1
|
Wang M, Li QJ, Zhao HY, Zhang JL. Tetramerization of pyruvate kinase M2 attenuates graft-versus-host disease by inhibition of Th1 and Th17 differentiation. Hum Cell 2024; 37:633-647. [PMID: 38416276 DOI: 10.1007/s13577-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Lethal graft-versus-host disease (GVHD) is the major complication of allogeneic hematopoietic stem-cell transplantation (Allo-HSCT). Pyruvate kinase M2 (PKM2) is essential for CD4+ T-cell differentiation. Using the well-characterized mouse models of Allo-HSCT, we explored the effects of TEPP-46-induced PKM2 tetramerization on GVHD and graft-versus-leukemia (GVL) activity. TEPP-46 administration significantly improved the survival rate of GVHD. The severity of GVHD and histopathological damage of GVHD-targeted organs were obviously alleviated by PKM2 tetramerization. Additionally, tetramerized PKM2 inhibited the activation of NF-κB pathway and decreased the inflammation level of GVHD mice. PKM2 tetramerization blocked Th1 and Th17 cell differentiation and secretion of pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-17). Meanwhile, differentiation of Treg cells and IL-10 secretion were promoted by tetramerized PKM2. These findings demonstrated that PKM2 enhanced the augment of Th1 and Th17 cells to accelerate the progression of GVHD, and allosteric activation of PKM2 targeted Th1 and Th17 cells attenuated GVHD. Furthermore, we also confirmed that TEPP-46 administration did not compromise GVL activity and resulted in slightly improvement of leukemia-free survive. Thus, targeting Th1 and Th17 cell response with PKM2 allosteric activator may be a promising therapeutic strategy for GVHD prevention while preserving the GVL activity in patients receiving Allo-HSCT.
Collapse
Affiliation(s)
- Meng Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, 1#, East Jianshe Road, Erqi District, Zhengzhou, Henan, China.
| | - Qiu-Jie Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, 1#, East Jianshe Road, Erqi District, Zhengzhou, Henan, China
| | - Hua-Yan Zhao
- Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-Lan Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, 1#, East Jianshe Road, Erqi District, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Tuli HS, Rath P, Chauhan A, Ranjan A, Ramniwas S, Sak K, Aggarwal D, Kumar M, Dhama K, Lee EHC, Yap KCY, Capinpin SM, Kumar AP. Cucurbitacins as Potent Chemo-Preventive Agents: Mechanistic Insight and Recent Trends. Biomolecules 2022; 13:57. [PMID: 36671442 PMCID: PMC9855938 DOI: 10.3390/biom13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cucurbitacins constitute a group of cucumber-derived dietary lipids, highly oxidized tetracyclic triterpenoids, with potential medical uses. These compounds are known to interact with a variety of recognized cellular targets to impede the growth of cancer cells. Accumulating evidence has suggested that inhibition of tumor cell growth via induction of apoptosis, cell-cycle arrest, anti-metastasis and anti-angiogenesis are major promising chemo-preventive actions of cucurbitacins. Cucurbitacins may be a potential choice for investigations of synergism with other drugs to reverse cancer cells' treatment resistance. The detailed molecular mechanisms underlying these effects include interactions between cucurbitacins and numerous cellular targets (Bcl-2/Bax, caspases, STAT3, cyclins, NF-κB, COX-2, MMP-9, VEGF/R, etc.) as well as control of a variety of intracellular signal transduction pathways. The current study is focused on the efforts undertaken to find possible molecular targets for cucurbitacins in suppressing diverse malignant processes. The review is distinctive since it presents all potential molecular targets of cucurbitacins in cancer on one common podium.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 134007, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Kenneth Chun-Yong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Sharah Mae Capinpin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
3
|
Moon J, Lee SY, Na HS, Lee AR, Cho KH, Choi JW, Park SH, Cho ML. Ezetimibe ameliorates clinical symptoms in a mouse model of ankylosing spondylitis associated with suppression of Th17 differentiation. Front Immunol 2022; 13:922531. [PMID: 36059546 PMCID: PMC9428320 DOI: 10.3389/fimmu.2022.922531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that causes spinal inflammation and fusion. Although the cause of AS is unknown, genetic factors (e.g., HLA-B27) and environmental factors (e.g., sex, age, and infection) increase the risk of AS. Current treatments for AS are to improve symptoms and suppress disease progression. There is no way to completely cure it. High blood cholesterol and lipid levels aggravate the symptoms of autoimmune