1
|
Ramos S, Hartenian E, Broz P. Programmed cell death: NINJ1 and mechanisms of plasma membrane rupture. Trends Biochem Sci 2024; 49:717-728. [PMID: 38906725 DOI: 10.1016/j.tibs.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
Lytic cell death culminates in cell swelling and plasma membrane rupture (PMR). The cellular contents released, including proteins, metabolites, and nucleic acids, can act as danger signals and induce inflammation. During regulated cell death (RCD), lysis is actively initiated and can be preceded by an initial loss of membrane integrity caused by pore-forming proteins, allowing small molecules and cytokines to exit the cell. A recent seminal discovery showed that ninjurin1 (NINJ1) is the common executioner of PMR downstream of RCD, resulting in the release of large proinflammatory molecules and representing a novel target of cell death-associated lysis. We summarize recent developments in understanding membrane integrity and rupture of the plasma membrane with a focus on NINJ1.
Collapse
Affiliation(s)
- Saray Ramos
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Ella Hartenian
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
3
|
Li X, Chen G, Wu K, Zheng H, Tian Z, Xu Z, Zhao W, Weng J, Min Y. Imaging and monitoring of granzyme B in the immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1928. [PMID: 37715320 DOI: 10.1002/wnan.1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Significant progress has been made in tumor immunotherapy that uses the human immune response to kill and remove tumor cells. However, overreactive immune response could lead to various autoimmune diseases and acute rejection. Accurate and specific monitoring of immune responses in these processes could help select appropriate therapies and regimens for the patient and could reduce the risk of side effects. Granzyme B (GzmB) is an ideal biomarker for immune response, and its peptide substrate could be coupled with fluorescent dyes or contrast agents for the synthesis of imaging probes activated by GzmB. These small molecules and nanoprobes based on PET, bioluminescence imaging, or fluorescence imaging have proved to be highly GzmB specific and accuracy. This review summarizes the design of different GzmB-responsive imaging probes and their applications in monitoring of tumor immunotherapy and overreactive immune response. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiangxia Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Kecheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Haocheng Zheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Zuotong Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weidong Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Jose J, Law RHP, Leung EWW, Wai DCC, Akhlaghi H, Chandrashekaran IR, Caradoc-Davies TT, Voskoboinik I, Feutrill J, Middlemiss D, Jeevarajah D, Bashtannyk-Puhalovich T, Giddens AC, Lee TW, Jamieson SMF, Trapani JA, Whisstock JC, Spicer JA, Norton RS. Fragment-based and structure-guided discovery of perforin inhibitors. Eur J Med Chem 2023; 261:115786. [PMID: 37716187 DOI: 10.1016/j.ejmech.2023.115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.
Collapse
Affiliation(s)
- Jiney Jose
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Eleanor W W Leung
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Hedieh Akhlaghi
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Indu R Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Tom T Caradoc-Davies
- Australian Synchrotron, 800 Blackburn Rd., Clayton, Melbourne, VIC, 3168, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John Feutrill
- SYNthesis med chem (Australia) Pty Ltd, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - David Middlemiss
- XaviaPharm, Bishop's Stortford, CM23 5EX, England, United Kingdom
| | - Devadharshini Jeevarajah
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | | | - Anna C Giddens
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Tet Woo Lee
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| | - Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Ockfen E, Filali L, Pereira Fernandes D, Hoffmann C, Thomas C. Actin cytoskeleton remodeling at the cancer cell side of the immunological synapse: good, bad, or both? Front Immunol 2023; 14:1276602. [PMID: 37869010 PMCID: PMC10585106 DOI: 10.3389/fimmu.2023.1276602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural killer cells, are indispensable guardians of the immune system and orchestrate the recognition and elimination of cancer cells. Upon encountering a cancer cell, CLs establish a specialized cellular junction, known as the immunological synapse that stands as a pivotal determinant for effective cell killing. Extensive research has focused on the presynaptic side of the immunological synapse and elucidated the multiple functions of the CL actin cytoskeleton in synapse formation, organization, regulatory signaling, and lytic activity. In contrast, the postsynaptic (cancer cell) counterpart has remained relatively unexplored. Nevertheless, both indirect and direct evidence has begun to illuminate the significant and profound consequences of cytoskeletal changes within cancer cells on the outcome of the lytic immunological synapse. Here, we explore the understudied role of the cancer cell actin cytoskeleton in modulating the immune response within the immunological synapse. We shed light on the intricate interplay between actin dynamics and the evasion mechanisms employed by cancer cells, thus providing potential routes for future research and envisioning therapeutic interventions targeting the postsynaptic side of the immunological synapse in the realm of cancer immunotherapy. This review article highlights the importance of actin dynamics within the immunological synapse between cytotoxic lymphocytes and cancer cells focusing on the less-explored postsynaptic side of the synapse. It presents emerging evidence that actin dynamics in cancer cells can critically influence the outcome of cytotoxic lymphocyte interactions with cancer cells.
Collapse
Affiliation(s)
- Elena Ockfen
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Diogo Pereira Fernandes
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
6
|
Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol 2023; 14:1191815. [PMID: 37483632 PMCID: PMC10361824 DOI: 10.3389/fimmu.2023.1191815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs), which are a group of chronic and diverse inflammatory diseases, are primarily characterized by weakness in the proximal muscles that progressively leads to persistent disability. Current treatments of IIMs depend on nonspecific immunosuppressive agents (including glucocorticoids and immunosuppressants). However, these therapies sometimes fail to regulate muscle inflammation, and some patients suffer from infectious diseases and other adverse effects related to the treatment. Furthermore, even after inflammation has subsided, muscle weakness persists in a significant proportion of the patients. Therefore, the elucidation of pathophysiology of IIMs and development of a better therapeutic strategy that not only alleviates muscle inflammation but also improves muscle weakness without increment of opportunistic infection is awaited. Muscle fiber death, which has been formerly postulated as "necrosis", is a key histological feature of all subtypes of IIMs, however, its detailed mechanisms and contribution to the pathophysiology remained to be elucidated. Recent studies have revealed that muscle fibers of IIMs undergo necroptosis, a newly recognized form of regulated cell death, and promote muscle inflammation and dysfunction through releasing inflammatory mediators such as damage-associated molecular patterns (DAMPs). The research on murine model of polymyositis, a subtype of IIM, revealed that the inhibition of necroptosis or HMGB1, one of major DAMPs released from muscle fibers undergoing necroptosis, ameliorated muscle inflammation and recovered muscle weakness. Furthermore, not only the necroptosis-associated molecules but also PGAM5, a mitochondrial protein, and reactive oxygen species have been shown to be involved in muscle fiber necroptosis, indicating the multiple target candidates for the treatment of IIMs acting through necroptosis regulation. This article overviews the research on muscle injury mechanisms in IIMs focusing on the contribution of necroptosis in their pathophysiology and discusses the potential treatment strategy targeting muscle fiber necroptosis.
Collapse
|
7
|
Smith LC, Crow RS, Franchi N, Schrankel CS. The echinoid complement system inferred from genome sequence searches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104584. [PMID: 36343741 DOI: 10.1016/j.dci.2022.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington DC, USA.
