1
|
Zhou S, Tsutsumiuchi K, Imai R, Miki Y, Kondo A, Nakagawa H, Watanabe K, Ohtsuki T. In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia. Molecules 2024; 29:2632. [PMID: 38893510 PMCID: PMC11174109 DOI: 10.3390/molecules29112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer cells have higher heat sensitivity compared to normal cells; therefore, hyperthermia is a promising approach for cancer therapy because of its ability to selectively kill cancer cells by heating them. However, the specific and rapid heating of tumor tissues remains challenging. This study investigated the potential of magnetic nanoparticles (MNPs) modified with tumor-homing peptides (THPs), specifically PL1 and PL3, for tumor-specific magnetic hyperthermia therapy. The synthesis of THP-modified MNPs involved the attachment of PL1 and PL3 peptides to the surface of the MNPs, which facilitated enhanced tumor cell binding and internalization. Cell specificity studies revealed an increased uptake of PL1- and PL3-MNPs by tumor cells compared to unmodified MNPs, indicating their potential for targeted delivery. In vitro hyperthermia experiments demonstrated the efficacy of PL3-MNPs in inducing tumor cell death when exposed to an alternating magnetic field (AMF). Even without exposure to an AMF, an additional ferroptotic pathway was suggested to be mediated by the nanoparticles. Thus, this study suggests that THP-modified MNPs, particularly PL3-MNPs, hold promise as a targeted approach for tumor-specific magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Shengli Zhou
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.Z.); (K.W.)
| | - Kaname Tsutsumiuchi
- College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan; (K.T.); (R.I.); (Y.M.); (A.K.); (H.N.)
| | - Ritsuko Imai
- College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan; (K.T.); (R.I.); (Y.M.); (A.K.); (H.N.)
| | - Yukiko Miki
- College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan; (K.T.); (R.I.); (Y.M.); (A.K.); (H.N.)
| | - Anna Kondo
- College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan; (K.T.); (R.I.); (Y.M.); (A.K.); (H.N.)
| | - Hiroshi Nakagawa
- College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan; (K.T.); (R.I.); (Y.M.); (A.K.); (H.N.)
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.Z.); (K.W.)
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.Z.); (K.W.)
| |
Collapse
|
2
|
Kastenhofer J, Spadiut O, Papangelakis VG, Allen DG. Roles of pH and phosphate in rare earth element biosorption with living acidophilic microalgae. Appl Microbiol Biotechnol 2024; 108:262. [PMID: 38483568 PMCID: PMC10940408 DOI: 10.1007/s00253-024-13068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 03/17/2024]
Abstract
The increasing demand for rare earth elements (REEs) has spurred interest in the development of recovery methods from aqueous waste streams. Acidophilic microalgae have gained attention for REE biosorption as they can withstand high concentrations of transition metals and do not require added organic carbon to grow, potentially allowing simultaneous sorption and self-replication of the sorbent. Here, we assessed the potential of Galdieria sulphuraria for REE biosorption under acidic, nutrient-replete conditions from solutions containing ≤ 15 ppm REEs. Sorption at pH 1.5-2.5 (the growth optimum of G. sulphuraria) was poor but improved up to 24-fold at pH 5.0 in phosphate-free conditions. Metabolic activity had a negative impact on REE sorption, additionally challenging the feasibility of REE biosorption under ideal growth conditions for acidophiles. We further examined the possibility of REE biosorption in the presence of phosphate for biomass growth at elevated pH (pH ≥ 2.5) by assessing aqueous La concentrations in various culture media. Three days after adding La into the media, dissolved La concentrations were up to three orders of magnitude higher than solubility predictions due to supersaturation, though LaPO4 precipitation occurred under all conditions when seed was added. We concluded that biosorption should occur separately from biomass growth to avoid REE phosphate precipitation. Furthermore, we demonstrated the importance of proper control experiments in biosorption studies to assess potential interactions between REEs and matrix ions such as phosphates. KEY POINTS: • REE biosorption with G. sulphuraria increases significantly when raising pH to 5 • Phosphate for biosorbent growth has to be supplied separately from biosorption • Biosorption studies have to assess potential matrix effects on REE behavior.
