1
|
He Y, Hu Y, Ye T. Small G Protein Regulates Virus Infection via MiRNA and Autophagy in Shrimp. Biomolecules 2025; 15:277. [PMID: 40001579 PMCID: PMC11853464 DOI: 10.3390/biom15020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Recently, there has been a burgeoning scholarly interest in elucidating the functional significance and regulatory mechanisms underlying the involvement of small G proteins, such as Rab, in the antiviral immune response of crustaceans. Rab is a member of the small G protein family and plays a crucial role in the transport of cell membranes within eukaryotic cells. It is involved in the movement of cell membranes both within the cell and on its surface, aiding in the entry of effector proteins into specific membrane subregions. While previous research has highlighted the importance of Rab in phagosome formation and maturation, as well as the clearance of innate immune pathogens by phagocytes, its role in regulating autophagy and the antiviral mechanism remains unclear. This study focused on Rab10 and its role in the autophagy pathway within shrimp, as it pertains to defending against viral infections. MiRNA targeting Rab10 was analyzed and verified by bioinformatic methods. It was found that inhibition of miR-2c could enhance the shrimp's ability to combat viral infections. This discovery suggests a potential new strategy for screening antiviral drugs. In summation, this investigation augments our comprehension of the antiviral mechanism associated with Rab10, illuminating its significance in the antiviral immune response of shrimp.
Collapse
Affiliation(s)
- Yaodong He
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yiqi Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
2
|
Mthethwa L, Parboosing R, Msomi N. MicroRNA levels in patients with chronic hepatitis B virus and HIV coinfection in a high-prevalence setting; KwaZulu-Natal, South Africa. BMC Infect Dis 2024; 24:833. [PMID: 39148016 PMCID: PMC11328411 DOI: 10.1186/s12879-024-09715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) and human immunodeficiency virus (HIV) co-infection are significant public health issues, despite the availability of an effective HBV vaccine for nearly three decades and the great progress that has been made in preventing and treating HIV. HBV and HIV both modulate micro-ribonucleic acids (microRNA) expression to support viral replication. The aim of this study was to describe the pattern of microRNA expression in patients coinfected with chronic HBV and HIV with varying disease severity, as indicated by Hepatitis B e antigen (HBeAg) status, HBV viral load, alanine transaminase (ALT) levels, and HIV viral load. METHODS Plasma microRNAs, specific to HBV, were measured by quantitative real-time polymerase chain reaction (qRT-PCR) in HBV and HIV-negative healthy controls (n = 23) and patients coinfected with chronic HBV-HIV (n = 50). MicroRNA expression levels were compared between patients with high vs low HBV viral load, HBeAg positive vs HBeAg negative, high vs low ALT levels, and high vs low HIV viral load. Additionally, HBV viral load, ALT levels, and HIV viral load were correlated with microRNA expression levels. RESULTS Significantly higher expression levels of selected microRNAs were observed in chronic HBV-HIV coinfected patients compared to healthy controls. Significantly higher expression levels of hsa-miR-122-5p, hsa-miR-192-5p, and hsa-miR-193b-3p were observed in patients with high HBV viral load compared with low HBV viral load patients, and the levels of these microRNAs were correlated with HBV viral load levels. Significantly higher levels of hsa-miR-15b-5p and hsa-miR-181b-5p were observed in HBeAg-negative patients. CONCLUSION This study demonstrates the potential use of hsa-miR-15b-5p, hsa-miR-122-5p, hsa-miR-181b-5p, hsa-miR-192-5p and hsa-miR-193b-3p as additional diagnostic biomarkers in chronic HBV disease progression.
Collapse
Affiliation(s)
- Lulama Mthethwa
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa.
| | - Raveen Parboosing
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, and National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nokukhanya Msomi
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
| |
Collapse
|
3
|
Zhang Y, Chong MM. Highlight of 2023: big impacts of microRNAs in T cells. Immunol Cell Biol 2024; 102:419-421. [PMID: 38623898 DOI: 10.1111/imcb.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In 2023, several significant discoveries on the function of microRNAs in the immune system were reported. Here we discuss several notable papers that revealed important functions in T cells.
Collapse
Affiliation(s)
- Yangnan Zhang
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Mark Mw Chong
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
4
|
Nguyen DH, Uddin MJ, Al-Tawfiq JA, Memish ZA, Chu DT. RNA therapeutics for diarrhea. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:295-309. [PMID: 38458741 DOI: 10.1016/bs.pmbts.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Diarrhea is caused by a variety of bacterial and viral agents, inflammatory conditions, medications, and hereditary conditions. Secretory diarrhea involves several ion and solute transporters, activation of the cyclic nucleotide and Ca2+ signaling pathways, as well as intestinal epithelial secretion. In many cases of secretory diarrhea, activation of Cl- channels, such as the cystic transmembrane conduction regulator and the Ca2+stimulated Cl- channel fibrosis, promote secretion while concurrently inhibiting Na+ transport expressing fluid absorption. Current diarrhea therapies include rehydration and electrolyte replacement via oral rehydration solutions, as well as medications that target peristalsis or fluid secretion. The rising understanding of RNA function and its importance in illness has encouraged the use of various RNAs to operate selectively on "untreatable" proteins, transcripts, and genes. Some RNA-based medications have received clinical approval, while others are currently in research or preclinical studies. Despite major obstacles in the development of RNA-based therapies, many approaches have been investigated to improve intracellular RNA trafficking and metabolic stability.
Collapse
Affiliation(s)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Jaffar A Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ziad A Memish
- Director Research and Innovation Centre, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
5
|
McLaurin DM, Tucker SK, Hebert MD. Coilin mediates m6A RNA methylation through phosphorylation of METTL3. Biol Open 2023; 12:bio060116. [PMID: 38050869 PMCID: PMC10714142 DOI: 10.1242/bio.060116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that regulate gene expression. An important step in miRNA biogenesis occurs when primary miRNAs are bound and cleaved by the microprocessor to generate precursor miRNAs. Regulation at this step is essential and one such regulator includes m6A RNA methylation, an RNA modification found on primary miRNAs that is installed by METTL3 and bound by hnRNPA2B1. Our lab has recently discovered that the Cajal body marker protein coilin also participates in miRNA biogenesis and hypothesized that coilin may be influencing miRNA biogenesis through m6A RNA methylation. Here we report that coilin suppression reduces m6A on primary Let7a and miR-21. We also found that coilin suppression reduced the protein expression of hnRNPA2B1 and METTL3. We observed an interaction between coilin and ectopically expressed METTL3 and found that coilin suppression reduced the nucleoplasmic portion of METTL3 and blunted ectopic METTL3 phosphorylation. Finally, coilin suppression disrupted the greater METTL3 complex with cofactors METTL14 and WTAP. Collectively, our work has uncovered a role for coilin in mediating m6A RNA methylation and provides an avenue by which coilin participates in miRNA biogenesis.
Collapse
Affiliation(s)
- Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
6
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Exploring the role of miRNAs in early chicken embryonic development and their significance. Poult Sci 2023; 102:103105. [PMID: 37852050 PMCID: PMC10587638 DOI: 10.1016/j.psj.2023.103105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
In the early stages of embryonic development, a precise and strictly controlled hierarchy of gene expression is essential to ensure proper development of all cell types and organs. To better understand this gene control process, we constructed a small RNA library from 1- to 5-day-old chick embryos, and identified 2,459 miRNAs including 827 existing, 695 known, and 937 novel miRNAs with bioinformatic analysis. There was absolute high expression of a number of miRNAs in each stage, including gga-miR-363-3p (Em1d), gga-miR-26a-5p (Em2d and Em3d), gga-miR-10a-5p (Em4d), and gga-miR-199-5p (Em5d). We evaluated enriched miRNA profiles, identifying VEGF, Insulin, ErbB, MAPK, Hedgehog, TLR and Hippo signaling pathways as primary regulatory mechanisms enabling complex morphogenetic transformations within tight temporal constraints. Pathway analysis revealed miRNAs as pivotal nodes of interaction, coordinating cascades of gene expression critical for cell fate determination, proliferation, migration, and differentiation across germ layers and developing organ systems. Weighted Gene Co-Expression Network Analysis (WGCNA) generated hub miRNAs whose modular connections spanned regulatory networks, including: gga-miR-181a-3p (blue module), coordinating immunegenesis and myogenesis; gga-miR-126-3p (brown module), regulating vasculogenesis and angiogenesis; gga-miR-302c-5p (turquoise module), enabling pluripotency and self-renew; and gga-miR-429-3p (yellow module), modulating neurogenesis and osteogenesis. The findings of this study extend the knowledge of miRNA expression in early embryonic development of chickens, providing insights into the intricate gene control process that helps ensure proper development.