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA
| |
Collapse
|
8
|
Tian L, Zhou W, Wu X, Hu Z, Qiu L, Zhang H, Chen X, Zhang S, Lu Z. CTLs: Killers of intracellular bacteria. Front Cell Infect Microbiol 2022; 12:967679. [PMID: 36389159 PMCID: PMC9645434 DOI: 10.3389/fcimb.2022.967679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Many microbial pathogens have evolved a range of capabilities to evade host immune defense mechanisms and to survive and multiply in host cells. The presence of host intracellular bacteria makes it difficult for specific antibodies to function. After the intracellular bacteria escape the attack of the innate immune system, such as phagocytes, they survive in cells, and then adaptive immunity comes into play. Cytotoxic T lymphocytes (CTLs) play an important role in eliminating intracellular bacteria. The regulation of key transcription factors could promote CD4+/CD8+ T cells to acquire cytolytic ability. The TCR-CD3 complex transduces activation signals generated by TCR recognition of antigen and promotes CTLs to generate multiple pathways to kill intracellular bacteria. In this review, the mechanism of CD4/CD8 CTLs differentiation and how CD4/CD8 CTLs kill intracellular bacteria are introduced. In addition, their application and prospects in the treatment of bacterial infections are discussed.
Collapse
Affiliation(s)
- Li Tian
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhou
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuannan Hu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Qiu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyong Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaoyan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Spicer JA, Huttunen KM, Jose J, Dimitrov I, Akhlaghi H, Sutton VR, Voskoboinik I, Trapani J. Small Molecule Inhibitors of Lymphocyte Perforin as Focused Immunosuppressants for Infection and Autoimmunity. J Med Chem 2022; 65:14305-14325. [PMID: 36263926 DOI: 10.1021/acs.jmedchem.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function. An immunosuppressant targeting this protein would provide the first-ever therapy focused specifically on one of the principal cell death pathways contributing to allotransplant rejection and underpinning multiple autoimmune and postinfectious diseases. No drugs that selectively block perforin-dependent cell death are currently in clinical use, so this perspective will review published novel small molecule inhibitors, concluding with in vivo proof-of-concept experiments performed in mouse models of perforin-mediated immune pathologies that provide a potential pathway toward a clinically useful therapeutic agent.
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland 1142, New Zealand
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jiney Jose
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland 1142, New Zealand
| | - Ivo Dimitrov
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland 1142, New Zealand
| | - Hedieh Akhlaghi
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vivien R Sutton
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joseph Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Sankar J, Arora S, Joshi G, Kumar R. Pore-forming proteins and their role in cancer and inflammation: Mechanistic insights and plausible druggable targets. Chem Biol Interact 2022; 366:110127. [DOI: 10.1016/j.cbi.2022.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
|
11
|
Sharma A, Gupta S, Patil AB, Vijay N. Birth and death in terminal complement pathway. Mol Immunol 2022; 149:174-187. [PMID: 35908437 DOI: 10.1016/j.molimm.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
The cytolytic activity of the membrane attack complex (MAC) is pivotal in the complement-mediated elimination of pathogens. Terminal complement pathway (TCP) genes encode the proteins that form the MAC. Although the TCP genes are well conserved within most vertebrate species, the early evolution of the TCP genes is poorly understood. Based on the comparative genomic analysis of the early evolutionary history of the TCP homologs, we evaluated four possible scenarios that could have given rise to the vertebrate TCP. Currently available genomic data support a scheme of complex sequential protein domain gains that may be responsible for the birth of the vertebrate C6 gene. The subsequent duplication and divergence of this vertebrate C6 gene formed the C7, C8α, C8β, and C9 genes. Compared to the widespread conservation of TCP components within vertebrates, we discovered that C9 has disintegrated in the genomes of galliform birds. Publicly available genome and transcriptome sequencing datasets of chicken from Illumina short read, PacBio long read, and Optical mapping technologies support the validity of the genome assembly at the C9 locus. In this study, we have generated a > 120X coverage whole-genome Chromium 10x linked-read sequencing dataset for the chicken and used it to verify the loss of the C9 gene in the chicken. We find multiple CR1 (chicken repeat 1) element insertions within and near the remnant exons of C9 in several galliform bird genomes. The reconstructed chronology of events shows that the CR1 insertions occurred after C9 gene loss in an early galliform ancestor. Loss of C9 in galliform birds, in contrast to conservation in other vertebrates, may have implications for host-pathogen interactions. Our study of C6 gene birth in an early vertebrate ancestor and C9 gene death in galliform birds provides insights into the evolution of the TCP.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Saumya Gupta
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
12
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
McKenzie B, Khazen R, Valitutti S. Greek Fire, Poison Arrows, and Scorpion Bombs: How Tumor Cells Defend Against the Siege Weapons of Cytotoxic T Lymphocytes. Front Immunol 2022; 13:894306. [PMID: 35592329 PMCID: PMC9110820 DOI: 10.3389/fimmu.2022.894306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are the main cellular effectors of the adaptive immune response against cancer cells, which in turn have evolved sophisticated cellular defense mechanisms to withstand CTL attack. Herein we provide a critical review of the pertinent literature on early and late attack/defense events taking place at the CTL/target cell lytic synapse. We examine the earliest steps of CTL-mediated cytotoxicity (“the poison arrows”) elicited within seconds of CTL/target cell encounter, which face commensurately rapid synaptic repair mechanisms on the tumor cell side, providing the first formidable barrier to CTL attack. We examine how breach of this first defensive barrier unleashes the inextinguishable “Greek fire” in the form of granzymes whose broad cytotoxic potential is linked to activation of cell death executioners, injury of vital organelles, and destruction of intracellular homeostasis. Herein tumor cells deploy slower but no less sophisticated defensive mechanisms in the form of enhanced autophagy, increased reparative capacity, and dysregulation of cell death pathways. We discuss how the newly discovered supra-molecular attack particles (SMAPs, the “scorpion bombs”), seek to overcome the robust defensive mechanisms that confer tumor cell resistance. Finally, we discuss the implications of the aforementioned attack/defense mechanisms on the induction of regulated cell death (RCD), and how different contemporary RCD modalities (including apoptosis, pyroptosis, and ferroptosis) may have profound implications for immunotherapy. Thus, we propose that understanding and targeting multiple steps of the attack/defense process will be instrumental to enhance the efficacy of CTL anti-tumor activity and meet the outstanding challenges in clinical immunotherapy.
Collapse
Affiliation(s)
- Brienne McKenzie
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Roxana Khazen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Filali L, Puissegur MP, Cortacero K, Cussat-Blanc S, Khazen R, Van Acker N, Frenois FX, Abreu A, Lamant L, Meyer N, Vergier B, Müller S, McKenzie B, Valitutti S. Ultrarapid lytic granule release from CTLs activates Ca 2+-dependent synaptic resistance pathways in melanoma cells. SCIENCE ADVANCES 2022; 8:eabk3234. [PMID: 35171665 PMCID: PMC8849291 DOI: 10.1126/sciadv.abk3234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Human cytotoxic T lymphocytes (CTLs) exhibit ultrarapid lytic granule secretion, but whether melanoma cells mobilize defense mechanisms with commensurate rapidity remains unknown. We used single-cell time-lapse microscopy to offer high spatiotemporal resolution analyses of subcellular events in melanoma cells upon CTL attack. Target cell perforation initiated an intracellular Ca2+ wave that propagated outward from the synapse within milliseconds and triggered lysosomal mobilization to the synapse, facilitating membrane repair and conferring resistance to CTL induced cytotoxicity. Inhibition of Ca2+ flux and silencing of synaptotagmin VII limited synaptic lysosomal exposure and enhanced cytotoxicity. Multiplexed immunohistochemistry of patient melanoma nodules combined with automated image analysis showed that melanoma cells facing CD8+ CTLs in the tumor periphery or peritumoral area exhibited significant lysosomal enrichment. Our results identified synaptic Ca2+ entry as the definitive trigger for lysosomal deployment to the synapse upon CTL attack and highlighted an unpredicted defensive topology of lysosome distribution in melanoma nodules.
