1
|
Arjsri P, Mapoung S, Semmarath W, Srisawad K, Tuntiwechapikul W, Yodkeeree S, Dejkriengkraikul P. Pyrogallol from Spirogyra neglecta Inhibits Proliferation and Promotes Apoptosis in Castration-Resistant Prostate Cancer Cells via Modulating Akt/GSK-3 β/ β-catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24076452. [PMID: 37047425 PMCID: PMC10094533 DOI: 10.3390/ijms24076452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an advanced form of prostate cancer associated with poor survival rates. The high proliferation and metastasis rates have made CRPC one of the most challenging types of cancer for medical practitioners and researchers. In this study, the anti-cancer properties and inhibition of CRPC progression by S. neglecta extract and its active constituents were determined using two CRPC cell lines, DU145 and PC3. The ethyl acetate fraction of S. neglecta (SnEA) was obtained using a solvent-partitioned extraction technique. The active constituents of SnEA were then determined using the HPLC technique, which showed that SnEA mainly contained syringic acid, pyrogallol, and p-coumaric acid phenolic compounds. After the determination of cytotoxic properties using the SRB assay, it was found that pyrogallol, but not the other two major compounds of SnEA, displayed promising anti-cancer properties in both CRPC cell lines. SnEA and pyrogallol were then further investigated for their anti-proliferation and apoptotic induction properties using propidium iodide and Annexin V staining. The results showed that SnEA and pyrogallol inhibited both DU145 and PC3 cell proliferation by inducing cell cycle arrest in the G0/G1 phase and significantly decreased the expression of cell cycle regulator proteins (cyclin D1, cyclin E1, CDK-2, and CDK-4, p < 0.001). SnEA and pyrogallol treatments also promoted apoptosis in both types of CRPC cells through significantly downregulating anti-apoptotic proteins (survivin, Bcl-2, and Bcl-xl, p < 0.001) and upregulating apoptotic proteins (cleaved-caspase-9, cleaved-caspase-3 and cleaved-PARP-1, p < 0.001). Mechanistic study demonstrated that SnEA and pyrogallol inactivated the Akt signaling pathway leading to enhancement of the active form of GSK-3β in CRPC cell lines. Therefore, the phosphorylation of β-catenin was increased, which caused degradation of the protein, resulting in a downregulation of β-catenin (unphosphorylated form) transcriptional factor activity. The current results reflect the potential impact of S. neglecta extract and pyrogallol on the management of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Akkraratchkumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Chularojmontri L, Nanna U, Tingpej P, Hansakul P, Jansom C, Wattanapitayakul S, Naowaboot J. Raphanus sativus L. var. caudatus Extract Alleviates Impairment of Lipid and Glucose Homeostasis in Liver of High-Fat Diet-Induced Obesity and Insulin Resistance in Mice. Prev Nutr Food Sci 2022; 27:399-406. [PMID: 36721756 PMCID: PMC9843712 DOI: 10.3746/pnf.2022.27.4.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the activities of Raphanus sativus L. var. caudatus extract (RS) on abnormal lipid and glucose homeostasis in a high-fat diet (HFD)-induced obesity and insulin resistance in a mouse model. Institute of Cancer Research mice were rendered obese by 16-week HFD feeding. Obese mice were administered with 100 or 200 mg/kg/d RS orally during the last 8 weeks of diet feeding. Then, the biochemical parameters were determined. The gene and protein expressions regulating lipid and glucose homeostasis in the liver were measured. This study revealed that the state of hyperglycemia, hyperleptinemia, hyperinsulinemia, and hyperlipidemia was reduced after 8 weeks of RS treatment (100 or 200 mg/kg). Administration of RS also improved insulin sensitivity and increased serum adiponectin. The liver total cholesterol and triglyceride concentrations were decreased by both doses of RS. Notably, a decrease in the expression of liver-specific genes, including sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-CoA carboxylase, was found in the RS-treated groups. Moreover, administration of RS showed a significant increase in the expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and sirtuin1 (Sirt1) proteins. These findings indicated that RS improved abnormal lipid and glucose homeostasis in the liver of obesity-associated insulin resistance mouse model, possibly through the stimulation of the AMPK/Sirt1 pathway.
