1
|
Punz B, Brajnik M, Dokler J, Amos JD, Johnson L, Reilly K, Papadiamantis AG, Green Etxabe A, Walker L, Martinez DST, Friedrichs S, Weltring KM, Günday-Türeli N, Svendsen C, Ogilvie Hendren C, Wiesner MR, Himly M, Lynch I, Exner TE. Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:57-77. [PMID: 39877837 PMCID: PMC11773194 DOI: 10.3762/bjnano.16.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers. Instance maps are most effective when applied at the study design stage to associate the workflow with the nanomaterials, environmental conditions, method descriptions, protocols, biological and computational models to be used, and the data flows arising from study execution. Application of the InstanceMaps tool (described herein) to research workflows of increasing complexity is presented to demonstrate its utility, starting from (i) documentation of a nanomaterial's synthesis, functionalisation, and characterisation, over (ii) assessment of a nanomaterial's transformations in complex media, (iii) description of the culturing of ecotoxicity model organisms Daphnia magna and their use in standardised tests for nanomaterials ecotoxicity assessment, and (iv) visualisation of complex workflows in human immunotoxicity assessment using cell lines and primary cellular models, to (v) the use of the instance map approach for the coordination of materials and data flows in complex multipartner collaborative projects and for the demonstration of case studies. Finally, areas for future development of the instance map approach and the tool are highlighted.
Collapse
Affiliation(s)
- Benjamin Punz
- Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Maja Brajnik
- Seven Past Nine d.o.o., Hribljane 10, 1380 Cerknica, Slovenia
| | - Joh Dokler
- Seven Past Nine d.o.o., Hribljane 10, 1380 Cerknica, Slovenia
| | - Jaleesia D Amos
- Center for the Environmental Implications of Nano Technology (CEINT), Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
| | - Litty Johnson
- Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Amaia Green Etxabe
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - Lee Walker
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | | | - Klaus M Weltring
- Gesellschaft für Bioanalytik Münster, Mendelstraße 17, 48149 Münster, Germany
| | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | | | - Mark R Wiesner
- Center for the Environmental Implications of Nano Technology (CEINT), Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
| | - Martin Himly
- Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Thomas E Exner
- Seven Past Nine GmbH, Rebacker 68, 79650 Schopfheim, Germany
- Seven Past Nine d.o.o., Hribljane 10, 1380 Cerknica, Slovenia
| |
Collapse
|
2
|
Auffan M, Lowry GV, Amos JD, Bossa N, Wiesner MR. Leveraging nanoparticle environmental health and safety research in the study of micro- and nano-plastics. NANOIMPACT 2024; 36:100534. [PMID: 39551431 DOI: 10.1016/j.impact.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Lessons learned, methodologies, and application of tools that have been developed within the context of research on the environmental impacts, health, and safety of nanomaterials (nano-EHS) provide a solid foundation for research on nano/microplastics. In this communication, we summarize key discoveries obtained through major research efforts over the last two decades in the area of nano-EHS that are applicable for the study of micro- and nano-plastics (referred to here more generally as particulate plastics). We focus on how non-equilibrium particle transport processes affect: 1) bio-physico-chemical mechanisms of particle toxicity and determining dose-response relationships; 2) the potential for biouptake, bioaccumulation, translocation, trophic transfer and intergenerational effects of particulate contaminants; 3) extrapolations from laboratory experiments to complex systems and the impact of environmental transformations; 4) the formulation of functional assays as a basis for predicting the impacts of particulate contaminants in complex environments; 5) the relative importance of incidental particles compared with engineered particles and, 6) experience with data platforms, curation, and experimental design.
Collapse
Affiliation(s)
- Melanie Auffan
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - Gregory V Lowry
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jaleesia D Amos
- Department of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287, USA
| | - Nathan Bossa
- Department of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287, USA
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287, USA.