Collapse
Affiliation(s)
- Liza Filali
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Marie-Pierre Puissegur
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Kevin Cortacero
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Sylvain Cussat-Blanc
- Institut de Recherche en Informatique de Toulouse (IRIT) - University Toulouse Capitole Centre national de la recherche scientifique (CNRS) UMR5505, Artificial and Natural Intelligence Toulouse Institute, Toulouse, France
| | - Roxana Khazen
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Nathalie Van Acker
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - François-Xavier Frenois
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Arnaud Abreu
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Laurence Lamant
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Nicolas Meyer
- Department of Dermatology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Béatrice Vergier
- Service de Pathologie, CHU de Bordeaux, Bordeaux, France
- Equipe INSERM U1053-UMR BaRITOn (Eq 3), Université de Bordeaux, Bordeaux, France
| | - Sabina Müller
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Brienne McKenzie
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| |
Collapse
|
16
|
Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, Saibil HR. The pore conformation of lymphocyte perforin. SCIENCE ADVANCES 2022; 8:eabk3147. [PMID: 35148176 PMCID: PMC8836823 DOI: 10.1126/sciadv.abk3147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
Perforin is a pore-forming protein that facilitates rapid killing of pathogen-infected or cancerous cells by the immune system. Perforin is released from cytotoxic lymphocytes, together with proapoptotic granzymes, to bind to a target cell membrane where it oligomerizes and forms pores. The pores allow granzyme entry, which rapidly triggers the apoptotic death of the target cell. Here, we present a 4-Å resolution cryo-electron microscopy structure of the perforin pore, revealing previously unidentified inter- and intramolecular interactions stabilizing the assembly. During pore formation, the helix-turn-helix motif moves away from the bend in the central β sheet to form an intermolecular contact. Cryo-electron tomography shows that prepores form on the membrane surface with minimal conformational changes. Our findings suggest the sequence of conformational changes underlying oligomerization and membrane insertion, and explain how several pathogenic mutations affect function.
Collapse
Affiliation(s)
- Marina E. Ivanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Fermi Ave, Harwell, Didcot OX11 0QX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joseph A. Trapani
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Ilia Voskoboinik
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| |
Collapse
|
17
|
Tuomela K, Mukherjee D, Ambrose AR, Harikrishnan A, Mole H, Hurlstone A, Önfelt B, Honeychurch J, Davis DM. Radiotherapy transiently reduces the sensitivity of cancer cells to lymphocyte cytotoxicity. Proc Natl Acad Sci U S A 2022; 119:e2111900119. [PMID: 35042775 PMCID: PMC8785960 DOI: 10.1073/pnas.2111900119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity. Resistance appeared 72 h postirradiation and persisted for 2 wk. Resistance could also occur independently of radiotherapy through pharmacologically induced cell-cycle arrest. Crucially, multiple steps in NK-cell engagement, synapse assembly, and activation were unaffected by target cell irradiation. Instead, radiotherapy caused profound resistance to perforin-induced calcium flux and lysis. Resistance also occurred to a structurally similar bacterial toxin, streptolysin O. Radiotherapy did not affect the binding of pore-forming proteins at the cell surface or membrane repair. Rather, irradiation instigated a defect in functional pore formation, consistent with phosphatidylserine-mediated perforin inhibition. In vivo, radiotherapy also led to a significant reduction in NK cell-mediated clearance of cancer cells. Radiotherapy-induced resistance to perforin also constrained chimeric antigen receptor T-cell cytotoxicity. Together, these data establish a treatment-induced resistance to lymphocyte cytotoxicity that is important to consider in the design of radiotherapy-immunotherapy protocols.
Collapse
Affiliation(s)
- Karoliina Tuomela
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Debayan Mukherjee
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ashley R Ambrose
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Ashish Harikrishnan
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Holly Mole
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Adam Hurlstone
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Björn Önfelt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Jamie Honeychurch
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Daniel M Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom;
| |
Collapse
|
18
|
Hodel AW, Rudd-Schmidt JA, Trapani JA, Voskoboinik I, Hoogenboom BW. Lipid specificity of the immune effector perforin. Faraday Discuss 2021; 232:236-255. [PMID: 34545865 PMCID: PMC8704153 DOI: 10.1039/d0fd00043d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
Perforin is a pore forming protein used by cytotoxic T lymphocytes to remove cancerous or virus-infected cells during the immune response. During the response, the lymphocyte membrane becomes refractory to perforin function by accumulating densely ordered lipid rafts and externalizing negatively charged lipid species. The dense membrane packing lowers the capacity of perforin to bind, and the negatively charged lipids scavenge any residual protein before pore formation. Using atomic force microscopy on model membrane systems, we here provide insight into the molecular basis of perforin lipid specificity.
Collapse
Affiliation(s)
- Adrian W Hodel
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia.
- London Centre for Nanotechnology, University College London, 19 Gordon Street, London WC1H 0AH, UK.
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jesse A Rudd-Schmidt
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Ilia Voskoboinik
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, 19 Gordon Street, London WC1H 0AH, UK.
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
19
|
Steen EA, Hermiston ML, Nichols KE, Meyer LK. Digenic Inheritance: Evidence and Gaps in Hemophagocytic Lymphohistiocytosis. Front Immunol 2021; 12:777851. [PMID: 34868048 PMCID: PMC8635482 DOI: 10.3389/fimmu.2021.777851] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by the inability to properly terminate an immune response. Familial HLH (FHLH) and related immune dysregulation syndromes are associated with mutations in the genes PRF1, UNC13D, STX11, STXBP2, LYST, AP3B1, and RAB27A, all of which are required for the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. Loss-of-function mutations in these genes render the cytotoxicity pathway ineffective, thereby failing to eradicate immune stimuli, such as infectious pathogens or malignant cells. The resulting persistent immune system stimulation drives hypercytokinemia, ultimately leading to severe tissue inflammation and end-organ damage. Traditionally, a diagnosis of FHLH requires the identification of biallelic loss-of-function mutations in one of these degranulation pathway genes. However, this narrow definition fails to encompass patients with other genetic mechanisms underlying degranulation pathway dysfunction. In particular, mounting clinical evidence supports a potential digenic mode of inheritance of FHLH in which single loss-of-function mutations in two different degranulation pathway genes cooperate to impair pathway activity. Here, we review the functions of the FHLH-associated genes within the degranulation pathway and summarize clinical evidence supporting a model in which cumulative defects along this mechanistic pathway may underlie HLH.