Collapse
Affiliation(s)
- Liqin Liao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
7
|
Li X, Chang Y, Shen W, Huang G, Hu N, Lv H, Jin M. miR-138 from ADSC Exo accelerates wound healing by targeting SIRT1/PTEN pathway to promote angiogenesis and fibrosis. Cell Signal 2023; 111:110843. [PMID: 37544635 DOI: 10.1016/j.cellsig.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Xue Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuzhen Chang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Weijun Shen
- Department of Anesthesiology, Tenth People's Hospital of Tongji University, No 301 Middle Yan Chang Road, Shanghai 200072, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Nan Hu
- Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, 21000, Jiangsu, China.
| | - Haihong Lv
- Department of endocrinology, The First Hospital of Lanzhou University, #1 Donggang West Road Road, Lanzhou, 730000, Gansu, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
8
|
Minervini G, Meto A, Fiorillo L, Franco R, Francesco FD, Cicciù M, Cervino G. Salivary microRNAs as innovative biomarkers for early diagnosis of oral diseases: a comparison of conventional cigarette smokers and tobacco heating system 2.2 users. Minerva Dent Oral Sci 2023; 72:247-254. [PMID: 37255307 DOI: 10.23736/s2724-6329.23.04790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are considered valid prognostic and diagnostic biomarkers. The different miRNA expression profiles in cancer cells compared to normal cells make them potential biomarkers used for the early diagnosis of oral diseases. Following exposure to cigarette smoking, miRNA altered profile expression is associated with resistance mechanisms against anticancer therapies. Cellular models showed a reduced human gingival epithelium alteration after exposure to THS2.2 and a lower pathogenicity than 3R4F CS. The aim of the study was to compare the expression of saliva miRNA profile of THS2.2 and 3R4F CS users compared to patients not exposed to the risk factor and to identify and study the modulation of miRNAs associated with the development of oral diseases. In particular, we will focus on the analysis of a group of miRNAs know to be involved in the development of smoking-related diseases. METHODS The study will be performed in 18 months and dentists and biochemists will be involved in the different phases. To perform the study, healthy volunteers, including smokers of THS2.2 or 3R4F CS, will be enrolled. RESULTS The samples will be collected from 3 experimental groups, each consisting of 30 subjects: group 1 (no smoking subjects), group 2 (subjects exposed to THS2.2), group 3 (subjects exposed to 3R4F CS). The collection of the saliva sample will be conducted in a standardized way. Following the collection, saliva will be processed. CONCLUSIONS Previous studies have suggested that miRNAs are prognostic biomarkers for various smoking-related diseases. Based on the post-transcriptional regulation of some mRNAs connected to different oral pathologies, we expect a specific miRNA-mRNA interaction, which could be a starting point for the development of new possible diagnostic, therapeutic and prognostic approaches.
Collapse
Affiliation(s)
- Giuseppe Minervini
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aida Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, Tirana, Albania
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Rocco Franco
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy -
| | - Fabrizio di Francesco
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Cicciù
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Ishihara S, Sato M, Miyazaki H, Saito H, Sato T, Fujikado N, Sawai S, Kotani A, Katagiri K. Deletion of miR-150 Prevents Spontaneous T Cell Proliferation and the Development of Colitis. GASTRO HEP ADVANCES 2023; 2:487-496. [PMID: 39132043 PMCID: PMC11308117 DOI: 10.1016/j.gastha.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims To examine the roles of microRNAs in the development of colitis, we conducted the RNA-sequencing studies using RNA derived from normal and colitogenic CD4+ T cells. Colitogenic CD4+ T cells demonstrated the increased expression of miR-150. We focused on the involvement of miR-150 in the colitis. Methods We crossed miR-150 knockout mice and T-cell-specific Rap1KO mice, which is colitis model mice and spontaneously develop the colitis with tubular adenomas in microbiota-dependent manner. Results MiR-150 silencing completely inhibited the expansion of pathogenic Th17 cells and the development of colitis. Conclusion MiR-150 is a potential therapeutic target of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Innovative Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Masashi Sato
- Department of Immunology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Haruka Miyazaki
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Haruka Saito
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Noriyuki Fujikado
- Discovery Immunology, Ferring Research Institute, Ferring Pharmaceuticals, San Diego, California
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Ai Kotani
- Department of Innovative Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Innovative Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Tongaonkar P, Trinh KK, Ouellette AJ, Selsted ME. Inhibition of miR-146a Expression and Regulation of Endotoxin Tolerance by Rhesus Theta-Defensin-1. Mediators Inflamm 2023; 2023:8387330. [PMID: 37101596 PMCID: PMC10125762 DOI: 10.1155/2023/8387330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Theta- (θ-) defensins are pleiotropic host defense peptides with antimicrobial- and immune-modulating activities. Immune stimulation of cells with lipopolysaccharide (LPS, endotoxin) activates proinflammatory gene expression and cytokine secretion, both of which are attenuated by rhesus theta-defensin-1 (RTD-1) inhibition of NF-κB and MAP kinase pathways. Endotoxin tolerance is a condition that ensues when cells have an extended primary exposure to low levels of LPS, resulting in resistance to a subsequent LPS challenge. Recognition of LPS by Toll-like receptor-4 (TLR4) activates NF-κB, elevating levels of microRNA-146a (miR-146a), which targets IRAK1 and TRAF6 transcripts to reduce their protein levels and inhibits TLR signaling on secondary LPS stimulation. Here, we report that RTD-1 suppressed the expression of miR-146a and stabilized the IRAK1 protein in immune-stimulated, monocytic THP-1 cells. Cells that had primary exposure to LPS became endotoxin-tolerant, as evident from their failure to secrete TNF-α upon secondary endotoxin challenge. However, cells incubated with RTD-1 during the primary LPS stimulation secreted TNF-α after secondary LPS stimulation in an RTD-1 dose-dependent manner. Consistent with this, compared to the control treatment, cells treated with RTD-1 during primary LPS stimulation had increased NF-κB activity after secondary LPS stimulation. These results show that RTD-1 suppresses endotoxin tolerance by inhibiting the NF-κB pathway and demonstrates a novel inflammatory role for RTD-1 that is mediated by the downregulation of miR-146a during the innate immune response.
Collapse
Affiliation(s)
- Prasad Tongaonkar
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katie K. Trinh
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Gamal-Eldeen AM, Fahmy CA, Raafat BM, Althobaiti F, Bassyouni IH, Talaat RM. Association of Circulating Levels of Hypoxia-Inducible Factor-1α and miR-210 with Photosensitivity in Systemic Lupus Erythematosus Patients. Curr Mol Med 2023; 23:185-192. [PMID: 35034594 DOI: 10.2174/1566524022666220114145220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND miR-210, a key hypoxamiR, regulates hypoxia and inflammation-linked hypoxia. Systemic lupus erythematosus (SLE), a chronic autoimmune disease, is responsible for many pathological disorders, including photosensitivity. OBJECTIVE This study aimed to find the correlation between circulating miR-210/HIF-1α levels and photosensitivity in SLE patients and other SLE-associated pathological complications in a single-center case-control study. METHODS The study population comprised 104 SLE Egyptian patients with photosensitivity, 32 SLE patients without photosensitivity, and 32 healthy subjects. SLE activity was assessed for all patients using the SLE Disease Activity Index (SLEDAI). Clinical complications/manifestations and hematological/serological analyses were recorded. HIF-α concentration was investigated by ELISA, and miR-210 expression was analyzed by qRT-PCR. RESULTS The results revealed that circulating miR-210 was significantly increased in the SLE/photosensitivity group versus the SLE and control groups. The additional occurrence of malar rash, oral ulcers, renal disorders, or hypertension resulted in a higher expression of miR-210. SLEDAI activity status showed no effect on miR-210. Erythrocyte sedimentation rate, white blood cells, hemoglobin, platelets, patient age, and disease duration were positively correlated with circulatory miR-210. HIF-α concentration was significantly induced in the SLE/photosensitivity group versus the SLE and control groups. In SLE/photosensitivity, the presence of renal disorders and hypertension resulted in the highest HIF-α concentrations. A strong positive correlation was recorded between HIF-α concentration and circulatory miR-210 in SLE/photosensitivity patients (r = 0.886). CONCLUSION The dysregulation of circulating miR-210/HIF-1α levels in SLE/ photosensitivity patients is controlled by the presence of additional pathological complications, and results suggest that the hypoxia pathway might interact positively with the pathogenesis and disease progression of SLE.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Center, Prince Sultan Medical Complex, Al- Hawiyah, Taif University, Taif, Saudi Arabia
| | - Cinderella A Fahmy
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
- Biochemistry Department, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
| | - Bassem M Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fayez Althobaiti
- High Altitude Research Center, Prince Sultan Medical Complex, Al- Hawiyah, Taif University, Taif, Saudi Arabia
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Iman H Bassyouni
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, El-Kasr El-Aini Hospital, Cairo 12613, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University, Egypt
| |
Collapse
|
12
|
Gamal-Eldeen AM, Fahmy CA, Raafat BM, Althobaiti F, Bassyouni IH, Talaat RM. Circulating Levels of Hypoxia-regulating MicroRNAs in Systemic Lupus Erythematosus Patients with Hemolytic Anemia. Curr Med Sci 2022; 42:1231-1239. [PMID: 36469203 DOI: 10.1007/s11596-022-2644-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs are fine regulators for gene expression during the post-transcriptional stage in many autoimmune diseases. HypoxamiRs (miR-210 and miR-21) play an important role in hypoxia and in inflammation-associated hypoxia. Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease that would potentiate many pathological complications, including hemolytic anemia. This study aimed to investigate the role of hypoxamiRs in SLE/hemolytic anemia patients. METHODS This work was designed to analyze the circulating levels of↱ the miR-210 and miR-21 expressions and hypoxia-inducible factor-1α (HIF-α) in SLE/hemolytic anemia patients. SLE activity was evaluated for all patients by SLE Disease Activity Index (SLEDAI). Clinical manifestations/complications and serological/hematological investigations were reported. HIF-α concentration was assayed by ELISA and expression of miR-21 and miR-210 was analyzed by qRT-PCR. RESULTS The results indicated that the fold change of the miR-210/miR-21 expressions in plasma was significantly elevated in SLE/hemolytic anemia patients. A strong positive correlation between the miR-210 and miR-21 expression levels was also recorded. Among the associated-disease complications, hypertension, arthritis, oral ulcers, and serositis were associated with a high circulating miR-210 expression, while the occurrence of renal disorders was associated with the increased miR-21 expression. Furthermore, the HIF-α level was remarkably elevated in SLE/hemolytic anemia patients. A high positive correlation was recorded between the HIF-α concentration and miR-210/miR-21 expression levels. The occurrence of oral ulcers, arthritis, and hypertension was associated with the increased HIF-α concentration. On the other hand, SLEDAI and white blood cell count were positively correlated with miR-21/ miR-210. The erythrocyte sedimentation rate was positively correlated with miR-21. CONCLUSION The dysregulation of the circulating miR-210/miR-210/HIF-1α levels in SLE/hemolytic anemia patients advocated that the hypoxia pathway might have an essential role in the pathogenesis and complications of these diseases.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia. .,High Altitude Research Center, Prince Sultan Medical Complex, Al-Hawiyah, Taif University, Taif, 21944, Saudi Arabia.