diseases. We applied hyperlipidemia drugs ezetimibe and rosuvastatin to AS mice and to PBMCs from AS patients. Ezetimibe and rosuvastatin was administered for 11 weeks to AS model mice on the SKG background. Then, the tissues and cells of mice were performed using flow cytometry, computed tomography, immunohistochemistry, and immunofluorescence. Also, the normal mouse splenocytes were cultured in Th17 differentiation conditions for in vitro analysis such as flow cytometry, ELISA and RNA sequencing. The 10 AS patients’ PBMCs were treated with ezetimibe and rosuvastatin. The patients’ PBMC were analyzed by flow cytometry and ELISA for investigation of immune cell type modification. Ezetimibe caused substantial inhibition for AS. The present study showed that ezetimibe inhibits Th17 cell function, thereby slowing the progression of AS. It is well known that statins are more effective in reducing blood lipid concentrations than ezetimibe, however, our results that ezetimibe had a better anti-inflammatory effect than rosuvastatin in AS. This data suggests that ezetimibe has an independent anti-inflammatory effect independent of blood lipid reduction. To investigate whether ezetimibe has its anti-inflammatory effect through which signaling pathway, various in vitro experiments and RNA sequencing have proceeded. Here, this study suggests that ezetimibe can be an effective treatment for AS patients by inhibiting Th17 differentiation-related genes such as IL-23R and IL-1R. Thus, this study suggests that ezetimibe has therapeutic potential for AS through inhibition of Th17 differentiation and the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho,
| |
Collapse
|
4
|
Beak JA, Park MJ, Kim SY, Jhun J, Woo JS, Choi JW, Na HS, Lee SK, Choi JY, Cho ML. FK506 and Lactobacillus acidophilus ameliorate acute graft-versus-host disease by modulating the T helper 17/regulatory T-cell balance. J Transl Med 2022; 20:104. [PMID: 35216600 PMCID: PMC8881869 DOI: 10.1186/s12967-022-03303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Graft-versus-host disease (GvHD) is a critical complication after allogeneic hematopoietic stem cell transplantation (HSCT). The immunosuppressants given to patients undergoing allogeneic HSCT disturb the microbiome and the host immune system, potentially leading to dysbiosis and inflammation, and may affect immune function and bone marrow transplantation. The intestinal microbiome is a target for the development of novel therapies for GvHD. Lactobacillus species are widely used supplements to induce production of antimicrobial and anti-inflammatory factors. Methods We determined the effect of the combination of Lactobacillus acidophilus and FK506 on GvHD following major histocompatibility complex-mismatched bone marrow transplantation. Results The combination treatment suppressed IFN-γ and IL-17-producing T cell differentiation, but increased Foxp3+Treg differentiation and IL-10 production. Also, the combination treatment and combination treated-induced Treg cells modulated the proliferation of murine alloreactive T cells in vitro. Additionally, the combination treatment upregulated Treg-related genes—Nt5e, Foxp3, Ikzf2, Nrp1 and Itgb8—in murine CD4+-T cells. The combination treatment also alleviated GvHD clinically and histopathologically by controlling the effector T cell and Treg balance in vivo. Moreover, the combination treatment decreased Th17 differentiation significantly and significantly upregulated Foxp3 and IL-10 expression in peripheral blood mononuclear cells from healthy controls and liver transplantation (LT) patients. Conclusions Therefore, the combination of L. acidophilus and FK506 is effective and safe for patients undergoing allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Jin-Ah Beak
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jin Seok Woo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jong Young Choi
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
5
|
Abstract
The Janus kinase (JAK), signal transducer of activation (STAT) pathway, discovered by investigating interferon gene induction, is now recognized as an evolutionary conserved signaling pathway employed by diverse cytokines, interferons, growth factors, and related molecules. Since its discovery, this pathway has become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors such as cytokines and hormones, mediate their diverse functions. The understanding of JAK-STAT signaling in the intestine has not only impacted basic science research, particularly in the understanding of intercellular communication and cell-extrinsic control of gene expression, but it has also become a prototype for transition of bench to bedside research, culminating in the clinical implementation of pathway-specific therapeutics.