Collapse
Affiliation(s)
- Erica A Steen
- University of California, San Diego, San Diego, CA, United States
| | - Michelle L Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Lauren K Meyer
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
Identification of Biomarkers Related to Immune Cell Infiltration with Gene Coexpression Network in Myocardial Infarction. DISEASE MARKERS 2021; 2021:2227067. [PMID: 34777632 PMCID: PMC8589498 DOI: 10.1155/2021/2227067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Background There is evidence that the immune system plays a key critical role in the pathogenesis of myocardial infarction (MI). However, the exact mechanisms associated with immunity have not been systematically uncovered. Methods This study used the weighted gene coexpression network analysis (WGCNA) and the CIBERSORT algorithm to analyze the MI expression data from the Gene Expression Omnibus database and then identify the module associated with immune cell infiltration. In addition, we built the coexpression network and protein-protein interactions network analysis to identify the hub genes. Furthermore, the relationship between hub genes and NK cell resting was validated by using another dataset GSE123342. Finally, receiver operating characteristic (ROC) curve analyses were used to assess the diagnostic value of verified hub genes. Results Monocytes and neutrophils were markedly increased, and T cell CD8, T cell CD4 naive, T cell CD4 memory resting, and NK cell resting were significantly decreased in MI groups compared with stable coronary artery disease (CAD) groups. The WGCNA results showed that the pink model had the highest correlation with the NK cell resting infiltration level. We identified 11 hub genes whose expression correlated to the NK cell resting infiltration level, among which, 7 hub genes (NKG7, TBX21, PRF1, CD247, KLRD1, FASLG, and EOMES) were successfully validated in GSE123342. And these 7 genes had diagnostic value to distinguish MI and stable CAD. Conclusions NKG7, TBX21, PRF1, CD247, KLRD1, FASLG, and EOMES may be a diagnostic biomarker and therapeutic target associated with NK cell resting infiltration in MI.
Collapse
|
21
|
Yang Y, Chen Y, Guo J, Liu H, Ju H. A pore-forming protein-induced surface-enhanced Raman spectroscopic strategy for dynamic tracing of cell membrane repair. iScience 2021; 24:102980. [PMID: 34485862 PMCID: PMC8403736 DOI: 10.1016/j.isci.2021.102980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The plasma membrane repair holds significance for maintaining cell survival and homeostasis. To achieve the sensitive visualization of membrane repair process for revealing its mechanism, this work designs a perforation-induced surface-enhanced Raman spectroscopy (SERS) strategy by conjugating Raman reporter (4-mercaptobenzoic acid) loaded gold nanostars with pore-forming protein streptolysin O (SLO) to induce the SERS signal on living cells. The SERS signal obviously decreases with the initiation of membrane repair and the degradation of SLO pores due to the departure of gold-nanostar-conjugated SLO. Thus, the designed strategy can dynamically visualize the complete cell membrane repair and provide a sensitive method to demonstrate the SLO endocytosis- and exocytosis-mediated repairing mechanism. Using DOX-resistant MCF-7 cells as a model, a timely repair-blocking technology for promoting the highly efficient treatment of drug-resistant cancer cells is also proposed. This work opens an avenue for probing the plasma membrane repairing mechanisms and designing the precision therapeutic schedule.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jingxing Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
22
|
Yu L, Zhang Y, Xiong J, Liu J, Zha Y, Kang Q, Zhi P, Wang Q, Wang H, Zeng W, Huang Y. Activated γδ T Cells With Higher CD107a Expression and Inflammatory Potential During Early Pregnancy in Patients With Recurrent Spontaneous Abortion. Front Immunol 2021; 12:724662. [PMID: 34484234 PMCID: PMC8416064 DOI: 10.3389/fimmu.2021.724662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
Previous studies have reported the involvement of γδ T cells in recurrent spontaneous abortion (RSA); however, both pathogenic and protective effects were suggested. To interrogate the role of γδ T cells in RSA, peripheral blood from RSA patients and healthy women with or without pregnancy were analyzed for γδ T cells by flow cytometry (n = 9–11 for each group). Moreover, the decidua from pregnant RSA patients and healthy controls (RSA-P and HC-P group, respectively) was simultaneously stained for γδ T cells by immunohistochemistry (IHC) and bulk sequenced for gene expression. Our results demonstrated that the frequencies of peripheral γδ T cells and their subpopulations in RSA patients were comparable to that in healthy subjects, but the PD1 expression on Vδ2+ cells was increased in pregnant patients. Furthermore, peripheral Vδ2+ cells in RSA-P patients demonstrated significantly increased expression of CD107a, as compared to that in pregnant healthy controls. In addition, RSA-P patients had higher proportion of IL-17A-secreting but not IL-4-secreting Vδ2+ cells compared to the control groups. In decidua, an inflammatory microenvironment was also evident in RSA-P patients, in which CCL8 expression and the infiltration of certain immune cells were higher than that in the HC-P group, as revealed by transcriptional analysis. Finally, although the presence of γδ T cells in decidua could be detected during pregnancy in both RSA patients and healthy subjects by multicolor IHC analysis, the expression of CD107a on γδ T cells was markedly higher in the RSA-P group. Collectively, our results indicated that the increased activation, cytotoxicity, and inflammatory potential of peripheral and/or local γδ T cells might be responsible for the pathogenesis of RSA. These findings could provide a better understanding of the role of γδ T cells in RSA and shed light on novel treatment strategies by targeting γδ T cells for RSA patients.
Collapse
Affiliation(s)
- Long Yu
- Department of Immunology, Medical College, Wuhan University of Science and Technology, Wuhan, China.,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, The Second Hospital of Chaoyang City, Chaoyang, China
| | - Jinfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zha
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Immunology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
24
|
Paoletta MS, Laughery JM, Arias LSL, Ortiz JMJ, Montenegro VN, Petrigh R, Ueti MW, Suarez CE, Farber MD, Wilkowsky SE. The key to egress? Babesia bovis perforin-like protein 1 (PLP1) with hemolytic capacity is required for blood stage replication and is involved in the exit of the parasite from the host cell. Int J Parasitol 2021; 51:643-658. [PMID: 33753093 DOI: 10.1016/j.ijpara.2020.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Bovine babesiosis is a tick-borne disease caused by apicomplexan parasites of the Babesia genus that represents a major constraint to livestock production worldwide. Currently available vaccines are based on live parasites which have archetypal limitations. Our goal is to identify candidate antigens so that new and effective vaccines against Babesia may be developed. The perforin-like protein (PLP) family has been identified as a key player in cell traversal and egress in related apicomplexans and it was also identified in Babesia, but its function in this parasite remains unknown. The aim of this work was to define the PLP family in Babesia and functionally characterize PLP1, a representative member of the family in Babesia bovis. Bioinformatic analyses demonstrate a variable number of plp genes (four to eight) in the genomes of six different Babesia spp. and conservation of the family members at the secondary and tertiary structure levels. We demonstrate here that Babesia PLPs contain the critical domains present in other apicomplexan PLPs to display the lytic capacity. We then focused on the functional characterization of PLP1 of B. bovis, both in vitro and in vivo. PLP1 is expressed and exposed to the host immune system during infection and has high hemolytic capacity under a wide range of conditions in vitro. A B. bovis plp1 knockout line displayed a decreased growth rate in vitro compared with the wild type strain and a peculiar phenotype consisting of multiple parasites within a single red blood cell, although at low frequency. This phenotype suggests that the lack of PLP1 has a negative impact on the mechanism of egression of the parasite and, therefore, on its capacity to proliferate. It is possible that PLP1 is associated with other proteins in the processes of invasion and egress, which were found to have redundant mechanisms in related apicomplexans. Future work will be focused on unravelling the network of proteins involved in these essential parasite functions.