Collapse
Affiliation(s)
- Linda Chularojmontri
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Urarat Nanna
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Pholawat Tingpej
- Division of Microbiology and Immunology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Pintusorn Hansakul
- Division of Biochemistry, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Chalerm Jansom
- Research Office, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Suvara Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand,
Correspondence to Jarinyaporn Naowaboot, E-mail:
| |
Collapse
|
3
|
Duangjai A, Trisat K, Saokaew S. Effect of Roasting Degree, Extraction Time, and Temperature of Coffee Beans on Anti-Hyperglycaemic and Anti-Hyperlipidaemic Activities Using Ultrasound-Assisted Extraction. Prev Nutr Food Sci 2021; 26:338-345. [PMID: 34737995 PMCID: PMC8531425 DOI: 10.3746/pnf.2021.26.3.338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Coffee consumption has been linked to a low risk of metabolic syndrome. However, evidence supporting its anti-hyperglycaemic and anti-hyperlipidaemic activities remain poorly defined. The ultrasound-assisted extraction (UAE) technique has been shown to achieve high yields of bioactive compounds in coffee, with preserved functionality. The goal of the present study was to determine the effect of various coffee roasting extracts using UAE on their anti-hyperglycaemic and anti-hyperlipidaemic properties. We examined α-amylase and α-glucosidase, micelle size, micelle solubility, and pancreatic lipase activities. Coffee roasting degrees were classified as light coffee (LC), medium coffee (MC), and dark coffee (DC). We showed that DC at 80°C for 10 min, 40°C for 20 min, and 20°C for 20 min has a high potency to inhibit α-amylase, α-glucosidase, and pancreatic lipase activities by 33.79±3.25%, 19.68±1.43%, and 36.63±1.58%, respectively. LC enhanced cholesterol micelle size and suppressed cholesterol micelle solubility, which suggests that coffee roasting may enhance anti-hyperglycaemic and anti-hyperlipidaemic activities.
Collapse
Affiliation(s)
- Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Kanittaporn Trisat
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailan
| | - Surasak Saokaew
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), University of Phayao, Phayao 56000, Thailand.,Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), University of Phayao, Phayao 56000, Thailand.,Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand.,Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
4
|
Naowaboot J, Nanna U, Chularojmontri L, Songtavisin T, Tingpej P, Sattaponpan C, Jansom C, Wattanapitayakul S. Mentha cordifolia Leaf Extract Improves Hepatic Glucose and Lipid Metabolism in Obese Mice Fed with High-Fat Diet. Prev Nutr Food Sci 2021; 26:157-165. [PMID: 34316480 PMCID: PMC8276705 DOI: 10.3746/pnf.2021.26.2.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
Mentha cordifolia (MC) is a popular herb used to flavor food in Thailand that exhibits several biological effects. The present study aimed to determine the role of MC in regulating glucose and lipid metabolism in mice fed a high-fat diet (HFD). ICR obese mice were fed an HFD (45 kcal% lard fat) for 12 weeks, with MC (100 and 200 mg/kg/d) treatment from Week 7. After treatment with MC for 6 weeks, mice showed significantly lower rates of hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia, and increased amounts of serum adiponectin. Furthermore, in mice treated with MC, serum interleukin-6 and tumor necrosis factor alpha were significantly inhibited and liver histology results showed decreased lipid accumulation and liver triglyceride content vs. untreated mice. In addition, MC treatment was associated with smaller fat cells and lower gene expression of liver sterol regulatory element binding protein 1c, acetyl-CoA carboxylase, and fatty acid synthase. However, MC treatment was associated with higher carnitine palmitoyltransferase 1a gene expression and significantly higher rates of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in liver, but lower levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. These results indicate MC regulates glucose and lipid metabolism in a HFD-induced obese mouse model, possibly via activation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Urarat Nanna
- Division of Pharmacology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Linda Chularojmontri
- Division of Pharmacology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Thanitsara Songtavisin
- Division of Anatomy, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pholawat Tingpej
- Division of Microbiology and Immunology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Chisanucha Sattaponpan
- Research Administrative Office, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Chalerm Jansom
- Research Administrative Office, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Suvara Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
