1
|
Leon A, Castro-Echeverry E, Fussell AM, Jordan D, Kip NS, Roy A, Suarez CJ, Temple-Smolkin RL, Coleman J. Clinical Bioinformatician Body of Knowledge-Molecular Diagnostics Core: A Report of the Association for Molecular Pathology. J Mol Diagn 2025:S1525-1578(25)00088-1. [PMID: 40280409 DOI: 10.1016/j.jmoldx.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Clinical bioinformaticians play a critical role in clinical molecular diagnostics laboratories as developers of data analysis pipelines, tools, and databases. They also contribute to a variety of other tasks, such as genomic data interpretation, database administration, hardware engineering, informatics, information technology, infrastructure support, and software engineering. To effectively perform these functions, the clinical bioinformaticians must possess a strong foundational knowledge of molecular biology, genetics, genomics, computational biology, and the relevant federal, state, and/or regional regulations, laboratory accreditation requirements, and other standards and best practices. This first article in the Association for Molecular Pathology's Clinical Bioinformatician Body of Knowledge series provides a comprehensive core knowledge base on molecular biology, genetics, genomics, clinical laboratory practices, sequencing technologies, databases, and clinical applications. This resource serves not only to equip clinical bioinformaticians for their professional roles but also as a valuable reference for laboratorians.
Collapse
Affiliation(s)
- Annette Leon
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Fabric Genomics, Oakland, California.
| | - Eduardo Castro-Echeverry
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Baylor Scott and White Medical Center, Temple, Texas
| | - Amber M Fussell
- The Association for Molecular Pathology, Rockville, Maryland
| | - Danielle Jordan
- The Association for Molecular Pathology, Rockville, Maryland
| | - Nefize S Kip
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; PathGroup, Nashville, Tennessee
| | - Angshumoy Roy
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Carlos J Suarez
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Stanford University School of Medicine, Palo Alto, California
| | | | - Joshua Coleman
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; University of Utah and ARUP Laboratories, Salt Lake City, Utah
| |
Collapse
|
2
|
da Silva TF, de Azevedo JC, Teixeira EB, Casseb SMM, Moreira FC, de Assumpção PP, dos Santos SEB, Calcagno DQ. From haystack to high precision: advanced sequencing methods to unraveling circulating tumor DNA mutations. Front Mol Biosci 2024; 11:1423470. [PMID: 39165643 PMCID: PMC11333322 DOI: 10.3389/fmolb.2024.1423470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
Identifying mutations in cancer-associated genes to guide patient treatments is essential for precision medicine. Circulating tumor DNA (ctDNA) offers valuable insights for early cancer detection, treatment assessment, and surveillance. However, a key issue in ctDNA analysis from the bloodstream is the choice of a technique with adequate sensitivity to identify low frequent molecular changes. Next-generation sequencing (NGS) technology, evolving from parallel to long-read capabilities, enhances ctDNA mutation analysis. In the present review, we describe different NGS approaches for identifying ctDNA mutation, discussing challenges to standardized methodologies, cost, specificity, clinical context, and bioinformatics expertise for optimal NGS application.
Collapse
Affiliation(s)
- Tamires Ferreira da Silva
- Programa de Residência Multiprofissional em Saúde (Oncologia), Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Juscelino Carvalho de Azevedo
- Programa de Residência Multiprofissional em Saúde (Oncologia), Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | | | | | | | | | | | - Danielle Queiroz Calcagno
- Programa de Residência Multiprofissional em Saúde (Oncologia), Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
3
|
Pandey D, Perumal P. O. Improved meta-analysis pipeline ameliorates distinctive gene regulators of diabetic vasculopathy in human endothelial cell (hECs) RNA-Seq data. PLoS One 2023; 18:e0293939. [PMID: 37943808 PMCID: PMC10635490 DOI: 10.1371/journal.pone.0293939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
Enormous gene expression data generated through next-generation sequencing (NGS) technologies are accessible to the scientific community via public repositories. The data harboured in these repositories are foundational for data integrative studies enabling large-scale data analysis whose potential is yet to be fully realized. Prudent integration of individual gene expression data i.e. RNA-Seq datasets is remarkably challenging as it encompasses an assortment and series of data analysis steps that requires to be accomplished before arriving at meaningful insights on biological interrogations. These insights are at all times latent within the data and are not usually revealed from the modest individual data analysis owing to the limited number of biological samples in individual studies. Nevertheless, a sensibly designed meta-analysis of select individual studies would not only maximize the sample size of the analysis but also significantly improves the statistical power of analysis thereby revealing the latent insights. In the present study, a custom-built meta-analysis pipeline is presented for the integration of multiple datasets from different origins. As a case study, we have tested with the integration of two relevant datasets pertaining to diabetic vasculopathy retrieved from the open source domain. We report the meta-analysis ameliorated distinctive and latent gene regulators of diabetic vasculopathy and uncovered a total of 975 i.e. 930 up-regulated and 45 down-regulated gene signatures. Further investigation revealed a subset of 14 DEGs including CTLA4, CALR, G0S2, CALCR, OMA1, and DNAJC3 as latent i.e. novel as these signatures have not been reported earlier. Moreover, downstream investigations including enrichment analysis, and protein-protein interaction (PPI) network analysis of DEGs revealed durable disease association signifying their potential as novel transcriptomic biomarkers of diabetic vasculopathy. While the meta-analysis of individual whole transcriptomic datasets for diabetic vasculopathy is exclusive to our comprehension, however, the novel meta-analysis pipeline could very well be extended to study the mechanistic links of DEGs in other disease conditions.
