1
|
Pourgholam-Amiji M, Ahmadaali K, Liaghat A. A novel early stage drip irrigation system cost estimation model based on management and environmental variables. Sci Rep 2025; 15:4089. [PMID: 39900997 PMCID: PMC11791201 DOI: 10.1038/s41598-025-88446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
One of the most significant, intricate, and little-discussed aspects of pressurized irrigation is cost estimation. This study attempts to model the early-stage cost of the drip irrigation system using a database of 515 projects divided into four sections the cost of the pumping station and central control system (TCP), the cost of on-farm equipment (TCF), the cost of installation and operation on-farm and pumping station (TCI), and the total cost (TCT). First, 39 environmental and management features affecting the cost of the listed sectors were extracted for each of the 515 projects previously mentioned. A database (a matrix of 515 × 43) was created, and the costs of all projects were updated for the baseline year of 2022. Then, several feature selection algorithms, such as WCC, LCA, GA, PSO, ACO, ICA, LA, HTS, FOA, DSOS, and CUK, were employed to choose the most significant features that had the biggest influence on the system cost. The selection of features was carried out for all features (a total of 39 features) as well as for easily available features (those features that existed before the irrigation system's design phase, 18 features). Then, different machine learning models such as Multivariate Linear Regression, Support Vector Regression, Artificial Neural Networks, Gene Expression Programming, Genetic Algorithms, Deep Learning, and Decision Trees, were used to estimate the costs of each of the of the aforementioned sections. Support vector machine (SVM) and optimization algorithms (Wrapper) were found to be the best learner and feature selection techniques, respectively, out of all the available feature selection algorithms. The two LCA and FOA algorithms produced the best estimation, according to the evaluation criteria results. Their RMSE for all features was 0.0020 and 0.0018, respectively, and their R2 was 0.94 and 0.94. For readily available features, these criteria were 0.0006 and 0.95 for both algorithms. In the part of the overall feature, the early-stage cost modeling with selected features revealed that the SVM model (with RBF Kernel) is the best model among the four cost sections discussed. Its evaluation criteria in the training stage are R2 = 0.923, RMSE = 0.008, and VE = 0.082; in the testing stage, they are R2 = 0.893, RMSE = 0.009, and VE = 0.102. The ANN model (MLP) was found to be the best model for a subset of features in the easily available feature part, with R2 = 0.912, RMSE = 0.008, and VE = 0.083 in the training stage and R2 = 0.882, RMSE = 0.009, and VE = 0.103 in the testing stage. The findings of this study can be utilized to highly accurately estimate the cost of local irrigation systems based on the recognized environmental and management parameters and by employing particular models.
Collapse
Affiliation(s)
- Masoud Pourgholam-Amiji
- Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran
| | - Khaled Ahmadaali
- Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran.
| | - Abdolmajid Liaghat
- Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran
| |
Collapse
|
2
|
Rejali L, Nazemalhosseini-Mojarad E, Valle L, Maghsoudloo M, Asadzadeh Aghdaei H, Mohammadpoor H, Zali MR, Khanabadi B, Entezari M, Hushmandi K, Taheriazam A, Hashemi M. Identification of antisense and sense RNAs of intracrine fibroblast growth factor components as novel biomarkers in colorectal cancer and in silico studies for drug and nanodrug repurposing. ENVIRONMENTAL RESEARCH 2023; 239:117117. [PMID: 37805185 DOI: 10.1016/j.envres.2023.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most malignant tumors and in which various efforts for screening is inconclusive.The intracrine FGF panel, the non-tyrosine kinase receptors (NTKR) FGFs and affiliated antisenses play a pivotal role in FGF signaling.The expression levels of coding and non-coding intracrine FGFs were assessed in CRC donors.Also, substantial costs and slow pace of drug discovery give high attraction to repurpose of previously discovered drugs to new opportunities. OBJECTIVES The aim of present study was to evaluate the potential role of the coding and non-coding intracrine FGFs as a new biomarkers for CRC cases and defining drug repurposing to alleviate FGF down regulation. METHODS RNA-seq data of colon adenocarcinomas (COAD) was downloaded using TCGA biolinks package in R.The DrugBank database (https://go.drugbank.com/) was used to extract interactions between drugs and candidate genes. A total of 200 CRC patients with detailed criteria were enrolled.RNAs were extracted with TRIzol-based protocol and amplified via LightCycler® instrument.FGF11 and FGF13 proteins validation was performed by used of immunohistochemistry technique in tumor and non-tumoral samples.Pearson's correlation analysis and ROC curve plotted by Prism 8.0 software. RESULTS RNA-seq data from TCGA was analyzed by normalizing with edgeR.Differentially expressed gene (DEG) analysis was generated. WCC algorithm extracted the most significant genes with a total of 47 genes. Expression elevation of iFGF antisenses (12AS,13As,14AS) compared with the normal colon tissue were observed (P = 0.0003,P = 0.042,P = 0.026, respectively). Moreover,a significant decrease in expression of the corresponding sense iFGF genes was detected (P < 0.0001).Plotted receiver operating characteristic (ROC) curves for iFGF components' expression showed an area of over 0.70 (FGF11-13: 0.71% and FGF12-14: 0.78%, P < 0.001) for sense mRNA expression, with the highest sensitivity for FGF12 (92.8%) and lowest for FGF11 (61.41%).The artificial intelligence (AI) revealed the valproic acid as a repurposing drug to relief the down regulation of FGF12 and 13 in CRC patients. CONCLUSION Intracrine FGFs panel was down regulated versus up regulation of dependent antisenses. Thus, developing novel biomarkers based on iFGF can be considered as a promising strategy for CRC screening.In advanced, valporic acid detected by AI as a repurposing drug which may be applied in clinical trials for CRC treatment.
Collapse
Affiliation(s)
- Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadis Mohammadpoor
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Binazir Khanabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty Of Veterinary Medicine, University Of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Masoudi-Sobhanzadeh Y, Pourseif MM, Khalili-Sani A, Jafari B, Salemi A, Omidi Y. Deciphering anti-biofilm property of Arthrospira platensis-origin peptides against Staphylococcusaureus. Comput Biol Med 2023; 160:106975. [PMID: 37146493 DOI: 10.1016/j.compbiomed.2023.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Arthrospira platensis is a valuable natural health supplement consisting of various types of vitamins, dietary minerals, and antioxidants. Although different studies have been conducted to explore the hidden benefits of this bacterium, its antimicrobial property has been poorly understood. To decipher this important feature, here, we extended our recently introduced optimization algorithm (Trader) for aligning amino acid sequences associated with the antimicrobial peptides (AMPs) of Staphylococcus aureus and A.platensis. As a result, similar amino acid sequences were identified, and several candidate peptides were generated accordingly. The obtained peptides were then filtered based on their potential biochemical and biophysical properties, and their 3D structures were simulated based on homology modeling techniques. Next, to investigate how the generated peptides can interact with S. aureus proteins (i.e., heptameric state of the hly and homodimeric form of the arsB), molecular docking approaches were used. The results indicated that four peptides included better molecular interactions relative to the other generated ones in terms of the number/average length of hydrogen bonds and hydrophobic interactions. Based on the outcomes, it can be concluded that the antimicrobial property of A.platensis might be associated with its capability in disturbing the membrane of pathogens and their functions.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Khalili-Sani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Computer Engineering, University College of Nabi Akram, Tabriz, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Aysan Salemi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Florida, 33328, USA.
| |
Collapse
|
4
|
Daneshvar NHN, Masoudi-Sobhanzadeh Y, Omidi Y. A voting-based machine learning approach for classifying biological and clinical datasets. BMC Bioinformatics 2023; 24:140. [PMID: 37041456 PMCID: PMC10088226 DOI: 10.1186/s12859-023-05274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Different machine learning techniques have been proposed to classify a wide range of biological/clinical data. Given the practicability of these approaches accordingly, various software packages have been also designed and developed. However, the existing methods suffer from several limitations such as overfitting on a specific dataset, ignoring the feature selection concept in the preprocessing step, and losing their performance on large-size datasets. To tackle the mentioned restrictions, in this study, we introduced a machine learning framework consisting of two main steps. First, our previously suggested optimization algorithm (Trader) was extended to select a near-optimal subset of features/genes. Second, a voting-based framework was proposed to classify the biological/clinical data with high accuracy. To evaluate the efficiency of the proposed method, it was applied to 13 biological/clinical datasets, and the outcomes were comprehensively compared with the prior methods. RESULTS The results demonstrated that the Trader algorithm could select a near-optimal subset of features with a significant level of p-value < 0.01 relative to the compared algorithms. Additionally, on the large-sie datasets, the proposed machine learning framework improved prior studies by ~ 10% in terms of the mean values associated with fivefold cross-validation of accuracy, precision, recall, specificity, and F-measure. CONCLUSION Based on the obtained results, it can be concluded that a proper configuration of efficient algorithms and methods can increase the prediction power of machine learning approaches and help researchers in designing practical diagnosis health care systems and offering effective treatment plans.