Collapse
Affiliation(s)
- Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Jacob Michael Laughery
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Ludmila Sol López Arias
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - José Manuel Jaramillo Ortiz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Valeria Noely Montenegro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Romina Petrigh
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA
| | - Carlos Esteban Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA
| | - Marisa Diana Farber
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Krawczyk PA, Laub M, Kozik P. To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Front Immunol 2020; 11:601405. [PMID: 33281828 PMCID: PMC7691655 DOI: 10.3389/fimmu.2020.601405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Pore-forming proteins (PFPs) are present in all domains of life, and play an important role in host-pathogen warfare and in the elimination of cancers. They can be employed to deliver specific effectors across membranes, to disrupt membrane integrity interfering with cell homeostasis, and to lyse membranes either destroying intracellular organelles or entire cells. Considering the destructive potential of PFPs, it is perhaps not surprising that mechanisms controlling their activity are remarkably complex, especially in multicellular organisms. Mammalian PFPs discovered to date include the complement membrane attack complex (MAC), perforins, as well as gasdermins. While the primary function of perforin-1 and gasdermins is to eliminate infected or cancerous host cells, perforin-2 and MAC can target pathogens directly. Yet, all mammalian PFPs are in principle capable of generating pores in membranes of healthy host cells which-if uncontrolled-could have dire, and potentially lethal consequences. In this review, we will highlight the strategies employed to protect the host from destruction by endogenous PFPs, while enabling timely and efficient elimination of target cells.
Collapse
Affiliation(s)
- Patrycja A Krawczyk
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marco Laub
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
26
|
Bayly-Jones C, Pang SS, Spicer BA, Whisstock JC, Dunstone MA. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Front Immunol 2020; 11:581906. [PMID: 33178209 PMCID: PMC7593815 DOI: 10.3389/fimmu.2020.581906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Macrophage-expressed gene 1 [MPEG1/Perforin-2 (PRF2)] is an ancient metazoan protein belonging to the Membrane Attack Complex/Perforin (MACPF) branch of the MACPF/Cholesterol Dependent Cytolysin (CDC) superfamily of pore-forming proteins (PFPs). MACPF/CDC proteins are a large and extremely diverse superfamily that forms large transmembrane aqueous channels in target membranes. In humans, MACPFs have known roles in immunity and development. Like perforin (PRF) and the membrane attack complex (MAC), MPEG1 is also postulated to perform a role in immunity. Indeed, bioinformatic studies suggest that gene duplications of MPEG1 likely gave rise to PRF and MAC components. Studies reveal partial or complete loss of MPEG1 causes an increased susceptibility to microbial infection in both cells and animals. To this end, MPEG1 expression is upregulated in response to proinflammatory signals such as tumor necrosis factor α (TNFα) and lipopolysaccharides (LPS). Furthermore, germline mutations in MPEG1 have been identified in connection with recurrent pulmonary mycobacterial infections in humans. Structural studies on MPEG1 revealed that it can form oligomeric pre-pores and pores. Strikingly, the unusual domain arrangement within the MPEG1 architecture suggests a novel mechanism of pore formation that may have evolved to guard against unwanted lysis of the host cell. Collectively, the available data suggest that MPEG1 likely functions as an intracellular pore-forming immune effector. Herein, we review the current understanding of MPEG1 evolution, regulation, and function. Furthermore, recent structural studies of MPEG1 are discussed, including the proposed mechanisms of action for MPEG1 bactericidal activity. Lastly limitations, outstanding questions, and implications of MPEG1 models are explored in the context of the broader literature and in light of newly available structural data.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Siew Siew Pang
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Michelle A Dunstone
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Granzymes in cardiovascular injury and disease. Cell Signal 2020; 76:109804. [PMID: 33035645 DOI: 10.1016/j.cellsig.2020.109804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation and impaired wound healing play important roles in the pathophysiology of cardiovascular diseases. Moreover, the aberrant secretion of proteases plays a critical role in pathological tissue remodeling in chronic inflammatory conditions. Human Granzymes (Granule secreted enzymes - Gzms) comprise a family of five (GzmA, B, H, K, M) cell-secreted serine proteases. Although each unique in function and substrate specificities, Gzms were originally thought to share redundant, intracellular roles in cytotoxic lymphocyte-induced cell death. However, an abundance of evidence has challenged this dogma. It is now recognized, that individual Gzms exhibit unique substrate repertoires and functions both intracellularly and extracellularly. In the extracellular milieu, Gzms contribute to inflammation, vascular dysfunction and permeability, reduced cell adhesion, release of matrix-sequestered growth factors, receptor activation, and extracellular matrix cleavage. Despite these recent findings, the non-cytotoxic functions of Gzms in the context of cardiovascular disease pathogenesis remain poorly understood. Minimally detected in tissues and bodily fluids of normal individuals, GzmB is elevated in patients with acute coronary syndromes, coronary artery disease, and myocardial infarction. Pre-clinical animal models have exemplified the importance of GzmB in atherosclerosis, aortic aneurysm, and cardiac fibrosis as animals deficient in GzmB exhibit reduced tissue remodeling, improved disease phenotypes and increased survival. Although a role for GzmB in cardiovascular disease is described, further work to elucidate the mechanisms that underpin the remaining human Gzms activity in cardiovascular disease is necessary. The present review provides a summary of the pre-clinical and clinical evidence, as well as emerging areas of research pertaining to Gzms in tissue remodeling and cardiovascular disease.
Collapse
|
28
|
Biolato AM, Filali L, Wurzer H, Hoffmann C, Gargiulo E, Valitutti S, Thomas C. Actin remodeling and vesicular trafficking at the tumor cell side of the immunological synapse direct evasion from cytotoxic lymphocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:99-130. [PMID: 33066877 DOI: 10.1016/bs.ircmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cancer Research Center of Toulouse, INSERM, Toulouse, France
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Salvatore Valitutti
- Cancer Research Center of Toulouse, INSERM, Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole, Toulouse, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| |
Collapse
|
29
|
Applications of atomic force microscopy in immunology. Front Med 2020; 15:43-52. [PMID: 32820379 DOI: 10.1007/s11684-020-0769-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/04/2020] [Indexed: 01/20/2023]
Abstract
Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.
Collapse
|
30
|
Sutton VR, Andoniou C, Leeming MG, House CM, Watt SV, Verschoor S, Ciccone A, Voskoboinik I, Degli-Esposti M, Trapani JA. Differential cleavage of viral polypeptides by allotypic variants of granzyme B skews immunity to mouse cytomegalovirus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140457. [PMID: 32473350 DOI: 10.1016/j.bbapap.2020.140457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme BP (GzmBP/P) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmBW/W) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmBP and GzmBW activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly. Consequently, neither alloform initiated mitochondrial outer membrane permeabilization, or was blocked by Bcl-2, Bcl-XL or co-expression of MCMV proteins M38.5/M41.1, which together stabilize mitochondria by sequestering Bak/Bax. Remarkably, mass spectrometric analysis of proteins from MCMV-infected primary mouse embryonic fibroblasts identified 13 cleavage sites in nine viral proteins (M18, M25, M28, M45, M80, M98, M102, M155, M164) that were cleaved >20-fold more efficiently by either GzmBP or GzmBW. Notably, M18, M28, M45, M80, M98, M102 and M164 were cleaved 20- >100-fold more efficiently by GzmBW, and so, would persist in infected cells targeted by CTLs from GzmBP/P mice. Conversely, M155 was cleaved >100-fold more efficiently by GzmBP, and would persist in cells targeted by CTLs of GzmBW/W mice. M25 was cleaved efficiently by both proteases, but at different sites. We conclude that different susceptibility to MCMV does not result from skewed endogenous cell death pathways, but rather, to as yet uncharacterised MCMV-intrinsic pathways that ultimately inhibit granzyme B-induced cell death.