Collapse
Affiliation(s)
- Diksha Pandey
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal P.
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
4
|
Rudramurthy GR, Naveenkumar CN, Bharathkumar K, Shandil RK, Narayanan S. Genomic Mutations in SARS-CoV-2 Genome following Infection in Syrian Golden Hamster and Associated Lung Pathologies. Pathogens 2023; 12:1328. [PMID: 38003792 PMCID: PMC10674674 DOI: 10.3390/pathogens12111328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The continuous evolution of the SARS-CoV-2 virus led to constant developments and efforts in understanding the significance and impacts of SARS-CoV-2 variants on human health. Our study aimed to determine the accumulation of genetic mutations and associated lung pathologies in male and female hamsters infected with the ancestral Wuhan strain of SARS-CoV-2. The present study showed no significant difference in the viral load between male and female hamsters and peak infection was found to be on day four post infection in both sexes of the animals. Live virus particles were detected up to 5 days post infection (dpi) through the TCID-50 assay, while qRT-PCR could detect viral RNA up to 14 dpi from all the infected animals. Further, the determination of the neutralizing antibody titer showed the onset of the humoral immune response as early as 4 dpi in both sexes against SARS-CoV-2, and a significant cross-protection against the delta variant of SARS-CoV-2 was observed. Histopathology showed edema, inflammation, inflammatory cell infiltration, necrosis, and degeneration of alveolar and bronchial epithelium cells from 3 dpi to 14 dpi in both sexes. Furthermore, next-generation sequencing (NGS) showed up to 10 single-nucleotide polymorphisms (SNPs) in the SARS-CoV-2 (ancestral Wuhan strain) genome isolated from both male and female hamsters. The mutation observed at the 23014 position (Glu484Asp) in the SARS-CoV-2 genome isolated from both sexes of the hamsters plays a significant role in the antiviral efficacy of small molecules, vaccines, and the Mabs-targeting S protein. The present study shows that either of the genders can be used in the pre-clinical efficacy of antiviral agents against SARS-CoV-2 in hamsters. However, considering the major mutation in the S protein, the understanding of the genetic mutation in SARS-CoV-2 after passing through hamsters is crucial in deciding the efficacy of the antiviral agents targeting the S protein. Importance: Our study findings indicate the accumulation of genomic mutations in SARS-CoV-2 after passing through the Syrian golden hamsters. Understanding the genomic mutations showed that either of the hamster genders can be used in the pre-clinical efficacy of antiviral agents and vaccines.
Collapse
Affiliation(s)
- Gudepalya Renukaiah Rudramurthy
- Foundation for Neglected Disease Research (FNDR), Plot No. 20A, KIADB Industrial Area, Bengaluru 561203, Karnataka, India; (C.N.N.); (K.B.); (R.K.S.); (S.N.)
| | | | | | | | | |
Collapse
|
5
|
Mukherjee S, Perveen S, Negi A, Sharma R. Evolution of tuberculosis diagnostics: From molecular strategies to nanodiagnostics. Tuberculosis (Edinb) 2023; 140:102340. [PMID: 37031646 PMCID: PMC10072981 DOI: 10.1016/j.tube.2023.102340] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/12/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Tuberculosis has remained a global concern for public health affecting the lives of people for ages. Approximately 10 million people are affected by the disease and 1.5 million succumb to the disease worldwide annually. The COVID-19 pandemic has highlighted the role of early diagnosis to win the battle against such infectious diseases. Thus, advancement in the diagnostic approaches to provide early detection forms the foundation to eradicate and manage contagious diseases like tuberculosis. The conventional diagnostic strategies include microscopic examination, chest X-ray and tuberculin skin test. The limitations associated with sensitivity and specificity of these tests demands for exploring new techniques like probe-based assays, CRISPR-Cas and microRNA detection. The aim of the current review is to envisage the correlation between both the conventional and the newer approaches to enhance the specificity and sensitivity. A significant emphasis has been placed upon nanodiagnostic approaches manipulating quantum dots, magnetic nanoparticles, and biosensors for accurate diagnosis of latent, active and drug-resistant TB. Additionally, we would like to ponder upon a reliable method that is cost-effective, reproducible, require minimal infrastructure and provide point-of-care to the patients.