5
|
Amrani-Allalou H, Boulekbache-Makhlouf L, Izzo L, Arkoub-Djermoune L, Freidja ML, Mouhoubi K, Madani K, Tenore GC. Phenolic compounds from an Algerian medicinal plant ( Pallenis spinosa): simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct 2021; 12:1291-1304. [PMID: 33439206 DOI: 10.1039/d0fo01764g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pallenis spinosa is a medicinal plant which is used in folk medicine as curative or preventive remedies for various diseases. Individual phenolic compounds from the methanolic extracts of its flowers, leaves and stem were determined by the high performance liquid chromatography method (HPLC) and total phenolic contents (TPC) were evaluated by Folin-Ciocalteu assay. The stability and bioactivity (antioxidant activity, micellar cholesterol solubility, α-amylase, and angiotensin converting enzymes (ACE) inhibitory effects) of these extracts in the gastrointestinal environment was determined before and after their protection in hydroxypropylmethylcellulose (HPMC) capsules. HPLC analysis revealed the presence of thirteen phenolic compounds with nine flavonoids and four phenolic acids. Except for kaempferol, the twelve other compounds have not been previously detected in the aerial part of the studied plant. Quantification of phenolics by HPLC and Folin Ciocalteu methods revealed that the highest TPC was detected in the flower extracts (104.31 ± 0.80 and 145.73 ± 0.48 mg EGA per g of extract, respectively). Leaf extracts displayed the best antioxidant capacity against the two tested radicals DPPH and ABTS (IC50 = 1.24 ± 0.03 and 0.94 ± 0.02 mg mL-1, respectively), FRAP assay (IC50 = 0.50 ± 0.02 mg mL-1), α-amylase inhibitory (IC50 = 1.25 ± 0.00 mg mL-1) and angiotensin activity with an inhibitory percent of 30.10 ± 0.12%. The best activity shown by stem extracts was against micellar cholesterol solubility (67.57 ± 0.00%). A strong decrease in TPC and their bioactivity was observed after the gastrointestinal digestion (GID) in non encapsulated extracts. These results showed that P. spinosa is a good source of phenolic compounds and GID affects significantly their composition, content and bioactivity.
Collapse
Affiliation(s)
- Hanane Amrani-Allalou
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Lila Boulekbache-Makhlouf
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Lynda Arkoub-Djermoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Université Mouloud Mammeri de Tizi Ouzou, Faculté des Sciences Biologiques et des Sciences Agronomiques, Algeria
| | - Mohamed Lamine Freidja
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Département de Biochimie et de Microbiologie, Faculté des Sciences, Université Mohamed Boudiaf, 28000 M'sila, Algeria
| | - Khokha Mouhoubi
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Centre de Recherche en Technologie Agro-Alimentaire, Route de Tergua-Ouzemour, 06000, Bejaia, Algeria
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
6
|
Phenolic Profile of Nipa Palm Vinegar and Evaluation of Its Antilipidemic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6769726. [PMID: 32952589 PMCID: PMC7487108 DOI: 10.1155/2020/6769726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022]
Abstract
Obesity and overweight are strongly associated with dyslipidemia which can promote the development of cardiovascular diseases. Recently, natural products have been suggested as alternative compounds for antioxidant and antilipidemic activity. The objective of this study was to determine the phenolic compounds and assess the inhibitory activities on pancreatic lipase, cholesterol esterase, and cholesterol micellization of nipa palm vinegar (NPV). Total phenolic content was assessed and phenolic compounds were determined using the Folin-Ciocalteu assay and liquid chromatography-mass spectrometry (LC-MS), respectively. Pancreatic lipase and cholesterol esterase inhibitory activities of the NPV were measured using enzymatic colorimetric assays. The formation of cholesterol micelles was assessed using a cholesterol assay kit. The phenolic content of NPV was 167.10 ± 10.15 µg GAE/mL, and LC-MS analyses indicated the presence of gallic acid, isoquercetin, quercetin, catechin, and rutin as bioactive compounds. Additionally, the NPV inhibited pancreatic lipase and cholesterol esterase activities in a concentration-dependent manner. Moreover, the NPV also suppressed the formation of cholesterol micellization. These results suggest that phenolic compounds, especially gallic acid, isoquercetin, quercetin, catechin, and rutin, from NPV may be the main active compounds with possible cholesterol-lowering effects through inhibition of pancreatic lipase and cholesterol esterase activities as well as the inhibition of solubility of cholesterol micelles. Therefore, NPV may delay postprandial dyslipidemia, and it could be used as a natural source of bioactive compounds with antilipidemic activity. However, NPV should be extensively evaluated by animal and clinical human studies.