Collapse
Affiliation(s)
| | - Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Florida, 33328, USA.
| |
Collapse
|
5
|
Masoudi-Sobhanzadeh Y, Gholaminejad A, Gheisari Y, Roointan A. Discovering driver nodes in chronic kidney disease-related networks using Trader as a newly developed algorithm. Comput Biol Med 2022; 148:105892. [PMID: 35932730 DOI: 10.1016/j.compbiomed.2022.105892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
Thanks to the advances in the field of computational-based biology, a huge volume of disease-related data has been generated so far. From the existing data, the disease-related protein-protein interaction (PPI) networks seem to yield effective treatment plans due to the informative/systematic representation of diseases. Yet, a large number of previous studies have failed due to the complex nature of such disease-related networks. For addressing this limitation, in the present study, we combined Trader and the DFS algorithms to identify a minimal subset of nodes (driver nodes) whose removal produces a maximum number of disjoint sub-networks. We then screened the nodes in the disease-associated PPI networks and to evaluate the efficiency of the suggested method, it was applied to six PPI networks of differentially expressed genes in chronic kidney diseases. The performance of Trader was superior to other well-known algorithms in terms of identifying driver nodes. Besides, the proportion of proteins that were targeted by at least one FDA-approved drug was significantly higher among the identified driver nodes when compared with the rest of the proteins in the networks. The proposed algorithm could be applied for predicting future therapeutic targets in complex disorder networks. In conclusion, unlike the common methods, computationally efficient algorithms can generate more practical outcomes which are compatible with real-world biological facts.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Arefi A, Sturm B, von Gersdorff G, Nasirahmadi A, Hensel O. Vis-NIR hyperspectral imaging along with Gaussian process regression to monitor quality attributes of apple slices during drying. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Masoudi-Sobhanzadeh Y, Motieghader H, Omidi Y, Masoudi-Nejad A. A machine learning method based on the genetic and world competitive contests algorithms for selecting genes or features in biological applications. Sci Rep 2021; 11:3349. [PMID: 33558580 PMCID: PMC7870651 DOI: 10.1038/s41598-021-82796-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Gene/feature selection is an essential preprocessing step for creating models using machine learning techniques. It also plays a critical role in different biological applications such as the identification of biomarkers. Although many feature/gene selection algorithms and methods have been introduced, they may suffer from problems such as parameter tuning or low level of performance. To tackle such limitations, in this study, a universal wrapper approach is introduced based on our introduced optimization algorithm and the genetic algorithm (GA). In the proposed approach, candidate solutions have variable lengths, and a support vector machine scores them. To show the usefulness of the method, thirteen classification and regression-based datasets with different properties were chosen from various biological scopes, including drug discovery, cancer diagnostics, clinical applications, etc. Our findings confirmed that the proposed method outperforms most of the other currently used approaches and can also free the users from difficulties related to the tuning of various parameters. As a result, users may optimize their biological applications such as obtaining a biomarker diagnostic kit with the minimum number of genes and maximum separability power.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Motieghader
- grid.459617.80000 0004 0494 2783Department of Bioinformatics, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran ,grid.459617.80000 0004 0494 2783Department of Basic Sciences, Gowgan Educational Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yadollah Omidi
- grid.261241.20000 0001 2168 8324Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, 33328 USA
| | - Ali Masoudi-Nejad
- grid.46072.370000 0004 0612 7950Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
World competitive contest-based artificial neural network: A new class-specific method for classification of clinical and biological datasets. Genomics 2020; 113:541-552. [PMID: 32991962 PMCID: PMC7521912 DOI: 10.1016/j.ygeno.2020.09.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Many data mining methods have been proposed to generate computer-aided diagnostic systems, which may determine diseases in their early stages by categorizing the data into some proper classes. Considering the importance of the existence of a suitable classifier, the present study aims to introduce an efficient approach based on the World Competitive Contests (WCC) algorithm as well as a multi-layer perceptron artificial neural network (ANN). Unlike the previously introduced methods, which each has developed a universal model for all different kinds of data classes, our proposed approach generates a single specific model for each individual class of data. The experimental results show that the proposed method (ANNWCC), which can be applied to both the balanced and unbalanced datasets, yields more than 76% (without applying feature selection methods) and 90% (with applying feature selection methods) of the average five-fold cross-validation accuracy on the 13 clinical and biological datasets. The findings also indicate that under different conditions, our proposed method can produce better results in comparison to some state-of-art meta-heuristic algorithms and methods in terms of various statistical and classification measurements. To classify the clinical and biological data, a multi-layer ANN and the WCC algorithm were combined. It was shown that developing a specific model for each individual class of data may yield better results compared with creating a universal model for all of the existing data classes. Besides, some efficient algorithms proved to be essential to generate acceptable biological results, and the methods' performance was found to be enhanced by fuzzifying or normalizing the biological data. We combined multi-layer artificial neural networks and world competitive contests algorithms to classify biological datasets The proposed method has been investigated on 13 clinical datasets with different properties Efficient models may yield better classification models and health diagnostic systems Feature selection methods can improve the performance of a model in separating case and control samples