Collapse
Affiliation(s)
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Dey P, Bansal B, Saini T. An emerging era of computational cytology. Diagn Cytopathol 2023; 51:270-275. [PMID: 36633016 DOI: 10.1002/dc.25101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND The significant advancement in digital imaging, data management, advanced computational power, and artificial neural network have an immense impact on the field of cytology. The amalgamation of these areas has generated a newer discipline known as computational cytology. AIMS AND OBJECTIVE In To discuss the various important aspects of computational cytology. MATERIALS AND METHODS We reviewed the different studies published in English during the last few years on computational cytology. RESULT Computational cytology is a newer and emerging discipline in pathology that deals with the patient's meta-data and digital image data to make a mathematical model to produce diagnostic interpretations and predictions. The role of the cytologist is now changing from a simple observational scientist and slide interpreter to a dynamic and integrated multi-parametric prediction-based scientist. CONCLUSION In the current stage, the cytologist must understand the situation and should have a vision of the complete scenario on computational cytology.
Collapse
Affiliation(s)
- Pranab Dey
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Baneet Bansal
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarunpreet Saini
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Wadapurkar RM, Sivaram A, Vyas R. Computational studies reveal co-occurrence of two mutations in IL7R gene of high-grade serous carcinoma patients. J Biomol Struct Dyn 2022; 40:13310-13324. [PMID: 34657565 DOI: 10.1080/07391102.2021.1987326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major cause of mortality in ovarian cancer can be attributed to a lack of specific and sensitive biomarkers for diagnosis and prognosis of the disease. Uncovering the mutations in genes involved in crucial oncogenic pathways is a key step in discovery and development of novel biomarkers. Whole exome sequencing (WES) is a powerful method for the detection of cancer driver mutations. The present work focuses on identifying functionally damaging mutations in patients with high-grade serous ovarian carcinoma (HGSC) through computational analysis of WES. In this study, WES data of HGSC patients was retrieved from the genomic literature available in sequence read archive, the variants were identified and comprehensive structural and functional analysis was performed. Interestingly, I66T and V138I mutations were found to be co-occurring in the IL7R gene in four out of five HGSC patient samples investigated in this study. The V138I mutation was located in the fibronectin type-3 domain and computationally assessed to be causing disruptive effects on the structure and dynamics of IL7R protein. This mutation was found to be co-occurring with the neutral I66T mutation in the same domain which compensated the disruptive effects of V138I variant. These comprehensive studies point to a hitherto unexplored significant role of the IL7R gene in ovarian carcinoma. It is envisaged that the work will lay the foundation for the development of a novel biomarker with potential application in molecular profiling and in estimation of the disease prognosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rucha M Wadapurkar
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Aruna Sivaram
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Renu Vyas
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| |
Collapse
|
8
|
Mahfooz S, Shankar G, Narayan J, Singh P, Akhter Y. Simple sequence repeat insertion induced stability and potential 'gain of function' in the proteins of extremophilic bacteria. Extremophiles 2022; 26:17. [PMID: 35511349 DOI: 10.1007/s00792-022-01265-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
Here, we analysed the genomic evolution in extremophilic bacteria using long simple sequence repeats (SSRs). Frequencies of occurrence, relative abundance (RA) and relative density (RD) of long SSRs were analysed in the genomes of extremophilic bacteria. Thermus aquaticus had the most RA and RD of long SSRs in its coding sequences (110.6 and 1408.3), followed by Rhodoferax antarcticus (77.0 and 1187.4). A positive correlation was observed between G + C content and the RA-RD of long SSRs. Geobacillus kaustophilus, Geobacillus thermoleovorans, Halothermothrix orenii, R. antarcticus, and T. aquaticus preferred trinucleotide repeats within their genomes, whereas others preferred a higher number of tetranucleotide repeats. Gene enrichment showed the presence of these long SSRs in metabolic enzyme encoding genes related to stress tolerance. To analyse the functional implications of SSR insertions, three-dimensional protein structure modelling of SSR containing diguanylate cyclase (DGC) gene encoding protein was carried out. Removal of SSR sequence led to an inappropriate folding and instability of the modelled protein structure.