| | - Cinderella A Fahmy
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, 12622, Egypt.,Biochemistry Department, National Research Centre, Cairo, 12622, Egypt
| | - Bassem M Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Fayez Althobaiti
- High Altitude Research Center, Prince Sultan Medical Complex, Al-Hawiyah, Taif University, Taif, 21944, Saudi Arabia.,Biotechnology Department, Faculty of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Iman H Bassyouni
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, El-Kasr El-Aini Hospital, Cairo, 12613, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University, Sadat City, 32897, Egypt
| |
Collapse
|
13
|
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232113382. [PMID: 36362169 PMCID: PMC9658721 DOI: 10.3390/ijms232113382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Embryo–endometrial communication plays a critical role in embryo implantation and the establishment of a successful pregnancy. Successful pregnancy outcomes involve maternal immune modulation during embryo implantation. The endometrium is usually primed and immunomodulated by steroid hormones and embryo signals for subsequent embryo implantation and the maintenance of pregnancy. The roles of extracellular vesicles (EVs) and microRNAs for the embryo–maternal interactions have been elucidated recently. New evidence shows that endometrial EVs and trophectoderm-originated EV cargo, including microRNAs, proteins, and lipids in the physiological microenvironment, regulate maternal immunomodulation for embryo implantation and subsequent pregnancy. On the other hand, trophoblast-derived EVs also control the cross-communication between the trophoblasts and immune cells. The exploration of EV functions and mechanisms in the processes of embryo implantation and pregnancy will shed light on a practical tool for the diagnostic or therapeutic approaches to reproductive medicine and infertility.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Le-Tien Hsu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Gynecologic Cancer Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8254)
| |
Collapse
|
14
|
Villarreal-García V, Estupiñan-Jiménez JR, Vivas-Mejía PE, Gonzalez-Villasana V, Vázquez-Guillén JM, Reséndez-Pérez D. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Front Oncol 2022; 12:980694. [PMID: 36226048 PMCID: PMC9548555 DOI: 10.3389/fonc.2022.980694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. This highly heterogeneous disease is molecularly stratified into luminal A, luminal B, HER2, triple-negative/basal-like, and normal-like subtypes. An important aspect in BC progression is the activation of inflammatory processes. The activation of CD8+/Th1, NK, and M1 tumor associated macrophages (TAMs), leads to tumor destruction. In contrast, an anti-inflammatory response mediated by CD4+/Th2 and M2 TAMs will favor tumor progression. Inflammation also stimulates the production of inflammatory mediators like reactive oxygen species (ROS). In chronic inflammation, ROS activates oxidative stress and endothelial dysfunction. In cancer, ROS plays a dual role with anti-tumorigenic and pro-tumorigenic effects in cell signaling pathways that control proliferation, survival, apoptosis, and inflammation. MicroRNAs (miRNAs), which are known to be involved in BC progression and inflammation, can be regulated by ROS. At the same time, miRNAs regulate the expression of genes modulating oxidative stress. In this review, we will discuss the interplay between inflammation, ROS, and miRNAs as anticancer and tumor promoter molecules in BC. A clear understanding of the role of miRNAs in the regulation of ROS production and inflammation, may lead to new opportunities for therapy in BC.
Collapse
Affiliation(s)
- Valeria Villarreal-García
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Roberto Estupiñan-Jiménez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Pablo E. Vivas-Mejía
- Department of Biochemestry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Vianey Gonzalez-Villasana
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Manuel Vázquez-Guillén
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
15
|
Oana SM, Claudia B, Lelia RA, Simona M, Claudia C, Daniela DE. Differential Expression of Tissular miRNA-155 in Pediatric Gastritis. J Clin Med 2022; 11:3351. [PMID: 35743416 PMCID: PMC9224896 DOI: 10.3390/jcm11123351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MicroRNA molecules, among them the intensely studied miRNA-155 (miR-155), are regarded as potential biomarkers of chronic gastric inflammation and premalignant lesion progression. However, literature data are scarce in terms of pediatric studies and in the evaluation of the predictive role of miRNA in early gastric inflammation. This study aims to assess the differential expression of miR-155 in relation to pediatric gastritis. METHODS The present research was conducted on 192 patients with chronic dyspeptic symptoms who underwent upper digestive endoscopy. Bioptic samples were harvested for histopathological analysis and tissue miR-155 depiction. MiR-155 expression analysis was carried out through quantitative real-time polymerase chain reaction (qRT-PCR). The study population was divided into two groups: controls (93 patients) and study group (99 patients) with inflammatory modifications. RESULTS MiR-155 expression was augmented in patients with gastritis but did not differ significantly from controls (p = 0.16). An increase in miR-155 expression was noted in relation to chronic gastritis, H. pylori infection, or increase in gastritis severity, but these variations were not important (p = 0.30, p = 0.44, and p = 0.45, respectively). CONCLUSIONS According to our study, pediatric gastritis increases, but does not greatly influence, miR-155 expression. Dynamic evaluation of miR-155 might enlighten its prognostic role in pediatric gastritis.
Collapse
Affiliation(s)
- Săsăran Maria Oana
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No 38, 540136 Targu Mures, Romania;
| | - Bănescu Claudia
- Genetics Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania, Gheorghe Marinescu Street No 38, 540136 Targu Mures, Romania;
| | - Riza Anca Lelia
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, Petru Rareș Street No 2, 200349 Craiova, Romania;
| | - Mocan Simona
- Pathology Department, County Emergency Clinical Hospital of Targu Mures, Gheorghe Marinescu Street No 50, 540136 Targu Mures, Romania;
| | - Cârstea Claudia
- Genetics Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania, Gheorghe Marinescu Street No 38, 540136 Targu Mures, Romania;
| | - Dobru Ecaterina Daniela
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No 38, 540136 Targu Mures, Romania;
| |
Collapse
|
16
|
Devvanshi H, Kachhwaha R, Manhswita A, Bhatnagar S, Kshetrapal P. Immunological Changes in Pregnancy and Prospects of Therapeutic Pla-Xosomes in Adverse Pregnancy Outcomes. Front Pharmacol 2022; 13:895254. [PMID: 35517798 PMCID: PMC9065684 DOI: 10.3389/fphar.2022.895254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.
Collapse
Affiliation(s)
- Himadri Devvanshi
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohit Kachhwaha
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Anima Manhswita
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shinjini Bhatnagar
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
17
|
Liu YP, Yang YD, Mou FF, Zhu J, Li H, Zhao TT, Zhao Y, Shao SJ, Cui GH, Guo HD. Exosome-Mediated miR-21 Was Involved in the Promotion of Structural and Functional Recovery Effect Produced by Electroacupuncture in Sciatic Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7530102. [PMID: 35132352 PMCID: PMC8817850 DOI: 10.1155/2022/7530102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Our study is aimed at investigating the mechanism by which electroacupuncture (EA) promoted nerve regeneration by regulating the release of exosomes and exosome-mediated miRNA-21 (miR-21) transmission. Furthermore, the effects of Schwann cells- (SC-) derived exosomes on the overexpression of miR-21 for the treatment of PNI were investigated. METHODS A sciatic nerve injury model of rat was constructed, and the expression of miR-21 in serum exosomes and damaged local nerves was detected using RT-qPCR after EA treatment. The exosomes were identified under a transmission electron microscope and using western blotting analysis. Then, the exosome release inhibitor, GW4869, and the miR-21-5p-sponge used for the knockdown of miR-21 were used to clarify the effects of exosomal miR-21 on nerve regeneration promoted by EA. The nerve conduction velocity recovery rate, sciatic nerve function index, and wet weight ratio of gastrocnemius muscle were determined to evaluate sciatic nerve function recovery. SC proliferation and the level of neurotrophic factors were assessed using immunofluorescence staining, and the expression levels of SPRY2 and miR-21 were detected using RT-qPCR analysis. Subsequently, the transmission of exosomal miR-21 from SC to the axon was verified in vitro. Finally, the exosomes derived from the SC infected with the miR-21 overexpression lentivirus were collected and used to treat the rat SNI model to explore the therapeutic role of SC-derived exosomes overexpressing miR-21. RESULTS We found that EA inhibited the release of serum exosomal miR-21 in a PNI model of rats during the early stage of PNI, while it promoted its release during later stages. EA enhanced the accumulation of miR-21 in the injured nerve and effectively promoted the recovery of nerve function after PNI. The treatment effect of EA was attenuated when the release of circulating exosomes was inhibited or when miR-21 was downregulated in local injury tissue via the miR-21-5p-sponge. Normal exosomes secreted by SC exhibited the ability to promote the recovery of nerve function, while the overexpression of miR-21 enhanced the effects of the exosomes. In addition, exosomal miR-21 secreted by SC could promote neurite outgrowth in vitro. CONCLUSION Our results demonstrated the mechanism of EA on PNI from the perspective of exosome-mediated miR-21 transport and provided a theoretical basis for the use of exosomal miR-21 as a novel strategy for the treatment of PNI.