Collapse
Affiliation(s)
- Vivien R Sutton
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Christopher Andoniou
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia 6009, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, Australia; School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Colin M House
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Sally V Watt
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Sandra Verschoor
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Annette Ciccone
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Ilia Voskoboinik
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Mariapia Degli-Esposti
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia 6009, Australia
| | - Joseph A Trapani
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia.
| |
Collapse
|
31
|
Garg S, Shivappagowdar A, Hada RS, Ayana R, Bathula C, Sen S, Kalia I, Pati S, Singh AP, Singh S. Plasmodium Perforin-Like Protein Pores on the Host Cell Membrane Contribute in Its Multistage Growth and Erythrocyte Senescence. Front Cell Infect Microbiol 2020; 10:121. [PMID: 32266171 PMCID: PMC7105882 DOI: 10.3389/fcimb.2020.00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The pore forming Plasmodium Perforin Like Proteins (PPLP), expressed in all stages of the parasite life cycle are critical for completion of the parasite life cycle. The high sequence similarity in the central Membrane Attack Complex/ Perforin (MACPF) domain among PLPs and their distinct functional overlaps define them as lucrative target for developing multi-stage antimalarial therapeutics. Herein, we evaluated the mechanism of Pan-active MACPF Domain (PMD), a centrally located and highly conserved region of PPLPs, and deciphered the inhibitory potential of specifically designed PMD inhibitors. The E. coli expressed rPMD interacts with erythrocyte membrane and form pores of ~10.5 nm height and ~24.3 nm diameter leading to hemoglobin release and dextran uptake. The treatment with PMD induced erythrocytes senescence which can be hypothesized to account for the physiological effect of disseminated PLPs in loss of circulating erythrocytes inducing malaria anemia. The anti-PMD inhibitors effectively blocked intraerythrocytic growth by suppressing invasion and egress processes and protected erythrocytes against rPMD induced senescence. Moreover, these inhibitors also blocked the hepatic stage and transmission stage parasite development suggesting multi-stage, transmission-blocking potential of these inhibitors. Concievably, our study has introduced a novel set of anti-PMD inhibitors with pan-inhibitory activity against all the PPLPs members which can be developed into potent cross-stage antimalarial therapeutics along with erythrocyte senescence protective potential to occlude PPLPs mediated anemia in severe malaria.
Collapse
Affiliation(s)
- Swati Garg
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Abhishek Shivappagowdar
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Rahul S Hada
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Rajagopal Ayana
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Chandramohan Bathula
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Inderjeet Kalia
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Soumya Pati
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Turner CT, Lim D, Granville DJ. Granzyme B in skin inflammation and disease. Matrix Biol 2019; 75-76:126-140. [DOI: 10.1016/j.matbio.2017.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023]
|
33
|
Visualization of perforin/gasdermin/complement-formed pores in real cell membranes using atomic force microscopy. Cell Mol Immunol 2018; 16:611-620. [PMID: 30283066 PMCID: PMC6804747 DOI: 10.1038/s41423-018-0165-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023] Open
Abstract
Different types of pores ubiquitously form in cell membranes, leading to various types of cell death that profoundly influence the fate of inflammation and the disease status. However, these pores have never truly been visualized to date. Atomic force microscopy (AFM), which is emerging as a powerful tool to analyze the mechanical properties of biomolecules and cells, is actually an excellent imaging platform that allows biological samples to be visualized by probing surface roughness at the level of atomic resolution. Here, membrane pore structures were clearly visualized using AFM. This visualization not only describes the aperture and depth of the pore complexes but also highlights differences among the pores formed by perforin and gasdermins in tumor cell membranes and by complement in immune cell membranes. Additionally, this type of visualization also reveals the dynamic process of pore formation, fusion, and repair.
Collapse
|
34
|
Venneri MA, Hasenmajer V, Fiore D, Sbardella E, Pofi R, Graziadio C, Gianfrilli D, Pivonello C, Negri M, Naro F, Grossman AB, Lenzi A, Pivonello R, Isidori AM. Circadian Rhythm of Glucocorticoid Administration Entrains Clock Genes in Immune Cells: A DREAM Trial Ancillary Study. J Clin Endocrinol Metab 2018; 103:2998-3009. [PMID: 29846607 DOI: 10.1210/jc.2018-00346] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023]
Abstract
CONTEXT Adrenal insufficiency (AI) requires lifelong glucocorticoid (GC) replacement. Conventional therapies do not mimic the endogenous cortisol circadian rhythm. Clock genes are essential components of the machinery controlling circadian functions and are influenced by GCs. However, clock gene expression has never been investigated in patients with AI. OBJECTIVE To evaluate the effect of the timing of GC administration on circadian gene expression in peripheral blood mononuclear cells (PBMCs) of patients from the Dual Release Hydrocortisone vs Conventional Glucocorticoid Replacement in Hypocortisolism (DREAM) trial. DESIGN Outcome assessor-blinded, randomized, active comparator clinical trial. PARTICIPANTS AND INTERVENTION Eighty-nine patients with AI were randomly assigned to continue their multiple daily GC doses or switch to an equivalent dose of once-daily modified-release hydrocortisone and were compared with 25 healthy controls; 65 patients with AI and 18 controls consented to gene expression analysis. RESULTS Compared with healthy controls, 19 of the 68 genes were found modulated in patients with AI at baseline, 18 of which were restored to control levels 12 weeks after therapy was switched: ARNTL [BMAL] (P = 0.024), CLOCK (P = 0.016), AANAT (P = 0.021), CREB1 (P = 0.010), CREB3 (P = 0.037), MAT2A (P = 0.013); PRKAR1A, PRKAR2A, and PRKCB (all P < 0.010) and PER3, TIMELESS, CAMK2D, MAPK1, SP1, WEE1, CSNK1A1, ONP3, and PRF1 (all P < 0.001). Changes in WEE1, PRF1, and PER3 expression correlated with glycated hemoglobin, inflammatory monocytes, and CD16+ natural killer cells. CONCLUSIONS Patients with AI on standard therapy exhibit a dysregulation of circadian genes in PBMCs. The once-daily administration reconditions peripheral tissue gene expression to levels close to controls, paralleling the clinical outcomes of the DREAM trial (NCT02277587).