Collapse
Affiliation(s)
- Sahil Mahfooz
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Jitendra Narayan
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110025, India
| | - Pallavi Singh
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, 226031, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
9
|
Chaora NS, Khanyile KS, Magwedere K, Pierneef R, Tabit FT, Muchadeyi FC. A 16S Next Generation Sequencing Based Molecular and Bioinformatics Pipeline to Identify Processed Meat Products Contamination and Mislabelling. Animals (Basel) 2022; 12:ani12040416. [PMID: 35203124 PMCID: PMC8868451 DOI: 10.3390/ani12040416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Meat adulteration and fraud encompasses the deliberate fraudulent addition or substitution of proteins of animal or plant origin in edible products primarily for economic gain. The mitochondrial 16S ribosomal (rRNA) gene was used to identify species that are present in pure and processed meat samples. The meat samples were sequenced using an Illumina sequencing platform, and bioinformatics analysis was carried out for species identification. The results indicated that pork was the major contaminant in most of the meat samples. The bioinformatics pipeline demonstrated its specificity through identification of species specific and quantification of the contamination levels across all samples. Food business operators and regulatory sectors can validate this method for food fraud checks and manage any form of mislabeling in the animal or plant protein food ecosystem. Abstract Processed meat is a target in meat adulteration for economic gain. This study demonstrates a molecular and bioinformatics diagnostic pipeline, utilizing the mitochondrial 16S ribosomal RNA (rRNA) gene, to determine processed meat product mislabeling through Next-Generation Sequencing. Nine pure meat samples were collected and artificially mixed at different ratios to verify the specificity and sensitivity of the pipeline. Processed meat products (n = 155), namely, minced meat, biltong, burger patties, and sausages, were collected across South Africa. Sequencing was performed using the Illumina MiSeq sequencing platform. Each sample had paired-end reads with a length of ±300 bp. Quality control and filtering was performed using BBDuk (version 37.90a). Each sample had an average of 134,000 reads aligned to the mitochondrial genomes using BBMap v37.90. All species in the artificial DNA mixtures were detected. Processed meat samples had reads that mapped to the Bos (90% and above) genus, with traces of reads mapping to Sus and Ovis (2–5%) genus. Sausage samples showed the highest level of contamination with 46% of the samples having mixtures of beef, pork, or mutton in one sample. This method can be used to authenticate meat products, investigate, and manage any form of mislabeling.
Collapse
Affiliation(s)
- Nyaradzo Stella Chaora
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Rooderpoort 1709, South Africa; (N.S.C.); (F.T.T.)
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
| | - Khulekani Sedwell Khanyile
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
| | - Frederick Tawi Tabit
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Rooderpoort 1709, South Africa; (N.S.C.); (F.T.T.)
| | - Farai Catherine Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
- Correspondence:
| |
Collapse
|
10
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Mortezaei Z. Computational methods for analyzing RNA-sequencing contaminated samples and its impact on cancer genome studies. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Ranganathan Ganakammal S, Huang K, Walkiewicz M, Xirasagar S. Genomics technologies and bioinformatics in allergy and immunology. ALLERGIC AND IMMUNOLOGIC DISEASES 2022:221-260. [DOI: 10.1016/b978-0-323-95061-9.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
John G, Sahajpal NS, Mondal AK, Ananth S, Williams C, Chaubey A, Rojiani AM, Kolhe R. Next-Generation Sequencing (NGS) in COVID-19: A Tool for SARS-CoV-2 Diagnosis, Monitoring New Strains and Phylodynamic Modeling in Molecular Epidemiology. Curr Issues Mol Biol 2021; 43:845-867. [PMID: 34449545 PMCID: PMC8929009 DOI: 10.3390/cimb43020061] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
This review discusses the current testing methodologies for COVID-19 diagnosis and explores next-generation sequencing (NGS) technology for the detection of SARS-CoV-2 and monitoring phylogenetic evolution in the current COVID-19 pandemic. The review addresses the development, fundamentals, assay quality control and bioinformatics processing of the NGS data. This article provides a comprehensive review of the obstacles and opportunities facing the application of NGS technologies for the diagnosis, surveillance, and study of SARS-CoV-2 and other infectious diseases. Further, we have contemplated the opportunities and challenges inherent in the adoption of NGS technology as a diagnostic test with real-world examples of its utility in the fight against COVID-19.