Collapse
|
7
|
Ontawong A, Srimaroeng C, Boonphang O, Phatsara M, Amornlerdpison D, Duangjai A. Spirogyra neglecta Aqueous Extract Attenuates LPS-Induced Renal Inflammation. Biol Pharm Bull 2020; 42:1814-1822. [PMID: 31685765 DOI: 10.1248/bpb.b19-00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spirogyra neglecta (SN), commonly named "Tao" in Thai, is a genus of filamentous green macroalgae. SN contains polyphenols such as isoquercetin, catechin, hydroquinone and kaempferol. These constituents exhibit beneficial effects including anti-oxidant, anti-gastric ulcer, anti-hyperglycaemia and anti-hyperlipidaemia in both in vitro and in vivo models. Whether SN extract (SNE) has an anti-inflammatory effect in vivo remains unclear. This study examined the effect of SNE on renal function and renal organic transport in lipopolysaccharide (LPS)-induced renal inflammation in rats. Rats were randomised and divided into normal saline (NS), NS supplemented with 1000 mg/kg body weight (BW) of SNE (NS + SNE), intraperitoneally injected with 12 mg/kg BW of LPS and LPS treated with 1000 mg/kg BW of SNE (LPS + SNE). Biochemical parameters in serum and urine, lipid peroxidation concentration, kidney function and renal organic anion and cation transports were determined. LPS-injected rats developed renal injury and inflammation by increasing urine microalbumin, total malondialdehyde (MDA) and inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β protein expression, respectively. In addition, uptake of renal organic anion, [3H]-oestrone sulphate (ES), was reduced in LPS-injected rats together with increased expression of organic anion transporter 3 (Oat3). However, the renal injury and inflammation, as well as impaired Oat3 function and protein expression, were restored in LPS + SNE rats. Accordingly, SNE could be developed as nutraceutical product to prevent inflammation-induced nephrotoxicity.
Collapse
|
8
|
Duangjai A, Saokaew S. Inhibitory effects of Tiliacora triandra (Colebr.) Diels on cholesterol absorption. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2018; 16:jcim-2017-0169. [PMID: 30312160 DOI: 10.1515/jcim-2017-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/20/2018] [Indexed: 02/02/2023]
Abstract
Background Natural supplements and herbal medicines have been attracted to use for managing elevated cholesterol levels. Tiliacora triandra (Colebr.) Diels (TT) or Yanang (in Thai) is commonly used as an ingredient in various types of Thai foods. In this study, we investigated the effect of methanolic TT leaf extract on cholesterol absorption by measuring the uptake and the efflux of cholesterol and cholesterol micellar solubility. In addition, we tested the effect of TT leaf extract on pancreatic lipase activity. Methods The uptake and efflux of cholesterol was determined by quantification of radioactivity in differentiated Caco-2 cells after treatment with radioactive cholesterol. Cholesterol mixed micelles were prepared for cholesterol uptake, efflux and solubility studies. The pancreatic lipase activity was determined using 4-methylumbelliferyl oleate as a substrate. Results Our finding showed that TT extract decreased the uptake of cholesterol by approximately 48% but did not affect the efflux of cholesterol. TT inhibited pancreatic lipase activity with the IC50 at 273.5 μg/mL and also decreased cholesterol micellar solubility. Conclusions These findings suggest that TT leaf extract seems to be a potential candidate as cholesterol-lowering agents.