| |
Collapse
|
3
|
Wang T, Russo DP, Demokritou P, Jia X, Huang H, Yang X, Zhu H. An Online Nanoinformatics Platform Empowering Computational Modeling of Nanomaterials by Nanostructure Annotations and Machine Learning Toolkits. NANO LETTERS 2024; 24:10228-10236. [PMID: 39120132 PMCID: PMC11342361 DOI: 10.1021/acs.nanolett.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Modern nanotechnology has generated numerous datasets from in vitro and in vivo studies on nanomaterials, with some available on nanoinformatics portals. However, these existing databases lack the digital data and tools suitable for machine learning studies. Here, we report a nanoinformatics platform that accurately annotates nanostructures into machine-readable data files and provides modeling toolkits. This platform, accessible to the public at https://vinas-toolbox.com/, has annotated nanostructures of 14 material types. The associated nanodescriptor data and assay test results are appropriate for modeling purposes. The modeling toolkits enable data standardization, data visualization, and machine learning model development to predict properties and bioactivities of new nanomaterials. Moreover, a library of virtual nanostructures with their predicted properties and bioactivities is available, directing the synthesis of new nanomaterials. This platform provides a data-driven computational modeling platform for the nanoscience community, significantly aiding in the development of safe and effective nanomaterials.
Collapse
Affiliation(s)
- Tong Wang
- Tulane
Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana 70112, United States
- Division
of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Daniel P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Philip Demokritou
- Center
for Nanotechnology and Nanotoxicology, Department of Environmental
Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, Massachusetts 02115, United States
- Nanoscience
and Advanced Materials Center, Environmental Occupational Health Sciences
Institute, School of Public Health, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Xuelian Jia
- Tulane
Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana 70112, United States
- Division
of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Heng Huang
- Department
of Computer Science, University of Maryland
College Park, College
Park, Maryland 20742, United States
| | - Xinyu Yang
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Hao Zhu
- Tulane
Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana 70112, United States
- Division
of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
4
|
Amos JD, Zhang Z, Tian Y, Lowry GV, Wiesner MR, Hendren CO. Knowledge and Instance Mapping: architecture for premeditated interoperability of disparate data for materials. Sci Data 2024; 11:173. [PMID: 38321063 PMCID: PMC10847415 DOI: 10.1038/s41597-024-03006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Predicting and elucidating the impacts of materials on human health and the environment is an unending task that has taken on special significance in the context of nanomaterials research over the last two decades. The properties of materials in environmental and physiological media are dynamic, reflecting the complex interactions between materials and these media. This dynamic behavior requires special consideration in the design of databases and data curation that allow for subsequent comparability and interrogation of the data from potentially diverse sources. We present two data processing methods that can be integrated into the experimental process to encourage pre-mediated interoperability of disparate material data: Knowledge Mapping and Instance Mapping. Originally developed as a framework for the NanoInformatics Knowledge Commons (NIKC) database, this architecture and associated methods can be used independently of the NIKC and applied across multiple subfields of nanotechnology and material science.
Collapse
Affiliation(s)
- Jaleesia D Amos
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
| | - Zhao Zhang
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
- Lucideon M+P, Morrisville, North Carolina, 27560, USA
| | - Yuan Tian
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
| | - Gregory V Lowry
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Mark R Wiesner
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA.
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA.
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nano Technology (CEINT), Durham, USA
- Civil & Environmental Engineering, Duke University, Durham, North Carolina, 2770y8, USA
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina, 28608, USA
| |
Collapse
|
5
|
Wyrzykowska E, Mikolajczyk A, Lynch I, Jeliazkova N, Kochev N, Sarimveis H, Doganis P, Karatzas P, Afantitis A, Melagraki G, Serra A, Greco D, Subbotina J, Lobaskin V, Bañares MA, Valsami-Jones E, Jagiello K, Puzyn T. Representing and describing nanomaterials in predictive nanoinformatics. NATURE NANOTECHNOLOGY 2022; 17:924-932. [PMID: 35982314 DOI: 10.1038/s41565-022-01173-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of safe-and-sustainable-by-design (SSbD). The biological activity of ENMs is closely related to their physicochemical characteristics, changes in these characteristics may therefore cause changes in the ENMs activity. In this sense, a set of physicochemical characteristics (for example, chemical composition, crystal structure, size, shape, surface structure) creates a unique 'representation' of a given ENM. The usability of these characteristics or nanomaterial descriptors (nanodescriptors) in nanoinformatics methods such as quantitative structure-activity/property relationship (QSAR/QSPR) models, provides exciting opportunities to optimize ENMs at the design stage by improving their functionality and minimizing unforeseen health/environmental hazards. A computational screening of possible versions of novel ENMs would return optimal nanostructures and manage ('design out') hazardous features at the earliest possible manufacturing step. Safe adoption of ENMs on a vast scale will depend on the successful integration of the entire bulk of nanodescriptors extracted experimentally with data from theoretical and computational models. This Review discusses directions for developing appropriate nanomaterial representations and related nanodescriptors to enhance the reliability of computational modelling utilized in designing safer and more sustainable ENMs.