Collapse
Affiliation(s)
- Jens Kastenhofer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, TU Vienna, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Vladimiros G Papangelakis
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
3
|
Fritz M, Chen X, Yang G, Lv Y, Liu M, Wehner S, Fischer CB. Gold Nanoparticles Bioproduced in Cyanobacteria in the Initial Phase Opened an Avenue for the Discovery of Corresponding Cerium Nanoparticles. Microorganisms 2024; 12:330. [PMID: 38399735 PMCID: PMC10892827 DOI: 10.3390/microorganisms12020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The production of isolated metallic nanoparticles with multifunctionalized properties, such as size and shape, is crucial for biomedical, photocatalytic, and energy storage or remediation applications. This study investigates the initial particle formations of gold nanoparticles (AuNPs) bioproduced in the cyanobacteria Anabaena sp. using high-resolution transmission electron microscopy images for digital image analysis. The developed method enabled the discovery of cerium nanoparticles (CeNPs), which were biosynthesized in the cyanobacteria Calothrix desertica. The particle size distributions for AuNPs and CeNPs were analyzed. After 10 h, the average equivalent circular diameter for AuNPs was 4.8 nm, while for CeNPs, it was approximately 5.2 nm after 25 h. The initial shape of AuNPs was sub-round to round, while the shape of CeNPs was more roundish due to their amorphous structure and formation restricted to heterocysts. The local PSDs indicate that the maturation of AuNPs begins in the middle of vegetative cells and near the cell membrane, compared to the other regions of the cell.
Collapse
Affiliation(s)
- Melanie Fritz
- Department of Physics, University of Koblenz, 56070 Koblenz, Germany
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Guifang Yang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Stefan Wehner
- Department of Physics, University of Koblenz, 56070 Koblenz, Germany
| | - Christian B. Fischer
- Department of Physics, University of Koblenz, 56070 Koblenz, Germany
- Materials Science, Energy and Nano-Engineering Department, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
4
|
Fritz M, Körsten S, Chen X, Yang G, Lv Y, Liu M, Wehner S, Fischer CB. Time-Dependent Size and Shape Evolution of Gold and Europium Nanoparticles from a Bioproducing Microorganism, a Cyanobacterium: A Digitally Supported High-Resolution Image Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:130. [PMID: 36616040 PMCID: PMC9824745 DOI: 10.3390/nano13010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Herein, the particle size distributions (PSDs) and shape analysis of in vivo bioproduced particles from aqueous Au3+ and Eu3+ solutions by the cyanobacterium Anabaena sp. are examined in detail at the nanoscale. Generally, biosynthesis is affected by numerous parameters. Therefore, it is challenging to find the key set points for generating tailored nanoparticles (NPs). PSDs and shape analysis of the Au and Eu-NPs were performed with ImageJ using high-resolution transmission electron microscopy (HR-TEM) images. As the HR-TEM image analysis reflects only a fraction of the detected NPs within the cells, additional PSDs of the complete cell were performed to determine the NP count and to evaluate the different accuracies. Furthermore, local PSDs were carried out at five randomly selected locations within a single cell to identify local hotspots or agglomerations. The PSDs show that particle size depends mainly on contact time, while the particle shape is hardly affected. The particles formed are distributed quite evenly within the cells. HR-PSDs for Au-NPs show an average equivalent circular diameter (ECD) of 8.4 nm (24 h) and 7.2 nm (51 h). In contrast, Eu-NPs preferably exhibit an average ECD of 10.6 nm (10 h) and 12.3 nm (244 h). Au-NPs are classified predominantly as "very round" with an average reciprocal aspect ratio (RAR) of ~0.9 and a Feret major axis ratio (FMR) of ~1.17. Eu-NPs mainly belong to the "rounded" class with a smaller RAR of ~0.6 and a FMR of ~1.3. These results show that an increase in contact time is not accompanied by an average particle growth for Au-NPs, but by a doubling of the particle number. Anabaena sp. is capable of biosorbing and bioreducing dissolved Au3+ and Eu3+ ions from aqueous solutions, generating nano-sized Au and Eu particles, respectively. Therefore, it is a low-cost, non-toxic and effective candidate for a rapid recovery of these sought-after metals via the bioproduction of NPs with defined sizes and shapes, providing a high potential for scale-up.