Collapse
|
9
|
MotieGhader H, Masoudi-Sobhanzadeh Y, Ashtiani SH, Masoudi-Nejad A. mRNA and microRNA selection for breast cancer molecular subtype stratification using meta-heuristic based algorithms. Genomics 2020; 112:3207-3217. [DOI: 10.1016/j.ygeno.2020.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
10
|
Masoudi-Sobhanzadeh Y, Masoudi-Nejad A. Synthetic repurposing of drugs against hypertension: a datamining method based on association rules and a novel discrete algorithm. BMC Bioinformatics 2020; 21:313. [PMID: 32677879 PMCID: PMC7469914 DOI: 10.1186/s12859-020-03644-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Drug repurposing aims to detect the new therapeutic benefits of the existing drugs and reduce the spent time and cost of the drug development projects. The synthetic repurposing of drugs may prove to be more useful than the single repurposing in terms of reducing toxicity and enhancing efficacy. However, the researchers have not given it serious consideration. To address the issue, a novel datamining method is introduced and applied to repositioning of drugs for hypertension (HT) which is a serious medical condition and needs some improved treatment plans to help treat it. RESULTS A novel two-step data mining method, which is based on the If-Then association rules as well as a novel discrete optimization algorithm, was introduced and applied to the synthetic repurposing of drugs for HT. The required data were also extracted from DrugBank, KEGG, and DrugR+ databases. The findings indicated that based on the different statistical criteria, the proposed method outperformed the other state-of-the-art approaches. In contrast to the previously proposed methods which had failed to discover a list on some datasets, our method could find a combination list for all of them. CONCLUSION Since the proposed synthetic method uses medications in small dosages, it might revive some failed drug development projects and put forward a suitable plan for treating different diseases such as COVID-19 and HT. It is also worth noting that applying efficient computational methods helps to produce better results.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Maghsoudloo M, Azimzadeh Jamalkandi S, Najafi A, Masoudi-Nejad A. An efficient hybrid feature selection method to identify potential biomarkers in common chronic lung inflammatory diseases. Genomics 2020; 112:3284-3293. [PMID: 32540493 DOI: 10.1016/j.ygeno.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) are three serious lung inflammatory diseases. The understanding of the pathogenesis mechanism and the identification of potential prognostic biomarkers of these diseases can provide the patients with more efficient treatments. In this study, an efficient hybrid feature selection method was introduced in order to extract informative genes. We implemented an ontology-based ranking approach on differentially expressed genes following a wrapper method. The examination of the different gene ontologies and their combinations motivated us to propose a biological functional-based method to improve the performance of further wrapper methods. The results identified: TOM1L1, SRSF1, and GIT2 in asthma; CHCHD4, PAIP2, CRLF3, UBQLN4, TRAK1, PRELID1, VAMP4, CCM2, and APBB1IP in COPD; and TUFT1, GAB2, B4GALNT1, TNFRSF17, PRDM8, and SETDB2 in IPF as the potential biomarkers. The proposed method can be used to identify hub genes in other high-throughput datasets.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Arabi Bulaghi Z, Habibi Zad Navin A, Hosseinzadeh M, Rezaee A. SENET: A novel architecture for IoT-based body sensor networks. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Trader as a new optimization algorithm predicts drug-target interactions efficiently. Sci Rep 2019; 9:9348. [PMID: 31249365 PMCID: PMC6597553 DOI: 10.1038/s41598-019-45814-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Several machine learning approaches have been proposed for predicting new benefits of the existing drugs. Although these methods have introduced new usage(s) of some medications, efficient methods can lead to more accurate predictions. To this end, we proposed a novel machine learning method which is based on a new optimization algorithm, named Trader. To show the capabilities of the proposed algorithm which can be applied to the different scope of science, it was compared with ten other state-of-the-art optimization algorithms based on the standard and advanced benchmark functions. Next, a multi-layer artificial neural network was designed and trained by Trader to predict drug-target interactions (DTIs). Finally, the functionality of the proposed method was investigated on some DTIs datasets and compared with other methods. The data obtained by Trader showed that it eliminates the disadvantages of different optimization algorithms, resulting in a better outcome. Further, the proposed machine learning method was found to achieve a significant level of performance compared to the other popular and efficient approaches in predicting unknown DTIs. All the implemented source codes are freely available at https://github.com/LBBSoft/Trader .