Collapse
Affiliation(s)
- Yu-pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-duo Yang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-tian Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shui-jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Hai-dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
18
|
Zhao X, Ji Z, Xuan R, Wang A, Li Q, Zhao Y, Chao T, Wang J. Characterization of the microRNA Expression Profiles in the Goat Kid Liver. Front Genet 2022; 12:794157. [PMID: 35082837 PMCID: PMC8784682 DOI: 10.3389/fgene.2021.794157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is the largest digestive gland in goats with an important role in early metabolic function development. MicroRNAs (miRNA) are crucial for regulating the development and metabolism in the goat liver. In the study, we sequenced the miRNAs in the liver tissues of the goat kid to further research their regulation roles in early liver development. The liver tissues were procured at 5-time points from the Laiwu black goats of 1 day (D1), 2 weeks (W2), 4 weeks (W4), 8 weeks (W8), and 12 weeks (W12) after birth, respectively with five goats per time point, for a total of 25 goats. Our study identified 214 differential expression miRNAs, and the expression patterns of 15 randomly selected miRNAs were examined among all five age groups. The Gene ontology annotation results showed that differential expression miRNA (DE miRNA) target genes were significantly enriched in the fatty acid synthase activity, toxin metabolic process, cell surface, and antibiotic metabolic process. The KEGG analysis result was significantly enriched in steroid hormone synthesis and retinol metabolism pathways. Further miRNA-mRNA regulation network analysis reveals 9 differently expressed miRNA with important regulation roles. Overall, the DE miRNAs were mainly involved in liver development, lipid metabolism, toxin related metabolism-related biological process, and pathways. Our results provide new information about the molecular mechanisms and pathways in the goat kid liver development.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Aili Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yilin Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
19
|
Dunislawska A, Slawinska A, Siwek M, Bednarczyk M. Epigenetic changes in poultry due to reprogramming of the gut microbiota. Anim Front 2021; 11:74-82. [PMID: 34934532 PMCID: PMC8683152 DOI: 10.1093/af/vfab063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
20
|
Dunislawska A, Pietrzak E, Wishna Kadawarage R, Beldowska A, Siwek M. Pre-hatching and post-hatching environmental factors related to epigenetic mechanisms in poultry. J Anim Sci 2021; 100:6473202. [PMID: 34932113 DOI: 10.1093/jas/skab370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications are phenotypic changes unrelated to the modification of the DNA sequence. These modifications are essential for regulating cellular differentiation and organism development. In this case, epigenetics controls how the animal's genetic potential is used. The main epigenetic mechanisms are microRNA activity, DNA methylation and histone modification. The literature has repeatedly shown that environmental modulation has a significant influence on the regulation of epigenetic mechanisms in poultry. The aim of this review is to give an overview of the current state of the knowledge in poultry epigenetics in terms of issues relevant to overall poultry production and the improvement of the health status in chickens and other poultry species. One of the main differences between birds and mammals is the stage of embryonic development. The bird's embryo develops outside its mother, so an optimal environment of egg incubation before hatching is crucial for development. It is also the moment when many factors influence the activation of epigenetic mechanisms, i.e., incubation temperature, humidity, light, as well as in ovo treatments. Epigenome of the adult birds, might be modulated by: nutrition, supplementation and treatment, as well as modification of the intestinal microbiota. In addition, the activation of epigenetic mechanisms is influenced by pathogens (i.e., pathogenic bacteria, toxins, viruses and fungi) as well as, the maintenance conditions. Farm animal epigenetics is still a big challenge for scientists. This is a research area with many open questions. Modern methods of epigenetic analysis can serve both in the analysis of biological mechanisms and in the research and applied to production system, poultry health and welfare.
Collapse
Affiliation(s)
- A Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - E Pietrzak
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - R Wishna Kadawarage
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - A Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - M Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| |
Collapse
|
21
|
Chhichholiya Y, Suryan AK, Suman P, Munshi A, Singh S. SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes. Front Genet 2021; 12:793523. [PMID: 34925466 PMCID: PMC8673831 DOI: 10.3389/fgene.2021.793523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
miRNAs are fascinating molecular players for gene regulation as individual miRNA can control multiple targets and a single target can be regulated by multiple miRNAs. Loss of miRNA regulated gene expression is often reported to be implicated in various human diseases like diabetes and cancer. Recently, geneticists across the world started reporting single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are also reported in various target sequences of these miRNAs. Both the scenarios lead to dysregulated gene expression which may result in the progression of diseases. In the present paper, we explore SNPs in various miRNAs and their target sequences reported in various human cancers as well as diabetes. Similarly, we also present evidence of these mutations in various other human diseases.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Aman Kumar Suryan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
22
|
Nunes ADC, Weigl M, Schneider A, Noureddine S, Yu L, Lahde C, Saccon TD, Mitra K, Beltran E, Grillari J, Kirkland JL, Tchkonia T, Robbins PD, Masternak MM. miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. GeroScience 2021; 44:503-518. [PMID: 34825304 PMCID: PMC8811002 DOI: 10.1007/s11357-021-00490-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are potent regulators of multiple biological processes. Previous studies have demonstrated that miR-146a-5p increases in normal mice during aging, while long-living Ames dwarf (df/df) mice maintain youthful levels of this miRNA. The aim of this study was to elucidate the involvement of miR-146a-5p in modulating cellular senescence and apoptosis in visceral adipose tissue of df/df mice and cultured pre-adipocytes. To test the effects of miR-146a-5p overexpression on visceral adipose tissue, wild-type, and df/df mice, were treated with miRNA-negative control-base and df/df were transfected with 4 or 8 µg/g of a miR-146a-5p mimetic, respectively. Effects of miR-146a-5p overexpression were also evaluated in 3T3-L1 cells cultured under high and normal glucose conditions. Treatment with miR-146a-5p mimetic increased cellular senescence and inflammation and decreased pro-apoptotic factors in visceral adipose tissue of df/df mice. The miR-146a-5p mimetic induced similar effects in 3T3-L1 cells cultivated at normal but not high glucose levels. Importantly, 3T3-L1 HG cells in high glucose conditions showed significantly higher expression of miR-146a-5p than 3T3-L1 grown in normal glucose conditions. These results indicate that miR-146a-5p can be a marker for cellular senescence. This miRNA represents one of the significant SASP factors that if not precisely regulated, can accentuate inflammatory responses and stimulate senescence in surrounding non-senescent cells. The role of miR-146a-5p is different in healthy versus stressed cells, suggesting potential effects of this miRNA depend on overall organismal health, aging, and metabolic state.
Collapse
Affiliation(s)
- Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Moritz Weigl
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Sarah Noureddine
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Collin Lahde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Kunal Mitra
- Biomedical Engineering, Florida Tech, Melbourne, FL, 32901, USA
| | - Esther Beltran
- Florida Space Institute, University of Central Florida, Orlando, FL, 32826, USA
| | - Johannes Grillari
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - James L Kirkland
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
23
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
24
|
Bednarczyk M, Dunislawska A, Stadnicka K, Grochowska E. Chicken embryo as a model in epigenetic research. Poult Sci 2021; 100:101164. [PMID: 34058565 PMCID: PMC8170499 DOI: 10.1016/j.psj.2021.101164] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Epigenetics is defined as the study of changes in gene function that are mitotically or meiotically heritable and do not lead to a change in DNA sequence. Epigenetic modifications are important mechanisms that fine tune the expression of genes in response to extracellular signals and environmental changes. In vertebrates, crucial epigenetic reprogramming events occur during early embryogenesis and germ cell development. Chicken embryo, which develops external to the mother's body, can be easily manipulated in vivo and in vitro, and hence, it is an excellent model for performing epigenetic studies. Environmental factors such as temperature can affect the development of an embryo into the phenotype of an adult. A better understanding of the environmental impact on embryo development can be achieved by analyzing the direct effects of epigenetic modifications as well as their molecular background and their intergenerational and transgenerational inheritance. In this overview, the current possibility of epigenetic changes during chicken embryonic development and their effects on long-term postembryonic development are discussed.
Collapse
Affiliation(s)
- Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Ewa Grochowska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
25
|
miR-183-5p Is a Potential Molecular Marker of Systemic Lupus Erythematosus. J Immunol Res 2021; 2021:5547635. [PMID: 34036107 PMCID: PMC8124875 DOI: 10.1155/2021/5547635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Objective To investigate microRNA (miRNA) expression profiles in individuals with systemic lupus erythematosus (SLE) and identify the valuable miRNA biomarkers in diagnosing and monitoring SLE. Methods Next-generation sequencing (NGS) was performed to assess miRNA amounts in peripheral blood mononuclear cells (PBMCs) from four SLE cases and four healthy controls. Quantitative polymerase chain reaction (qPCR) was carried out for validating candidate miRNAs in 32 SLE cases and 32 healthy controls. In addition, receiver operating characteristic (ROC) curve analysis was completed to evaluate diagnostic performance. Finally, the associations of candidate miRNAs with various characteristics of SLE were analyzed. Results A total of 157 miRNAs were upregulated, and 110 miRNAs were downregulated in PBMCs from SLE cases in comparison to healthy controls, of which the increase of miR-183-5p and decrease of miR-374b-3p were validated by qPCR and both showed good diagnostic performance for SLE diagnosis. Besides, miR-183-5p expression levels displayed a positive association with SLE disease activity index (SLEDAI) and anti-dsDNA antibody amounts. Conclusion Our data indicated that miR-183-5p is a promising biomarker of SLE.