Collapse
|
6
|
Park MJ, Baek JA, Kim SY, Jung KA, Choi JW, Park SH, Kwok SK, Cho ML. Myeloid-derived suppressor cells therapy enhance immunoregulatory properties in acute graft versus host disease with combination of regulatory T cells. J Transl Med 2020; 18:483. [PMID: 33317573 PMCID: PMC7734831 DOI: 10.1186/s12967-020-02657-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) play a critical role in modulating the immune response and promoting immune tolerance in models of autoimmunity and transplantation. Regulatory T cells (Tregs) exert therapeutic potential due to their immunomodulatory properties, which have been demonstrated both in vitro and in clinical trials. Cell-based therapy for acute graft-versus-host disease (aGVHD) may enable induction of donor-specific tolerance in the preclinical setting. Methods We investigated whether the immunoregulatory activity of the combination of MDSCs and Tregs on T cell and B cell subset and alloreactive T cell response. We evaluated the therapeutic effects of combined cell therapy for a murine aGVHD model following MHC-mismatched bone marrow transplantation. We compared histologic analysis from the target tissues of each groups were and immune cell population by flow cytometric analysis. Results We report a novel approach to inducing immune tolerance using a combination of donor-derived MDSCs and Tregs. The combined cell-therapy modulated in vitro the proliferation of alloreactive T cells and the Treg/Th17 balance in mice and human system. Systemic infusion of MDSCs and Tregs ameliorated serverity and inflammation of aGVHD mouse model by reducing the populations of proinflammatory Th1/Th17 cells and the expression of proinflammatory cytokines in target tissue. The combined therapy promoted the differentiation of allogeneic T cells toward Foxp3 + Tregs and IL-10-producing regulatory B cells. The combination treatment control also activated human T and B cell subset. Conclusions Therefore, the combination of MDSCs and Tregs has immunomodulatory activity and induces immune tolerance to prevent of aGVHD severity. This could lead to the development of new clinical approaches to the prevent aGVHD.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Kyung-Ah Jung
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.