Collapse
Affiliation(s)
- Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Fiore
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Chiara Graziadio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Ashley B Grossman
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Centre for Endocrinology, Barts and the London School of Medicine, London, United Kingdom
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Tanaka K, Caaveiro JMM, Morante K, Tsumoto K. Haemolytic actinoporins interact with carbohydrates using their lipid-binding module. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630155 DOI: 10.1098/rstb.2016.0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pore-forming toxins (PFTs) are proteins endowed with metamorphic properties that enable them to stably fold in water solutions as well as in cellular membranes. PFTs produce lytic pores on the plasma membranes of target cells conducive to lesions, playing key roles in the defensive and offensive molecular systems of living organisms. Actinoporins are a family of potent haemolytic toxins produced by sea anemones vigorously studied as a paradigm of α-helical PFTs, in the context of lipid-protein interactions, and in connection with nanopore technologies. We have recently reported that fragaceatoxin C (FraC), an actinoporin, engages biological membranes with a large adhesive motif allowing the simultaneous attachment of up to four lipid molecules prior to pore formation. Since actinoporins also interact with carbohydrates, we sought to understand the molecular and energetic basis of glycan recognition by FraC. By employing structural and biophysical methodologies, we show that FraC engages glycans with low affinity using its lipid-binding module. Contrary to other PFTs requiring separate domains for glycan and lipid recognition, the small single-domain actinoporins economize resources by achieving dual recognition with a single binding module. This mechanism could enhance the recruitment of actinoporins to the surface of target tissues in their marine environment.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Koji Tanaka
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koldo Morante
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan .,Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
36
|
Marsh RA. Epstein-Barr Virus and Hemophagocytic Lymphohistiocytosis. Front Immunol 2018; 8:1902. [PMID: 29358936 PMCID: PMC5766650 DOI: 10.3389/fimmu.2017.01902] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous virus that infects nearly all people worldwide without serious sequela. However, for patients who have genetic diseases which predispose them to the development of hemophagocytic lymphohistiocytosis (HLH), EBV infection is a life-threatening problem. As a part of a themed collection of articles on EBV infection and human primary immune deficiencies, we will review key concepts related to the understanding and treatment of HLH.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
37
|
Spicer JA, Miller CK, O'Connor PD, Jose J, Huttunen KM, Jaiswal JK, Denny WA, Akhlaghi H, Browne KA, Trapani JA. Substituted arylsulphonamides as inhibitors of perforin-mediated lysis. Eur J Med Chem 2017; 137:139-155. [PMID: 28582670 PMCID: PMC5500991 DOI: 10.1016/j.ejmech.2017.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
The structure-activity relationships for a series of arylsulphonamide-based inhibitors of the pore-forming protein perforin have been explored. Perforin is a key component of the human immune response, however inappropriate activity has also been implicated in certain auto-immune and therapy-induced conditions such as allograft rejection and graft versus host disease. Since perforin is expressed exclusively by cells of the immune system, inhibition of this protein would be a highly selective strategy for the immunosuppressive treatment of these disorders. Compounds from this series were demonstrated to be potent inhibitors of the lytic action of both isolated recombinant perforin and perforin secreted by natural killer cells in vitro. Several potent and soluble examples were assessed for in vivo pharmacokinetic properties and found to be suitable for progression to an in vivo model of transplant rejection.
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand.
| | - Christian K Miller
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - Kristiina M Huttunen
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jagdish K Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland, New Zealand
| | - Hedieh Akhlaghi
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| | - Kylie A Browne
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052 Australia
| |
Collapse
|
38
|
House IG, House CM, Brennan AJ, Gilan O, Dawson MA, Whisstock JC, Law RH, Trapani JA, Voskoboinik I. Regulation of perforin activation and pre-synaptic toxicity through C-terminal glycosylation. EMBO Rep 2017; 18:1775-1785. [PMID: 28808112 DOI: 10.15252/embr.201744351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 11/09/2022] Open
Abstract
Perforin is a highly cytotoxic pore-forming protein essential for immune surveillance by cytotoxic lymphocytes. Prior to delivery to target cells by exocytosis, perforin is stored in acidic secretory granules where it remains functionally inert. However, how cytotoxic lymphocytes remain protected from their own perforin prior to its export to secretory granules, particularly in the Ca2+-rich endoplasmic reticulum, remains unknown. Here, we show that N-linked glycosylation of the perforin C-terminus at Asn549 within the endoplasmic reticulum inhibits oligomerisation of perforin monomers and thus protects the host cell from premature pore formation. Subsequent removal of this glycan occurs through proteolytic processing of the C-terminus within secretory granules and is imperative for perforin activation prior to secretion. Despite evolutionary conservation of the C-terminus, we found that processing is carried out by multiple proteases, which we attribute to the unstructured and exposed nature of the region. In sum, our studies reveal a post-translational regulatory mechanism essential for maintaining perforin in an inactive state until its secretion from the inhibitory acidic environment of the secretory granule.
Collapse
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Colin M House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Amelia J Brennan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Omer Gilan
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Mark A Dawson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Centre for Cancer Research, University of Melbourne, Melbourne, Vic., Australia.,Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Vic., Australia
| | - Ruby Hp Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Vic., Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
39
|
Arias M, Martínez-Lostao L, Santiago L, Ferrandez A, Granville DJ, Pardo J. The Untold Story of Granzymes in Oncoimmunology: Novel Opportunities with Old Acquaintances. Trends Cancer 2017; 3:407-422. [PMID: 28718416 DOI: 10.1016/j.trecan.2017.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
Abstract
For more than 20 years perforin and granzymes (GZMs) have been recognized as key cell death executors of cytotoxic T (Tc) and natural killer (NK) cells during cancer immunosurveillance. In immune surveillance, perforin and GZMB, the most potent cytotoxic molecules, act mainly as antitumoral and anti-infectious factors. However, when expressed by immune regulatory cells they may contribute to immune evasion of specific cancer types. By contrast, the other major granzyme, GZMA, seems not to play a major role in Tc/NK cell-mediated cytotoxicity, but acts as a proinflammatory cytokine that might contribute to cancer development. Members of the GZM family also regulate other biological processes unrelated to cell death, such as angiogenesis, vascular integrity, extracellular matrix remodeling, and barrier function, all of which contribute to cancer initiation and progression. Thus, a new paradigm is emerging in the field of oncoimmunology. Can GZMs act as protumoral factors under some circumstances? We review the diverse roles of GZMs in cancer progression, and new therapeutic opportunities emerging from targeting these protumoral roles.
Collapse
Affiliation(s)
- Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; These authors contributed equally to this work
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Servicio de Inmunología Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; These authors contributed equally to this work
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Angel Ferrandez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Servicio de Aparato Digestivo, Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain.
| |
Collapse
|
40
|
Berkowicz SR, Giousoh A, Bird PI. Neurodevelopmental MACPFs: The vertebrate astrotactins and BRINPs. Semin Cell Dev Biol 2017; 72:171-181. [PMID: 28506896 DOI: 10.1016/j.semcdb.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Astrotactins (ASTNs) and Bone morphogenetic protein/retinoic acid inducible neural-specific proteins (BRINPs) are two groups of Membrane Attack Complex/Perforin (MACPF) superfamily proteins that show overlapping expression in the developing and mature vertebrate nervous system. ASTN(1-2) and BRINP(1-3) genes are found at conserved loci in humans that have been implicated in neurodevelopmental disorders (NDDs). Here we review the tissue distribution and cellular localization of these proteins, and discuss recent studies that provide insight into their structure and interactions. We highlight the genetic relationships and co-expression of Brinps and Astns; and review recent knock-out mouse phenotypes that indicate a possible overlap in protein function between ASTNs and BRINPs.
Collapse
Affiliation(s)
- Susan R Berkowicz
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia.