Collapse
|
26
|
miRNA Profiling in the Chicken Liver under the Influence of Early Microbiota Stimulation with Probiotic, Prebiotic, and Synbiotic. Genes (Basel) 2021; 12:genes12050685. [PMID: 34062867 PMCID: PMC8147272 DOI: 10.3390/genes12050685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation of gene expression is a form of interaction of the external environment on reading and transcription of genetic information encoded in nucleic acids. We provided evidence that early stimulation of the chicken microbiota with in ovo delivered synbiotics influenced gene expression and DNA methylation in the liver. Therefore, we hypothesize that the stimulation of microbiota by administering bioactive substances in ovo also affects the activity of miRNA in liver. For the analysis of miRNA activity, RNA was isolated from liver of adult broiler chicken and native chicken breed. The animals received a prebiotic, probiotic and synbiotic in ovo on day 12 of egg incubation. The analysis of miRNA expression was performed using the LNA method on a miRNA panel selected on the basis of previous microarray experiments. We have found increased miRNA expression activity after probiotic and synbiotic administration, especially in native chicken breed. Our results suggest that prebiotics reduce or do not affect miRNA activity. We have also shown that miRNA activity is regulated by the substance and genotype of the chicken. We can conclude that miRNAs constitute an important component of the molecular mechanism of host–probiotic interaction in liver.
Collapse
|
27
|
Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Front Vet Sci 2021; 8:654064. [PMID: 33937376 PMCID: PMC8081834 DOI: 10.3389/fvets.2021.654064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Spontaneous fetal loss is one of the most important challenges that commercial pig industry is still facing in North America. Research over the decade provided significant insights into some of the associated mechanisms including uterine capacity, placental efficiency, deficits in vasculature, and immune-inflammatory alterations at the maternal-fetal interface. Pigs have unique epitheliochorial placentation where maternal and fetal layers lay in opposition without any invasion. This has provided researchers opportunities to accurately tease out some of the mechanisms associated with maternal-fetal interface adaptations to the constantly evolving needs of a developing conceptus. Another unique feature of porcine pregnancy is the conceptus derived recruitment of immune cells during the window of conceptus attachment. These immune cells in turn participate in pregnancy associated vascular changes and contribute toward tolerance to the semi-allogeneic fetus. However, the precise mechanism of how maternal-fetal cells communicate during the critical times in gestation is not fully understood. Recently, it has been established that bi-directional communication between fetal trophoblasts and maternal cells/tissues is mediated by extracellular vesicles (EVs) including exosomes. These EVs are detected in a variety of tissues and body fluids and their role has been described in modulating several physiological and pathological processes including vascularization, immune-modulation, and homeostasis. Recent literature also suggests that these EVs (exosomes) carry cargo (nucleic acids, protein, and lipids) as unique signatures associated with some of the pregnancy associated pathologies. In this review, we provide overview of important mechanisms in porcine pregnancy success and failure and summarize current knowledge about the unique cargo containing biomolecules in EVs. We also discuss how EVs (including exosomes) transfer their contents into other cells and regulate important biological pathways critical for pregnancy success.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jessica E. Miller
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
28
|
Su H, Chang R, Zheng W, Sun Y, Xu T. microRNA-210 and microRNA-3570 Negatively Regulate NF-κB-Mediated Inflammatory Responses by Targeting RIPK2 in Teleost Fish. Front Immunol 2021; 12:617753. [PMID: 33868233 PMCID: PMC8044448 DOI: 10.3389/fimmu.2021.617753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
Pathogen infection can cause the production of inflammatory cytokines, which are key mediators that cause the host’s innate immune response. Therefore, proper regulation of immune genes associated with inflammation is essential for immune response. Among them, microRNAs (miRNAs) as gene regulator have been widely reported to be involved in the innate immune response of mammals. However, the regulatory network in which miRNAs are involved in the development of inflammation is largely unknown in lower vertebrates. Here, we identified two miRNAs from miiuy croaker (Miichthys miiuy), miR-210 and miR-3570, which play a negative regulatory role in host antibacterial immunity. We found that the expressions of miR-210 and miR-3570 were significantly upregulated under the stimulation of Gram-negative bacterium vibrio harveyi and LPS (lipopolysaccharide). Induced miR-210 and miR-3570 inhibit inflammatory cytokine production by targeting RIPK2, thereby avoiding excessive inflammation. In particular, we found that miR-210 and miR-3570 negatively regulate antimicrobial immunity by regulating the RIPK2-mediated NF-κB signaling pathway. The collective results indicated that both miRNAs are used as negative feedback regulators to regulate RIPK2-mediated NF-κB signaling pathway and thus play a regulatory role in bacteria-induced inflammatory response.
Collapse
Affiliation(s)
- Hui Su
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Renjie Chang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
29
|
Al Rawi N, Elmabrouk N, Abu Kou R, Mkadmi S, Rizvi Z, Hamdoon Z. The role of differentially expressed salivary microRNA in oral squamous cell carcinoma. A systematic review. Arch Oral Biol 2021; 125:105108. [PMID: 33756383 DOI: 10.1016/j.archoralbio.2021.105108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study aims to systematically review the role of differentially expressed microRNA (miRNA) in saliva as potential biomarkers in oral cancer patients. DESIGN PubMed, Scopus and EBSCO online data bases were used as well as manual searching to extract studies from January 2008 up to October 2020. RESULTS A total of 14 studies that met the eligibility criteria were included. All selected studies were of case-control type. A total of 25 differentially expressed miRNAs were identified. Thirteen of these miRNAs (Let-7a, miR 27, miR 34, miR 92, miR 124, miR 125a, miR 136, miR139 miR 145, miR 146a, miR 200a, miR 205 and miR 375) were downregulated and other twelve (miR 9, miR 21, miR 31, miR 122, miR 134, miR 184, miR 191, miR 196a, miR 196b, miR 412, miR 512 and miR 8392) were upregulated. Four miRNAs were evaluated in more than one study (miR21, miR31, miR125 and miR 200). CONCLUSION According to these results, salivary miRNA can aid in diagnosis and prognosis of oral squamous cell carcinoma (OSCC). However, controlled clinical trials with a large sample size are required to validate the differentially expressed miRNAs of the present review.
Collapse
Affiliation(s)
- Natheer Al Rawi
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Neibal Elmabrouk
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Rawan Abu Kou
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Sara Mkadmi
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Zuha Rizvi
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Zaid Hamdoon
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28:127-138. [PMID: 33364050 PMCID: PMC7753224 DOI: 10.1016/j.jare.2020.08.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs, a class of small endogenous RNAs, are one of the essential biopharmaceuticals which are in commercial spans as next-generation medicine in recent times. A snapshot of the current scenario regarding the miRNAs as biopharmaceuticals have been discussed. In this work, biopharmaceutical companies working with miRNAs and the current status of preclinical/clinical trials about miRNA therapeutics have been reviewed. Finally, recent updates on the absorption, distribution, metabolism, and excretion (ADME), as well as a delivery system of miRNAs, have been illustrated.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
31
|
Săsăran MO, Meliț LE, Dobru ED. MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22031406. [PMID: 33573346 PMCID: PMC7866828 DOI: 10.3390/ijms22031406] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) remains the most-researched etiological factor for gastric inflammation and malignancies. Its evolution towards gastric complications is dependent upon host immune response. Toll-like receptors (TLRs) recognize surface and molecular patterns of the bacterium, especially the lipopolysaccharide (LPS), and act upon pathways, which will finally lead to activation of the nuclear factor-kappa B (NF-kB), a transcription factor that stimulates release of inflammatory cytokines. MicroRNAs (MiRNAs) finely modulate TLR signaling, but their expression is also modulated by activation of NF-kB-dependent pathways. This review aims to focus upon several of the most researched miRNAs on this subject, with known implications in host immune responses caused by H. pylori, including let-7 family, miRNA-155, miRNA-146, miRNA-125, miRNA-21, and miRNA-221. TLR-LPS interactions and their afferent pathways are regulated by these miRNAs, which can be considered as a bridge, which connects gastric inflammation to pre-neoplastic and malignant lesions. Therefore, they could serve as potential non-invasive biomarkers, capable of discriminating H. pylori infection, as well as its associated complications. Given that data on this matter is limited in children, as well as for as significant number of miRNAs, future research has yet to clarify the exact involvement of these entities in the progression of H. pylori-associated gastric conditions.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics III, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technol-ogy of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-742-984744
| | - Ecaterina Daniela Dobru
- Department of Internal Medicine VII, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
32
|
miR-23b Attenuates LPS-Induced Inflammatory Responses in Acute Lung Injury via Inhibition of HDAC2. Biochem Genet 2021; 59:604-616. [PMID: 33415668 DOI: 10.1007/s10528-020-10018-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory responses play significant role in infectious etiology-induced acute lung injury (ALI). Histone deacetylase 2 is found to be essential and stimulated in lipopolysaccharide (LPS)-induced ALI by regulating proinflammatory cytokines. miR-23b has been demonstrated to be downregulated in LPS-induced inflammatory injury. In this study, we aimed to explore the interaction between miR-23b and HDAC2 and their function in LPS-induced ALI. LPS treatment was induced on murine alveolar macrophage cell line MH-S. Level of miR-23b and HDAC2 were determined by real-time PCR or Western blot. Proinflammatory cytokines expression and secretion were detected by real-time PCR and ELISA assay. The levels of miR-23b and HDAC2 were manipulated by transient transfection of miRNA mimics, shRNA or overexpression vector. The interaction between miR-23b and HDAC2 were tested by Luciferase reporter assay. LPS treatment inhibited miR-23b expression, while increased HDAC2 level in MH-S cells. Proinflammatory cytokines were stimulated by LPS treatment. Knockdown of HDAC2 or overexpression of miR-23b significantly repressed the expression of proinflammatory cytokines induced by LPS. miR-23b could suppress HDAC2 expression by directly targeting to its mRNA. LPS treatment stimulated the inflammatory responses in macrophages through inhibition of miR-23b, enhanced HDAC2 expression and inducing the expression of its downstream targets TNF-α, IL-6, and IL-1β. Overexpression of miR-23b was sufficient to suppress inflammatory responses by targeting HDAC2, making it a promising therapeutic target to ALI treatment.