| |
Collapse
|
7
|
Wang F, Huang LP, Yang P, Ye LP, Wu C, Zhu QX. Inflammatory kidney injury in trichloroethylene hypersensitivity syndrome mice: Possible role of C3a receptor in the accumulation of Th17 phenotype. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109772. [PMID: 31614297 DOI: 10.1016/j.ecoenv.2019.109772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is a common organic solvent which can cause TCE hypersensitivity syndrome (THS) in exposure workers. THS is an adverse skin disorder with severe inflammatory kidney damage. Complement C3a receptor (C3aR) acts as a specific receptor for the key complement cleavage product C3a and involves multiple inflammatory responses, but the role of C3aR in TCE induced kidney inflammatory injury remains unknown. In this study, BALB/c mouse model of skin sensitization induced by TCE was set up in the presence or absence of C3aR antagonist (C3aRA). Kidney pathology and renal function, expression of inflammatory mediators and C3aR, changes in Th17 cell numbers, and activation of signal transducer and activator of transcription 3 (STAT3) in the kidney were examined. TCE sensitization produced histopathological and functional damage to the kidney, accompanied by increased levels of interleukin (IL-) 1β, IL-6, and IL-23. Local accumulation of Th17 cells and enhanced phosphorylation of STAT3 were also seen in the impaired kidney in TCE sensitization-positive mice. C3aR was mainly located in the impaired glomerulus and upregulated in TCE sensitization-positive mice. C3aRA pretreatment alleviated the structural and functional kidney damage and the inflammatory cytokine and Th17 responses by TCE sensitization, and specifically reduced the phosphorylation of STAT3. Together, our results demonstrate that C3aR signaling promotes the inflammatory responses and regulates the accumulation of Th17 phenotype via phosphorylation of STAT3 in TCE sensitization induced inflammatory kidney damage. C3aR may serve as a potential therapeutic target in TCE sensitization mediated kidney injury.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Li-Ping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Peng Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Ping Ye
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Qi-Xing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
8
|
Shang J, Liu W, Yin C, Chu H, Zhang M. Cucurbitacin E ameliorates lipopolysaccharide-evoked injury, inflammation and MUC5AC expression in bronchial epithelial cells by restraining the HMGB1-TLR4-NF-κB signaling. Mol Immunol 2019; 114:571-577. [PMID: 31525576 DOI: 10.1016/j.molimm.2019.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic inflammatory disorder of airway affecting people from childhood to old age, and is characterized by airway epithelial dysfunction. Cucurbitacin E (CuE), a tetracyclic triterpene isolated from Cucurbitaceae plants, has been recently proved to exert anti-inflammation and immunology regulation activities. Nevertheless, its roles in asthma remains poorly defined. In the current study, CuE had little cytotoxicity on cell viability of human bronchial epithelial cell line BEAS-2B. Moreover, lipopolysaccharide (LPS) exposure inhibited cell viability and induced cell apoptosis, which was reversed following CuE pretreatment. Additionally, CuE administration suppressed LPS-induced inflammatory cytokine production, including TNF-α, IL-6, and IL-8. Simultaneously, supplementation with CuE decreased the transcripts and releases of mucin 5AC (MUC5AC) in LPS-treated BEAS-2B cells. Intriguingly, CuE inhibited LPS-evoked activation of the high-mobility group box1 (HMGB1)-TLR4-NF-κB signaling by reducing the expression of HMGB1, TLR4 and p-p65 NF-κB. Notably, restoring this pathway by elevating HMGB1 expression largely offset the protective function of CuE against LPS-triggered cell injury, inflammatory response and MUC5AC expression. Consequently, these findings highlight that CuE can ameliorate human bronchial epithelial cell insult and inflammation under LPS-simulated asthmatic conditions by blocking the HMGB1-TLR4-NF-κB signaling, thereby supporting its usefulness as a promising therapeutic agent against asthma.
Collapse
Affiliation(s)
- Jin Shang
- Department of Children's Health Care, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, PR China.
| | - Weihua Liu
- Department of Pediatrics, XIAN NO.1 Hospital, Xi'an, Shaanxi, 710002, PR China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Haiping Chu
- Department of Pediatrics, XIAN NO.1 Hospital, Xi'an, Shaanxi, 710002, PR China
| | - Meizhen Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| |
Collapse
|
9
|
Shui X, Chen S, Lin J, Kong J, Zhou C, Wu J. Knockdown of lncRNA NEAT1 inhibits Th17/CD4
+
T cell differentiation through reducing the STAT3 protein level. J Cell Physiol 2019; 234:22477-22484. [PMID: 31119756 DOI: 10.1002/jcp.28811] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaolong Shui
- Department of Orthopedics The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Shaomin Chen
- Department of Rehabilitation The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Jinti Lin
- Department of Orthopedics The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Jianzhong Kong
- Department of Orthopedics The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Chengwei Zhou
- Department of Orthopedics The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Jiaozhen Wu
- Department of Orthopedics The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|