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Laboratory of systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Amanlou
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176-53955, Iran
| | - Ali Masoudi-Nejad
- Laboratory of systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. DrugR+: A comprehensive relational database for drug repurposing, combination therapy, and replacement therapy. Comput Biol Med 2019; 109:254-262. [PMID: 31096089 DOI: 10.1016/j.compbiomed.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Drug repurposing or repositioning, which introduces new applications of the existing drugs, is an emerging field in drug discovery scope. To enhance the success rate of the research and development (R&D) process in a cost- and time-effective manner, a number of pharmaceutical companies worldwide have made tremendous investments. Besides, many researchers have proposed various methods and databases for the repurposing of various drugs. However, there is not a proper and well-organized database available. To this end, for the first time, we developed a new database based on DrugBank and KEGG data, which is named "DrugR+". Our developed database provides some advantages relative to the DrugBank, and its interface supplies new capabilities for both single and synthetic repositioning of drugs. Moreover, it includes four new datasets which can be used for predicting drug-target interactions using supervised machine learning methods. As a case study, we introduced novel applications of some drugs and discussed the obtained results. A comparison of several machine learning methods on the generated datasets has also been reported in the Supplementary File. Having included several normalized tables, DrugR + has been organized to provide key information on data structures for the repurposing and combining applications of drugs. It provides the SQL query capability for professional users and an appropriate method with different options for unprofessional users. Additionally, DrugR + consists of repurposing service that accepts a drug and proposes a list of potential drugs for some usages. Taken all, DrugR+ is a free web-based database and accessible using (http://www.drugr.ir), which can be updated through a map-reduce parallel processing method to provide the most relevant information.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Amanlou
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176-53955, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. http://LBB.ut.ac.ir
| |
Collapse
|
15
|
Masoudi-Sobhanzadeh Y, Motieghader H, Masoudi-Nejad A. FeatureSelect: a software for feature selection based on machine learning approaches. BMC Bioinformatics 2019; 20:170. [PMID: 30943889 PMCID: PMC6446290 DOI: 10.1186/s12859-019-2754-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Feature selection, as a preprocessing stage, is a challenging problem in various sciences such as biology, engineering, computer science, and other fields. For this purpose, some studies have introduced tools and softwares such as WEKA. Meanwhile, these tools or softwares are based on filter methods which have lower performance relative to wrapper methods. In this paper, we address this limitation and introduce a software application called FeatureSelect. In addition to filter methods, FeatureSelect consists of optimisation algorithms and three types of learners. It provides a user-friendly and straightforward method of feature selection for use in any kind of research, and can easily be applied to any type of balanced and unbalanced data based on several score functions like accuracy, sensitivity, specificity, etc. RESULTS: In addition to our previously introduced optimisation algorithm (WCC), a total of 10 efficient, well-known and recently developed algorithms have been implemented in FeatureSelect. We applied our software to a range of different datasets and evaluated the performance of its algorithms. Acquired results show that the performances of algorithms are varying on different datasets, but WCC, LCA, FOA, and LA are suitable than others in the overall state. The results also show that wrapper methods are better than filter methods. CONCLUSIONS FeatureSelect is a feature or gene selection software application which is based on wrapper methods. Furthermore, it includes some popular filter methods and generates various comparison diagrams and statistical measurements. It is available from GitHub ( https://github.com/LBBSoft/FeatureSelect ) and is free open source software under an MIT license.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Laboratory of system Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Habib Motieghader
- Laboratory of system Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of system Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Motieghader H, Najafi A, Sadeghi B, Masoudi-Nejad A. A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|