Collapse
|
33
|
Progressive Control of Streptococcus agalactiae-Induced Innate Inflammatory Response Is Associated with Time Course Expression of MicroRNA-223 by Neutrophils. Infect Immun 2020; 88:IAI.00563-20. [PMID: 32958526 DOI: 10.1128/iai.00563-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Group B streptococcus (GBS) is a human-pathogenic bacterium inducing a strong inflammatory response that may be detrimental for host tissues if not finely regulated. The inflammatory response can be modulated by different molecular mechanisms, among which growing evidence points toward the crucial role of microRNAs (miRNAs). Regarding innate inflammatory response, studies have reported that miR-223 is essential for the control of granulocyte proliferation and activation. Moreover, a number of investigations on miRNA expression profiling performed in various inflammatory settings have revealed that miR-223 is among the top differentially expressed miRNAs. Yet the dynamic pattern of expression of miR-223 in vivo with respect to the evolution of the inflammatory process, especially in microbial infection, remains elusive. In this study, we analyzed the kinetic expression of miR-223 in an inflammatory model of GBS-induced murine pneumonia and looked for correlates with inflammatory markers, including innate cell infiltrates. We found that miR-223 expression is rapidly induced at very early time points (3 to 6 h postinfection [p.i.]) mainly by lung-infiltrating neutrophils. Interestingly, the level of miR-223 accumulating in the lungs remains higher at later stages of infection (24 h and 48 h p.i.), and this correlates with reduced expression of primary inflammatory cytokines and chemokines and with a shift in infiltrating monocyte and macrophage subtypes toward a regulatory phenotype. Transient inhibition of miR-223 by an antagomir resulted in significant increase of CXCL2 expression and partial enhancement of infiltrating neutrophils in GBS-infected lung tissues. This suggests the potential contribution of miR-223 to the resolution phase of GBS-induced acute inflammation.
Collapse
|
34
|
Qi H, Liang G, Yu J, Wang X, Liang Y, He X, Feng T, Zhang J. Genome-wide profiling of miRNA expression patterns in tubal endometriosis. Reproduction 2020; 157:525-534. [PMID: 30909166 DOI: 10.1530/rep-18-0631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/25/2019] [Indexed: 01/12/2023]
Abstract
MicroRNA (miRNA) expression profiles in tubal endometriosis (EM) are still poorly understood. In this study, we analyzed the differential expression of miRNAs and the related gene networks and signaling pathways in tubal EM. Four tubal epithelium samples from tubal EM patients and five normal tubal epithelium samples from uterine leiomyoma patients were collected for miRNA microarray. Bioinformatics analyses, including Ingenuity Pathway Analysis (IPA), Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of five miRNAs was performed in six tubal epithelium samples from tubal EM and six from control. A total of 17 significantly differentially expressed miRNAs and 4343 potential miRNA-target genes involved in tubal EM were identified (fold change >1.5 and FDR-adjusted P value <0.05). IPA indicated connections between miRNAs, target genes and other gynecological diseases like endometrial carcinoma. GO and KEGG analysis revealed that most of the identified genes were involved in the mTOR signaling pathway, SNARE interactions in vesicular transport and endocytosis. We constructed an miRNA-gene-disease network using target gene prediction. Functional analysis showed that the mTOR pathway was connected closely to tubal EM. Our results demonstrate for the first time the differentially expressed miRNAs and the related signal pathways involved in the pathogenesis of tubal EM which contribute to elucidating the pathogenic mechanism of tubal EM-related infertility.
Collapse
Affiliation(s)
- Hang Qi
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Guiling Liang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofeng Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Liang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tienan Feng
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
35
|
Zhang X, Wang X, Fan M, Tu F, Yang K, Ha T, Liu L, Kalbfleisch J, Williams D, Li C. Endothelial HSPA12B Exerts Protection Against Sepsis-Induced Severe Cardiomyopathy via Suppression of Adhesion Molecule Expression by miR-126. Front Immunol 2020; 11:566. [PMID: 32411123 PMCID: PMC7201039 DOI: 10.3389/fimmu.2020.00566] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
Heat shock protein A12B (HSPA12B) is predominately expressed in endothelial cells (ECs) and has been reported to protect against cardiac dysfunction from endotoxemia or myocardial infarction. This study investigated the mechanisms by which endothelial HSPA12B protects polymicrobial sepsis–induced cardiomyopathy. Wild-type (WT) and endothelial HSPA12B knockout (HSPA12B–/–) mice were subjected to polymicrobial sepsis induced by cecal ligation and puncture (CLP). Cecal ligation and puncture sepsis accelerated mortality and caused severe cardiac dysfunction in HSPA12B–/– mice compared with WT septic mice. The levels of adhesion molecules and the infiltrated immune cells in the myocardium of HSPA12B–/– septic mice were markedly greater than in WT septic mice. The levels of microRNA-126 (miR-126), which targets adhesion molecules, in serum exosomes from HSPA12B–/– septic mice were significantly lower than in WT septic mice. Transfection of ECs with adenovirus expressing HSPA12B significantly increased miR-126 levels. Increased miR-126 levels in ECs prevented LPS-stimulated expression of adhesion molecules. In vivo delivery of miR-126 carried by exosomes into the myocardium of HSPA12B–/– mice significantly attenuated CLP sepsis increased levels of adhesion molecules, and improved CLP sepsis–induced cardiac dysfunction. The data suggest that HSPA12B protects against sepsis-induced severe cardiomyopathy via regulating miR-126 expression which targets adhesion molecules, thus decreasing the accumulation of immune cells in the myocardium.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Fei Tu
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - John Kalbfleisch
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Biometry and Medical Computing, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
36
|
Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Front Microbiol 2020; 11:563. [PMID: 32390959 PMCID: PMC7192003 DOI: 10.3389/fmicb.2020.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic tolerance in bacterial pathogens that are genetically susceptible, but phenotypically tolerant to treatment, represents a growing crisis for public health. In particular, the intracellular bacteria-mediated antibiotic tolerance by acting as “Trojan horses” play a critical and underappreciated role in the disease burden of bacterial infections. Thus, more intense efforts are required to tackle this problem. In this review, we firstly provide a brief overview of modes of action of bacteria invasion and survival in macrophage or non-professional phagocytic cells. Furthermore, we summarize our current knowledge about promising strategies to eliminate these intracellular bacterial pathogens, including direct bactericidal agents, antibiotic delivery to infection sites by various carriers, and activation of host immune functions. Finally, we succinctly discuss the challenges faced by bringing them into clinical trials and our constructive perspectives.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
37
|
Myeloid cell-targeted miR-146a mimic inhibits NF-κB-driven inflammation and leukemia progression in vivo. Blood 2020; 135:167-180. [PMID: 31805184 DOI: 10.1182/blood.2019002045] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a key regulator of inflammation and cancer progression, with an important role in leukemogenesis. Despite its therapeutic potential, targeting NF-κB using pharmacologic inhibitors has proven challenging. Here, we describe a myeloid cell-selective NF-κB inhibitor using an miR-146a mimic oligonucleotide conjugated to a scavenger receptor/Toll-like receptor 9 agonist (C-miR146a). Unlike an unconjugated miR146a, C-miR146a was rapidly internalized and delivered to the cytoplasm of target myeloid cells and leukemic cells. C-miR146a reduced expression of classic miR-146a targets (IRAK1 and TRAF6), thereby blocking activation of NF-κB in target cells. IV injections of C-miR146a mimic to miR-146a-deficient mice prevented excessive NF-κB activation in myeloid cells, and thus alleviated myeloproliferation and mice hypersensitivity to bacterial challenge. Importantly, C-miR146a showed efficacy in dampening severe inflammation in clinically relevant models of chimeric antigen receptor (CAR) T-cell-induced cytokine release syndrome. Systemic administration of C-miR146a oligonucleotide alleviated human monocyte-dependent release of IL-1 and IL-6 in a xenotransplanted B-cell lymphoma model without affecting CD19-specific CAR T-cell antitumor activity. Beyond anti-inflammatory functions, miR-146a is a known tumor suppressor commonly deleted or expressed at reduced levels in human myeloid leukemia. Using The Cancer Genome Atlas acute myeloid leukemia data set, we found an inverse correlation of miR-146a levels with NF-κB-related genes and with patient survival. Correspondingly, C-miR146a induced cytotoxic effects in human MDSL, HL-60, and MV4-11 leukemia cells in vitro. The repeated IV administration of C-miR146a inhibited expression of NF-κB target genes and thereby thwarted progression of disseminated HL-60 leukemia. Our results show the potential of using myeloid cell-targeted miR-146a mimics for the treatment of inflammatory and myeloproliferative disorders.
