability and induced oxidative stress, inflammation associated cytokines (TNF-α, IL-6 and IL-1β) secretion and cell apoptosis, which were all reversed by synergistically overexpressing CKIP-1 and aggravated by knocking down CKIP-1. Of note, we found that overexpressed CKIP-1 activated Nrf2/ARE signaling pathway and increased its downstream targets including HO-1, NQO-1, γGCS and SOD in high-glucose treated HRECs. Further results also showed that CKIP-1 regulated cell viability, oxidative stress, inflammation and apoptosis in high-glucose treated HRECs by activating Nrf2/ARE signaling pathway. CONCLUSION We concluded that overexpressed CKIP-1 alleviated DR progression by activating Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Jie Yu
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Mingxia Ye
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Hailan Zhao
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
17
|
Signature of Aberrantly Expressed microRNAs in the Striatum of Rotenone-Induced Parkinsonian Rats. Neurochem Res 2018; 43:2132-2140. [DOI: 10.1007/s11064-018-2638-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/25/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
|