Collapse
Affiliation(s)
| | - Alicja Mikolajczyk
- QSAR Lab Ltd, Gdańsk, Poland
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Nikolay Kochev
- Ideaconsult Ltd, Sofia, Bulgaria
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Pantelis Karatzas
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | | | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | - Angela Serra
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Julia Subbotina
- School of Physics, University College Dublin, Belfield, Dublin, Ireland
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin, Ireland
| | - Miguel A Bañares
- Instituto de Catálisis y Petroleoquimica, ICP CSIC, Madrid, Spain
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Karolina Jagiello
- QSAR Lab Ltd, Gdańsk, Poland
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd, Gdańsk, Poland.
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
6
|
van Rijn J, Afantitis A, Culha M, Dusinska M, Exner TE, Jeliazkova N, Longhin EM, Lynch I, Melagraki G, Nymark P, Papadiamantis AG, Winkler DA, Yilmaz H, Willighagen E. European Registry of Materials: global, unique identifiers for (undisclosed) nanomaterials. J Cheminform 2022; 14:57. [PMID: 36002868 PMCID: PMC9400299 DOI: 10.1186/s13321-022-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
Management of nanomaterials and nanosafety data needs to operate under the FAIR (findability, accessibility, interoperability, and reusability) principles and this requires a unique, global identifier for each nanomaterial. Existing identifiers may not always be applicable or sufficient to definitively identify the specific nanomaterial used in a particular study, resulting in the use of textual descriptions in research project communications and reporting. To ensure that internal project documentation can later be linked to publicly released data and knowledge for the specific nanomaterials, or even to specific batches and variants of nanomaterials utilised in that project, a new identifier is proposed: the European Registry of Materials Identifier. We here describe the background to this new identifier, including FAIR interoperability as defined by FAIRSharing, identifiers.org, Bioregistry, and the CHEMINF ontology, and show how it complements other identifiers such as CAS numbers and the ongoing efforts to extend the InChI identifier to cover nanomaterials. We provide examples of its use in various H2020-funded nanosafety projects.
Collapse
Affiliation(s)
- Jeaphianne van Rijn
- Department of Bioinformatics-BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands.
| | | | - Mustafa Culha
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007, Kjeller, Norway
| | | | | | - Eleonora Marta Longhin
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007, Kjeller, Norway
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anastasios G Papadiamantis
- NovaMechanics Ltd., 1070, Nicosia, Cyprus.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David A Winkler
- School of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Hulya Yilmaz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Egon Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Furxhi I. Health and environmental safety of nanomaterials: O Data, Where Art Thou? NANOIMPACT 2022; 25:100378. [PMID: 35559884 DOI: 10.1016/j.impact.2021.100378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
Nanotechnology keeps drawing attention due to the great tunable properties of nanomaterials in comparison to their bulk conventional materials. The growth of nanotechnology in combination with the digitization era has led to an increased need of safety related data. In addition to safety, new data-driven paradigms on safe and sustainable by design materials are stressing the necessity of data even more. Data is a fundamental asset to the scientific community in studying and analysing the entire life-cycle of nanomaterials. Unfortunately, data exist in a scattered fashion, in different sources and formats. To our knowledge, there is no study focusing on aspects of actual data-structure knowledge that exists in literature and databases. The purpose of this review research is to transparently and comprehensively, display to the nanoscience community the datasets readily available for machine learning purposes making it convenient and more efficient for the next users such as modellers or data curators to retrieve information. We systematically recorded the features and descriptors available in the datasets and provide synopsised information on their ranges, forms and metrics in the supplementary material.
Collapse
Affiliation(s)
- Irini Furxhi
- Transgero Limited, Cullinagh, Newcastle West, Co. Limerick, Ireland; Dept. of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93, Ireland.
| |
Collapse
|