Collapse
|
38
|
Yu DH, Ruan XL, Huang JY, Liu XP, Ma HL, Chen C, Hu WD, Li S. Analysis of the Interaction Network of Hub miRNAs-Hub Genes, Being Involved in Idiopathic Pulmonary Fibers and Its Emerging Role in Non-small Cell Lung Cancer. Front Genet 2020; 11:302. [PMID: 32300359 PMCID: PMC7142269 DOI: 10.3389/fgene.2020.00302] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease with lesions confined to the lungs. To identify meaningful microRNA (miRNA) and gene modules related to the IPF progression, GSE32537 (RNA-sequencing data) and GSE32538 (miRNA-sequencing data) were downloaded and processed, and then weighted gene co-expression network analysis (WGCNA) was applied to construct gene co-expression networks and miRNA co-expression networks. GSE10667, GSE70866, and GSE27430 were used to make a reasonable validation for the results and evaluate the clinical significance of the genes and the miRNAs. Six hub genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-26b-5p) were clarified and validated. Meanwhile, iteration network of hub miRNAs-hub genes was constructed, and the emerging role of the network being involved in non-small cell lung cancer (NSCLC) was also analyzed by several webtools. The expression levels of hub genes were different between normal lung tissues and NSCLC tissues. Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and three miRNAs (hsa-miR-29c-3p, hsa-let-7c-5p, and hsa-miR-29b-3p) were related to the survival time of lung adenocarcinoma (LUAD). The interaction network of hub miRNAs-hub genes might provide common mechanisms involving in IPF and NSCLC. More importantly, useful clues were provided for clinical treatment of both diseases based on novel molecular advances.
Collapse
Affiliation(s)
- Dong Hu Yu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jing-Yu Huang
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hao-Li Ma
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Elhefnawi M, Salah Z, Soliman B. The Promise of miRNA Replacement Therapy for Hepatocellular Carcinoma. Curr Gene Ther 2019; 19:290-304. [DOI: 10.2174/1566523219666191023101433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is a devastating tumor which accounts for death mortality rate
94% globally, and about 780,000 new cases each year. Tumor suppressor miRNAs represent a class of
noncoding RNAs, which exhibit decreased or inhibited expression in the case of carcinogenesis.
Therefore, the replacement of these molecules leads to post-transcriptional regulation of tens to hundreds
of oncogenic targets and limiting the tumor. Interestingly, there is a group of tumor silencer
miRNAs that have been highlighted in HCC and herein, our review will discuss the prominent examples
of these miRs in terms of their efficient delivery using vectors, nano-delivery systems, their successful
models either in vitro or in vivo and pre-clinical trials. Collectively, tumor suppressor miRNAs
can act as novel therapeutics for HCC and more studies should be directed towards these promising
therapeutics.
Collapse
Affiliation(s)
- Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| | - Zeinab Salah
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| | - Bangly Soliman
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
41
|
López P, Girardi E, Pfeffer S. [Importance of cellular microRNAs in the regulation of viral infections]. Med Sci (Paris) 2019; 35:667-673. [PMID: 31532379 DOI: 10.1051/medsci/2019130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Viruses are obligatory intracellular parasites that rely on a wide range of cellular factors to successfully accomplish their infectious cycle. Among those, micro (mi)RNAs have recently emerged as important modulators of viral infections. These small regulatory molecules act as repressors of gene expression. During infection, miRNAs can function by targeting either cellular or viral RNAs. In this review, we will recapitulate what has been reported to date on this interplay between cellular miRNAs and viruses and the effect on the infection. Furthermore, we will briefly discuss the possibilities of interfering with the infection through the modulation of this pathway to develop novel antiviral therapies.
Collapse
Affiliation(s)
- Paula López
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg, France
| | - Erika Girardi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg, France
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
42
|
Yu ZW, Gao W, Feng XY, Zhang JY, Guo HX, Wang CJ, Chen J, Hu JP, Ren WZ, Yuan B. Roles of differential expression of miR-543-5p in GH regulation in rat anterior pituitary cells and GH3 cells. PLoS One 2019; 14:e0222340. [PMID: 31509580 PMCID: PMC6738916 DOI: 10.1371/journal.pone.0222340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Growth hormone (GH) is an important hormone released by the pituitary gland that plays a key role in the growth and development of organisms. In our study, TargetScan analysis and the dual luciferase reporter assays were used to predict and screen for miRNAs that might act on the rat Gh1 gene, and we identified miR-543-5p. Then, the GH3 cell line and the primary rat pituitary cells were transfected with miRNA mimic, inhibitor, and siRNA. We detected the Gh1 gene expression and the GH secretion by real-time PCR and ELISAs, respectively, to verify the regulatory effect of miR-543-5p on GH secretion. The results showed that miR-543-5p can inhibit Gh1 mRNA expression and reduce GH secretion. MiR-543-5p inhibitor upregulated Gh1 mRNA expression and increased GH secretion compared with the negative control. In summary, miR-543-5p downregulates Gh1 expression, resulting in a decrease in GH synthesis and secretion, which demonstrates the important role of miRNAs in regulating GH and animal growth and development.
Collapse
Affiliation(s)
- Ze-Wen Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xin-Yao Feng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jin-Yu Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (BY); (W-ZR)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (BY); (W-ZR)
| |
Collapse
|
43
|
Tripathi A, Srivastava V, Singh BN. hsa-let-7b-5p facilitates Mycobacterium tuberculosis survival in THP-1 human macrophages by Fas downregulation. FEMS Microbiol Lett 2019; 365:4875923. [PMID: 29471394 DOI: 10.1093/femsle/fny040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis continues to be one of the deadliest infectious diseases worldwide. MicroRNAs (miRNAs) are small non-coding entities that play critical role as post-transcriptional regulators and are transcriptionally deregulated upon mycobacterial infection. In this study, we found significant upregulation of hsa-let-7b-5p in Mycobacterium tuberculosis (MTB) infected THP-1 human macrophages. Concomitantly, we detected the reduced level of Fas protein, one of the targets of hsa-let-7b-5p, in MTB-infected THP-1 macrophages. Using luciferase assay, a direct interaction between hsa-let-7b-5p and the Fas 3΄-untranslated region (3΄-UTR) was established. Inhibition of hsa-let-7b-5p augmented the apoptosis of THP-1 cells enabling enhanced clearance of MTB. Our findings suggest that hsa-let-7b-5p helps intracellular survival of MTB in THP-1 cells by downregulating Fas protein level. This highlights hsa-let-7b-5p as a potential therapeutic target for tuberculosis treatment.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vishal Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhupendra N Singh
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
44
|
Bronisz-Budzyńska I, Chwalenia K, Mucha O, Podkalicka P, Karolina-Bukowska-Strakova, Józkowicz A, Łoboda A, Kozakowska M, Dulak J. miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skelet Muscle 2019; 9:22. [PMID: 31412923 PMCID: PMC6693262 DOI: 10.1186/s13395-019-0207-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease evoked by a mutation in the dystrophin gene. It is associated with progressive muscle degeneration and increased inflammation. Up to this date, mainly anti-inflammatory treatment is available for patients suffering from DMD. miR-146a is known to diminish inflammation and fibrosis in different tissues by downregulating the expression of proinflammatory cytokines. However, its role in DMD has not been studied so far. In our work, we have generated mice globally lacking both dystrophin and miR-146a (miR-146a−/−mdx) and examined them together with wild-type, single miR-146a knockout and dystrophic (mdx—lacking dystrophin) mice in a variety of aspects associated with DMD pathophysiology (muscle degeneration, inflammatory reaction, muscle satellite cells, muscle regeneration, and fibrosis). We have shown that miR-146a level is increased in dystrophic muscles in comparison to wild-type mice. Its deficiency augments the expression of proinflammatory cytokines (IL-1β, CCL2, TNFα). However, muscle degeneration was not significantly worsened in mdx mice lacking miR-146a up to 24 weeks of age, although some aggravation of muscle damage and inflammation was evident in 12-week-old animals, though no effect of miR-146a deficiency was visible on quantity, proliferation, and in vitro differentiation of muscle satellite cells isolated from miR-146a−/−mdx mice vs. mdx. Similarly, muscle regeneration and collagen deposition were not changed by miR-146a deficiency. Nevertheless, the lack of miR-146a is associated with decreased Vegfa and increased Tgfb1. Overall, the lack of miR-146a did not aggravate significantly the dystrophic conditions in mdx mice, but its effect on DMD in more severe conditions warrants further investigation.
Collapse
Affiliation(s)
- Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Chwalenia
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Karolina-Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Department of Clinical Immunology and Transplantology, Institute of Paediatrics, Medical College, Jagiellonian University, Wielicka 265, 30-663, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
45
|
Zhou C, Zhao L, Wang K, Qi Q, Wang M, Yang L, Sun P, Mu H. MicroRNA-146a inhibits NF-κB activation and pro-inflammatory cytokine production by regulating IRAK1 expression in THP-1 cells. Exp Ther Med 2019; 18:3078-3084. [PMID: 31572547 PMCID: PMC6755493 DOI: 10.3892/etm.2019.7881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-146a levels are reduced in peripheral blood mononuclear cells of patients with systemic lupus erythematosus (SLE); however, its function is not well understood. The present study investigated the role of miR-146a in the regulation of lipopolysaccharide (LPS)-induced inflammation in THP-1 cells. A miR-146a mimic and an inhibitor were used to overexpress and downregulate miR-146a expression, respectively. Reverse transcription-quantitative PCR and western blot analyses were performed to evaluate interleukin (IL)-1 receptor-associated kinase 1 (IRAK1) expression, and western blot analysis was applied to assess nuclear factor-κB activation by analyzing p65 subunit levels in the nucleus. To investigate the effects of miR-146a on LPS-induced inflammation, IL-6 and tumor necrosis factor-α (TNF-α) levels were also measured using ELISA. The results of the present study revealed thatmiR-146a overexpression significantly reduced IRAK1 expression, reduced p65 levels in the nucleus and reduced IL-6 and TNF-α levels in the supernatant of the cell culture medium of THP-1 cells following LPS treatment. Luciferase assays confirmed IRAK1 to be a direct target of miR-146a in THP-1 cells. In conclusion, miR-146a may regulate IRAK1 expression and inhibit the activation of inflammatory signals and secretion of pro-inflammatory cytokines. The present study revealed, at least in part, the mechanisms by which miR-146a regulate the inflammatory response in SLE.