| | - Aminah Giousoh
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia
| | - Phillip I Bird
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia
| |
Collapse
|
41
|
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy 2017; 9:131-155. [DOI: 10.2217/imt-2016-0091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A totally effective, antimalarial vaccine must involve sporozoite and merozoite proteins (or their fragments) to ensure complete parasite blocking during critical invasion stages. This Special Report examines proteins involved in critical biological functions for parasite survival and highlights the conserved amino acid sequences of the most important proteins involved in sporozoite invasion of hepatocytes and merozoite invasion of red blood cells. Conserved high activity binding peptides are located in such proteins’ functionally strategic sites, whose functions are related to receptor binding, nutrient and protein transport, enzyme activity and molecule–molecule interactions. They are thus excellent targets for vaccine development as they block proteins binding function involved in invasion and also their biological function.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Rocío Rojas-Luna
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad del Rosario, Bogotá DC, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| |
Collapse
|
42
|
Sampson K, Zaitseva J, Stauffer M, Vande Berg B, Guo R, Tomso D, McNulty B, Desai N, Balasubramanian D. Discovery of a novel insecticidal protein from Chromobacterium piscinae , with activity against Western Corn Rootworm, Diabrotica virgifera virgifera. J Invertebr Pathol 2017; 142:34-43. [DOI: 10.1016/j.jip.2016.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/19/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
|
43
|
Neely AE, Mandigo KA, Robinson RL, Ness TL, Weiland MH. Chimeric approach for narrowing a membrane-inserting region within human perforin. Protein Eng Des Sel 2016; 30:105-111. [PMID: 27980121 DOI: 10.1093/protein/gzw069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Perforin is a pore-forming, immune protein that functions to deliver an apoptotic cocktail of proteins into a target pathogen. Recent studies of the bacterial cholesterol-dependent cytolysins (CDCs) have provided a model for perforin's pore-forming mechanism. Both perforin and CDC family members share a conserved β-sheet flanked by two clusters of α-helices. Within the CDCs, these helices refold into two transmembrane β-hairpins, TMH1 and TMH2. Based upon structural conservation and electron microscopy imaging, the analogous helices within perforin are predicted to also be membrane inserting; however, these regions are approximately twice the length of the CDC TMHs. To test the membrane-insertion potential of one of these regions, chimeras were created using a well-characterized CDC, perfringolysin-O (PFO), as the backbone of these constructs. PFO's TMH2 region was replaced with perforin's corresponding helical region. Although hemolytic activity was observed, the chimera was poorly soluble. A second chimera contained the same region truncated to match the length of the PFO TMH2 region. The truncated chimera demonstrated improved solubility, significant hemolytic activity and the ability to form pores characteristic of those created by PFO. These results provide the first evidence that perforin's helices function as TMHs and more importantly narrows the residues responsible for membrane insertion.
Collapse
Affiliation(s)
- Amy E Neely
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA
| | - Kimberly A Mandigo
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA
| | - Rebekah L Robinson
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA.,Department of Biology, Armstrong State University, Savannah, GA 31419, USA
| | - Traci L Ness
- Department of Biology, Armstrong State University, Savannah, GA 31419, USA
| | - Mitch H Weiland
- Department of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA
| |
Collapse
|
44
|
Chen J, Yu L, Zhang S, Chen X. Network Analysis-Based Approach for Exploring the Potential Diagnostic Biomarkers of Acute Myocardial Infarction. Front Physiol 2016; 7:615. [PMID: 28018242 PMCID: PMC5145872 DOI: 10.3389/fphys.2016.00615] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for AMI have not been identified. In order to explore the potential diagnostic biomarkers and possible regulatory targets of AMI, we used a network analysis-based approach to analyze microarray expression profiling of peripheral blood in patients with AMI. The significant differentially-expressed genes (DEGs) were screened by Limma and constructed a gene function regulatory network (GO-Tree) to obtain the inherent affiliation of significant function terms. The pathway action network was constructed, and the signal transfer relationship between pathway terms was mined in order to investigate the impact of core pathway terms in AMI. Subsequently, constructed the transcription regulatory network of DEGs. Weighted gene co-expression network analysis (WGCNA) was employed to identify significantly altered gene modules and hub genes in two groups. Subsequently, the transcription regulation network of DEGs was constructed. We found that specific gene modules may provide a better insight into the potential diagnostic biomarkers of AMI. Our findings revealed and verified that NCF4, AQP9, NFIL3, DYSF, GZMA, TBX21, PRF1 and PTGDR genes by RT-qPCR. TBX21 and PRF1 may be potential candidates for diagnostic biomarker and possible regulatory targets in AMI.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University Changchun, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University Changchun, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University Changchun, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University Changchun, China
| |
Collapse
|
45
|
Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat Commun 2016; 7:10823. [PMID: 26940455 PMCID: PMC4785227 DOI: 10.1038/ncomms10823] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Human melanoma cells express various tumour antigens that are recognized by CD8(+) cytotoxic T lymphocytes (CTLs) and elicit tumour-specific responses in vivo. However, natural and therapeutically enhanced CTL responses in melanoma patients are of limited efficacy. The mechanisms underlying CTL effector phase failure when facing melanomas are still largely elusive. Here we show that, on conjugation with CTL, human melanoma cells undergo an active late endosome/lysosome trafficking, which is intensified at the lytic synapse and is paralleled by cathepsin-mediated perforin degradation and deficient granzyme B penetration. Abortion of SNAP-23-dependent lysosomal trafficking, pH perturbation or impairment of lysosomal proteolytic activity restores susceptibility to CTL attack. Inside the arsenal of melanoma cell strategies to escape immune surveillance, we identify a self-defence mechanism based on exacerbated lysosome secretion and perforin degradation at the lytic synapse. Interfering with this synaptic self-defence mechanism might be useful in potentiating CTL-mediated therapies in melanoma patients.
Collapse
|
46
|
Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RHP, Ekkel SM, Kondos SC, Goode RJA, Ramm G, Whisstock JC, Saibil HR, Dunstone MA. Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun 2016; 7:10588. [PMID: 26841934 PMCID: PMC4742998 DOI: 10.1038/ncomms10588] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022] Open
Abstract
The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.
Collapse
Affiliation(s)
- Natalya V. Dudkina
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Bradley A. Spicer
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Cyril F. Reboul
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Paul J. Conroy
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Natalya Lukoyanova
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Hans Elmlund
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Ruby H. P. Law
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Susan M. Ekkel
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Stephanie C. Kondos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Robert J. A. Goode
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Georg Ramm
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - James C. Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
| | - Helen R. Saibil
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Michelle A. Dunstone
- ARC Centre of Excellence in Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, 3800 Victoria, Australia
| |
Collapse
|
47
|
l -Type amino acid transporter 1 (lat1)-mediated targeted delivery of perforin inhibitors. Int J Pharm 2016; 498:205-16. [DOI: 10.1016/j.ijpharm.2015.12.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 01/17/2023]
|
48
|
Stonefish toxin defines an ancient branch of the perforin-like superfamily. Proc Natl Acad Sci U S A 2015; 112:15360-5. [PMID: 26627714 DOI: 10.1073/pnas.1507622112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and β), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom.
Collapse
|
49
|
Reboul CF, Whisstock JC, Dunstone MA. Giant MACPF/CDC pore forming toxins: A class of their own. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:475-86. [PMID: 26607011 DOI: 10.1016/j.bbamem.2015.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Pore Forming Toxins (PFTs) represent a key mechanism for permitting the passage of proteins and small molecules across the lipid membrane. These proteins are typically produced as soluble monomers that self-assemble into ring-like oligomeric structures on the membrane surface. Following such assembly PFTs undergo a remarkable conformational change to insert into the lipid membrane. While many different protein families have independently evolved such ability, members of the Membrane Attack Complex PerForin/Cholesterol Dependent Cytolysin (MACPF/CDC) superfamily form distinctive giant β-barrel pores comprised of up to 50 monomers and up to 300Å in diameter. In this review we focus on recent advances in understanding the structure of these giant MACPF/CDC pores as well as the underlying molecular mechanisms leading to their formation. Commonalities and evolved variations of the pore forming mechanism across the superfamily are discussed. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
50
|
Stewart SE, Bird CH, Tabor RF, D'Angelo ME, Piantavigna S, Whisstock JC, Trapani JA, Martin LL, Bird PI. Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding. J Biol Chem 2015; 290:31101-12. [PMID: 26542805 DOI: 10.1074/jbc.m115.683078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 12/26/2022] Open
Abstract
Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding.
Collapse
Affiliation(s)
| | | | | | | | | | - James C Whisstock
- From the Department of Biochemistry and Molecular Biology, Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800 and
| | - Joseph A Trapani
- the Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Victoria 3002, Australia
| | | | - Phillip I Bird
- From the Department of Biochemistry and Molecular Biology,
| |
Collapse
|