Collapse
Affiliation(s)
- Melanie Fritz
- Department of Physics, University Koblenz-Landau, Universitätsstraße 1, D-56070 Koblenz, Germany
| | - Susanne Körsten
- Department of Physics, University Koblenz-Landau, Universitätsstraße 1, D-56070 Koblenz, Germany
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Guifang Yang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Stefan Wehner
- Department of Physics, University Koblenz-Landau, Universitätsstraße 1, D-56070 Koblenz, Germany
| | - Christian B. Fischer
- Department of Physics, University Koblenz-Landau, Universitätsstraße 1, D-56070 Koblenz, Germany
- Materials Science, Energy and Nano-Engineering Department, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
5
|
Alqarni LS, Alghamdi MD, Alshahrani AA, Nassar AM. Green Nanotechnology: Recent Research on Bioresource-Based Nanoparticle Synthesis and Applications. J CHEM-NY 2022; 2022:1-31. [DOI: 10.1155/2022/4030999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
In the last decades, the idea of green nanotechnology has been expanding, and researchers are developing greener and more sustainable techniques for synthesizing nanoparticles (NPs). The major objectives are to fabricate NPs using simple, sustainable, and cost-effective procedures while avoiding the use of hazardous materials that are usually utilized as reducing or capping agents. Many biosources, including plants, bacteria, fungus, yeasts, and algae, have been used to fabricate NPs of various shapes and sizes. The authors of this study emphasized the most current studies for fabricating NPs from biosources and their applications in a wide range of fields. This review addressed studies that cover green techniques for synthesizing nanoparticles of Ag, Au, ZnO, CuO, Co3O4, Fe3O4, TiO2, NiO, Al2O3, Cr2O3, Sm2O3, CeO2, La2O3, and Y2O3. Also, their applications were taken under consideration and discussed.
Collapse
Affiliation(s)
- Laila S. Alqarni
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
6
|
Cyanobacteria: miniature factories for green synthesis of metallic nanomaterials: a review. Biometals 2022; 35:653-674. [PMID: 35716270 DOI: 10.1007/s10534-022-00405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Nanotechnology is one of the most promising and advanced disciplines of science that deals with synthesis, characterization and applications of different types of Nanomaterials (NMs) viz. nanospheres, nanoparticles, nanotubes, nanorods, nanowires, nanocomposites, nanoalloys, carbon dots and quantum dots. These nanosized materials exhibit different physicochemical characteristics and act as a whole unit during its transport. The unique characteristics and vast applications of NMs in diverse fields viz. electronics, agriculture, biology and medicine have created huge demand of different type of NMs. Conventionally physical and chemical methods were adopted to manufacture NMs which are expensive and end up with hazardous by-products. Therefore, green synthesis exploiting biological resources viz. algae, bacteria, fungi and plants emerged as a better and promising alternative due to its cost effective and ecofriendly approach and referred as nanobiotechnology. Among various living organisms, cyanobacteria have proved one of the most favourable bioresources for NMs biosynthesis due to their survival in diverse econiches including metal and metalloid contaminated sites and capability to withstand high levels of metals. Biosynthesis of metallic NMs is accomplished through bioreduction of respective metal salts by various capping agents viz. alkaloids, pigments, polysaccharides, steroids, enzymes and peptides present in the biological systems. Advancement in the field of Nanobiotechnology has produced large number of diverse NMs from cyanobacteria which have been used as antimicrobial agents against Gram positive and negative human pathogens, anticancer agents, luminescent nanoprobes for imaging of cells, antifungal agents against plant pathogens, nanocatalyst and semiconductor quantum dots in industries and in bioremediation in toxic pollutant dyes. In the present communication, we have reviewed cyanobacteria mediated biosynthesis of NMs and their applications in various fields.
Collapse
|