Collapse
Affiliation(s)
- Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Lan Zhao
- Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300193, P.R. China
| | - Kai Wang
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Qianru Qi
- Department of Medical Laboratory, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| | - Meng Wang
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Lei Yang
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Ping Sun
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Hong Mu
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
46
|
Mallick B, Sharma AR, Lee SS, Chakraborty C. Understanding the molecular interaction of human argonaute-2 and miR-20a complex: A molecular dynamics approach. J Cell Biochem 2019; 120:19915-19924. [PMID: 31318096 DOI: 10.1002/jcb.29300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Argonaute-2 (AGO2), a member of the Argonaute family, is the only member possessing catalytic and RNA silencing activity. In here, a molecular dynamics (MDs) simulation was performed using the crystal structure of human AGO2 protein complex with miR-20a. miR-20a is involved with various kind of biological process like heart and lung development, oncogenic process, etc. In precise, MD simulation was carried out with AGO2 protein complex with wild type, two mutant sites and four mutant sites in guided microRNA (miRNA). It has been noted that root-mean-square deviation (RMSD) of atomic positions of nucleic acid for wild type and two mutant sites guided miRNA has the same pattern of fluctuations, which stabilizes around 0.27 nm after 2 ns. Cα atom of AGO2 protein in the complex shows that this complex with wild type and two mutant site mutation duplex has a stable RMSD value after 20 ns, ranging between 0.14 and 0.21 nm. From the root-mean-square fluctuation (RMSF), we observed an increased pattern of fluctuations for the atoms of four mutant complex of AGO2-miR-20a complex. This increased RMSF of non-mutated nucleic acids is contributed by U-A bond breaking at the site of the nucleotide of U2 of guided miRNA, as observed from the duplex structure taken at different time steps of the simulation. Superimposed structure of the miRNA-mRNA duplex for the three complexes depicts that the three miRNA-mRNA duplexes are stable during the simulation. Current work demonstrates the possible correlations between the conformational changes of this AGO2-miR-20a duplex structure and the interactions of different atoms.
Collapse
Affiliation(s)
- Bidyut Mallick
- Departments of Physics, Galgotias College of Engineering and Technology, Greater Noida, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, Republic of Korea.,Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
47
|
Deng L, Wang R, Li H, Zhang C, Zhao L, Zhang M. miRNA-Gene Regulatory Network in Gnotobiotic Mice Stimulated by Dysbiotic Gut Microbiota Transplanted From a Genetically Obese Child. Front Microbiol 2019; 10:1517. [PMID: 31333621 PMCID: PMC6624655 DOI: 10.3389/fmicb.2019.01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) dysbiosis has been considered a pathogenic origin of many chronic diseases. In our previous trial, a shift in GM structure caused by a complex fiber-rich diet was associated with the health improvement of obese Prader-Willi syndrome (PWS) children. The pre- and post-intervention GMs (pre- and post-group, respectively) from one child were then transplanted into gnotobiotic mice, which resulted in significantly different physiological phenotypes, each of which was similar to the phenotype of the corresponding GM donor. This study was designed to investigate the miRNA-gene regulatory networks involved in causing these phenotypic differences. Using the post-group as a reference, we systematically identified and annotated the differentially expressed (DE) miRNAs and genes in the colon and liver of the pre-group in the second and fourth weeks after GM inoculation. Most of the significantly enriched GO terms and KEGG pathways were observed in the liver and were in the second week after GM transplantation. We screened 23 key genes along with their 73 miRNA regulators relevant to the host phenotype changes and constructed a network. The network contained 92 miRNA-gene regulation relationships, 51 of which were positive, and 41 of which were negative. Both the colon and liver had upregulated pro-inflammatory genes, and genes involved in fatty acid oxidation, lipolysis, and plasma cholesterol clearance were downregulated in only the liver. These changes were consistent with lipid and cholesterol accumulation in the host and with a high inflammation level. In addition, the colon showed an impacted glucagon-like peptide 1 (GLP-1) signaling pathway, while the liver displayed decreased insulin receptor signaling pathway activity. These molecular changes were mainly found in the second week, 2 weeks before changes in body fat occurred. This time lag indicated that GM dysbiosis might initially induce cholesterol and lipid metabolism-related miRNA and gene expression disorder and then lead to lipid accumulation and obesity development, which implicates a causative role of GM dysbiosis in obesity development rather than a result of obesity. This study provides fundamental molecular information that elucidates how dysbiotic GM increases host inflammation and disturbs host lipid and glucose metabolism.
Collapse
Affiliation(s)
- Liman Deng
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruirui Wang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ, United States
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Bax Targeted by miR-29a Regulates Chondrocyte Apoptosis in Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1434538. [PMID: 30993110 PMCID: PMC6434297 DOI: 10.1155/2019/1434538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease, where chondrocyte apoptosis is responsible for cartilage degeneration. Bax is a well-known proapoptotic protein of the Bcl-2 family, involved in a large number of physiological and pathological processes. However, the regulation mechanisms of Bax underlying chondrocyte apoptosis in OA remain unknown. In the present study, we determined the role of Bax in human OA and chondrocyte apoptosis. The results showed that Bax was upregulated in chondrocytes from the articular cartilage of OA patients and in cultured chondrocyte-like ATDC5 cells treated by IL-1β. Bax was identified to be the direct target of miR-29a by luciferase reporter assay and by western blotting. Inhibition of miR-29a by the mimics protested and overexpression by miR-29a inhibitors aggravated ATDC5 apoptosis induced by IL-1β. These data reveal that miR-29a/Bax axis plays an important role in regulating chondrocyte apoptosis and suggest that targeting the proapoptotic protein Bax and increasing expression levels of miR-29a emerge as potential approach for protection against the development of OA.
Collapse
|
49
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Rana S, Mukherjee A, Chawla-Sarkar M. Synchronized Orchestration of miR-99b and let-7g Positively Regulates Rotavirus Infection by Modulating Autophagy. Sci Rep 2019; 9:1318. [PMID: 30718795 PMCID: PMC6362297 DOI: 10.1038/s41598-018-38473-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022] Open
Abstract
Rotavirus (RV), the major etiological agent of viral gastroenteritis in young children, kills over 200 thousand infants each year. In spite of available vaccines, rotaviral diarrhoea is still a major problem in developing countries of Asia and Africa. Therefore, the studies on RV infection and host antiviral responses are warranted. The active correlation between virus infection and activation of autophagy machinery and positive influence of autophagy on RV replication have been documented recently. Previous study from our group showed dysregulation of several cellular miRNAs during RV infection, though their significance remained largely unknown. Since cellular microRNAs (miRNAs) have been implicated in the control of several fundamental biological processes including stress response and autophagy, we focused on two miRNAs, miR-99b and let-7g, and analyzed their function to gain insight into the miRNA-autophagy crosstalk during RV infection. This study shows that RV suppresses let-7g expression but enhances miR-99b that in turn augment major autophagy regulators. Ectopic expression of let-7g and knockdown of miR-99b resulted in inhibition of autophagy, hence, reduction of RV replication. Overall, our study highlights new mechanistic insights for understanding the role of miRNAs in modulating RV infection and possibility of using RNA interference as an antiviral therapeutic target.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Shampa Chanda
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Santanu Rana
- Department of Zoology, University of Calcutta, Kolkata, WB, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India.
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India.
| |
Collapse
|
50
|
Huang X, Zhu Z, Guo X, Kong X. The roles of microRNAs in the pathogenesis of chronic obstructive pulmonary disease. Int Immunopharmacol 2018; 67:335-347. [PMID: 30578969 DOI: 10.1016/j.intimp.2018.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive and irreversible airflow obstruction, with an abnormal lung function. The etiology of COPD correlates with complex interactions between environmental and genetic determinants. However, the exact pathogenesis of COPD is obscure although it involves multiple aspects including oxidative stress, imbalance between proteolytic and anti-proteolytic activity, immunity and inflammation, apoptosis, and repair and destruction in both airways and lungs. Many genes have been demonstrated to be involved in those pathogenic processes of this disease in patients exposed to harmful environmental factors. Previous reports have investigated promising microRNAs (miRNAs) to disclose the molecular mechanisms for COPD development induced by different environmental exposure and genetic predisposition encounter, and find some potential miRNA biomarkers for early diagnosis and treatment targets of COPD. In this review, we summarized the expression profiles of the reported miRNAs from studies of COPD associated with environmental risk factors including cigarette smoking and air pollution exposures, and provided an overview of roles of those miRNAs in the pathogenesis of the disease. We also highlighted the potential utility and limitations of miRNAs serving as diagnostic biomarkers and therapeutic targets for COPD.
Collapse
Affiliation(s)
- Xinwei Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Zongxin Zhu
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaoran Guo
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|