Collapse
Affiliation(s)
- Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao,Phayao, Thailand
| | - Surasak Saokaew
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao,Phayao, Thailand.,School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway,Selangor Darul Ehsan, Malaysia.,Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao,Phayao, Thailand
| |
Collapse
|
9
|
Somparn N, Saenthaweeuk S, Naowaboot J, Thaeomor A, Kukongviriyapan V. Effect of lemongrass water extract supplementation on atherogenic index and antioxidant status in rats. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:185-197. [PMID: 29702476 DOI: 10.2478/acph-2018-0015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
Abstract
Cymbopogon citratus (DC) Stapf., commonly known as lemongrass, possesses strong antioxidant and cardiotonic properties. Lemongrass water extract contains several polyphenolic compounds including gallic acid, isoquercetin, quercetin, rutin, catechin and tannic acid. Rutin, isoquercetin catechin and quercetin are the flavonoids most abundantly found in the extract. The extract significantly decreased total cholesterol, low-density lipoprotein and atherogenic index in rats after treatment (p < 0.05). Expression of genes and protein of sterol regulatory element binding protein-1c (SREBP1c) and HMG-CoA reductase (HMGR) was also lowered significantly in treated groups (p < 0.05). Moreover, serum antioxidant capacity increased in treated rats in comparison with untreated ones (p < 0.05) and was associated with decreased serum lipid peroxidation.
Collapse
Affiliation(s)
- Nuntiya Somparn
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus PathumThani,Thailand12120
| | - Suphaket Saenthaweeuk
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus PathumThani,Thailand12120
| | - Jarinyaporn Naowaboot
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus PathumThani,Thailand12120
| | - Atcharaporn Thaeomor
- School of Preclinical Science, Institute of Science, Suranaree University of Technology Nakhon Ratchasima, Thailand30000
| | | |
Collapse
|
10
|
Naowaboot J, Wannasiri S, Pannangpetch P. Vernonia cinerea water extract improves insulin resistance in high-fat diet-induced obese mice. Nutr Res 2018; 56:51-60. [PMID: 30055774 DOI: 10.1016/j.nutres.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
Vernonia cinerea (V cinerea) is a plant distributed in grassy areas in Southeast Asia and has several pharmacological effects, including antidiabetic activity. However, the information available regarding the effect of V cinerea on insulin resistance in high-fat diet (HFD)-induced obese mice is not yet determined. We hypothesized that V cinerea water extract (VC) improves insulin sensitivity in HFD-induced obese mice by modulating both phosphatidylinositol-3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) pathways in liver, skeletal muscle, and adipose tissue. Obesity was induced in mice from the Institute for Cancer Research by feeding an HFD 188.28 kJ (45 kcal % lard fat) for 12 weeks. During the last 6 weeks of the HFD, obese mice were treated with VC (250 and 500 mg/kg). We found that VC at both doses significantly reduced the hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia. Obese mice treated with VC could increase serum adiponectin but reduce the proinflammatory cytokines, tumor necrosis factor-α, and monocyte chemoattractant protein-1. The extracts decreased triglyceride storage in liver and skeletal muscle of obese mice. The average size of fat cells was smaller in VC-treated groups than that of the HFD group. The protein expressions of PI3K and AMPK pathways in liver, skeletal muscle, and adipose tissue were upregulated (increased phosphorylation of PI3K, protein kinase B, AMPK, and acetyl-CoA carboxylase) by VC treatment. Furthermore, the glucose transporter 4 was increased in muscle and adipose tissue in obese mice treated with VC. These data indicate that VC treatment stimulates phosphorylation of PI3K and AMPK pathways in liver, muscle, and adipose tissue. Stimulating these pathways may improve impaired glucose and lipid homeostasis in an HFD-induced obesity mouse model. Based on these findings, it appears that VC has potential as a functional food or therapeutic agent in management of insulin resistance related diseases, such as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand.
| | - Supaporn Wannasiri
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | | |
Collapse
|