Collapse
Affiliation(s)
- Goldin John
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA 30912, USA; (G.J.); (N.S.S.); (A.K.M.); (S.A.); (C.W.); (A.C.)
| | - Nikhil Shri Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA 30912, USA; (G.J.); (N.S.S.); (A.K.M.); (S.A.); (C.W.); (A.C.)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA 30912, USA; (G.J.); (N.S.S.); (A.K.M.); (S.A.); (C.W.); (A.C.)
| | - Sudha Ananth
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA 30912, USA; (G.J.); (N.S.S.); (A.K.M.); (S.A.); (C.W.); (A.C.)
| | - Colin Williams
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA 30912, USA; (G.J.); (N.S.S.); (A.K.M.); (S.A.); (C.W.); (A.C.)
| | - Alka Chaubey
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA 30912, USA; (G.J.); (N.S.S.); (A.K.M.); (S.A.); (C.W.); (A.C.)
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | - Amyn M. Rojiani
- Department of Pathology, Penn State University College of Medicine, Hershey, PA 16802, USA;
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA 30912, USA; (G.J.); (N.S.S.); (A.K.M.); (S.A.); (C.W.); (A.C.)
| |
Collapse
|
14
|
Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, Osokin N, Kozlov I, Frenkel F, Gancharova O, Almog N, Tsiper M, Ataullakhanov R, Fowler N. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 2021; 39:845-865.e7. [PMID: 34019806 DOI: 10.1016/j.ccell.2021.04.014] [Citation(s) in RCA: 667] [Impact Index Per Article: 166.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classification by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immunotherapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types due to the inclusion of malignant and microenvironment components. A visual tool integrating transcriptomic and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, immune composition, anti-tumor immunity, and immunosuppressive escape mechanisms. Integrative analyses plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nathan Fowler
- BostonGene, Waltham, MA 02453, USA; Department of Lymphoma and Myeloma, Unit 0429, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Garg S. Computational methods for chromosome-scale haplotype reconstruction. Genome Biol 2021; 22:101. [PMID: 33845884 PMCID: PMC8040228 DOI: 10.1186/s13059-021-02328-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
High-quality chromosome-scale haplotype sequences of diploid genomes, polyploid genomes, and metagenomes provide important insights into genetic variation associated with disease and biodiversity. However, whole-genome short read sequencing does not yield haplotype information spanning whole chromosomes directly. Computational assembly of shorter haplotype fragments is required for haplotype reconstruction, which can be challenging owing to limited fragment lengths and high haplotype and repeat variability across genomes. Recent advancements in long-read and chromosome-scale sequencing technologies, alongside computational innovations, are improving the reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent and discuss methodological progress and perspectives in these areas.
Collapse
Affiliation(s)
- Shilpa Garg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Verma SK, Kaur S, Tevetia A, Chatterjee S, Sharma PC. Structural characterization and functional annotation of microbial proteases mined from solid tannery waste metagenome. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00727-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Prasad A, Bhargava H, Gupta A, Shukla N, Rajagopal S, Gupta S, Sharma A, Valadi J, Nigam V, Suravajhala P. Next Generation Sequencing. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Banerjee N, Hossain F, Wirtschafter E, Fathizadeh P. Pembrolizumab in the Treatment of Microsatellite Instability-High Sebaceous Carcinoma: A Case Report With Review of the Literature. JCO Precis Oncol 2020; 4:61-65. [PMID: 35050729 DOI: 10.1200/po.19.00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Natasha Banerjee
- Olive View-University of California, Los Angeles Medical Center, Sylmar, CA
| | - Farhana Hossain
- Olive View-University of California, Los Angeles Medical Center, Sylmar, CA
| | - Eric Wirtschafter
- Olive View-University of California, Los Angeles Medical Center, Sylmar, CA
| | - Payman Fathizadeh
- Olive View-University of California, Los Angeles Medical Center, Sylmar, CA
| |
Collapse
|
19
|
Vacante M, Ciuni R, Basile F, Biondi A. The Liquid Biopsy in the Management of Colorectal Cancer: An Overview. Biomedicines 2020; 8:E308. [PMID: 32858879 PMCID: PMC7555636 DOI: 10.3390/biomedicines8090308] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, there is a crucial need for novel diagnostic and prognostic biomarkers with high specificity and sensitivity in patients with colorectal cancer. A "liquid biopsy" is characterized by the isolation of cancer-derived components, such as circulating tumor cells, circulating tumor DNA, microRNAs, long non-coding RNAs, and proteins, from peripheral blood or other body fluids and their genomic or proteomic assessment. The liquid biopsy is a minimally invasive and repeatable technique that could play a significant role in screening and diagnosis, and predict relapse and metastasis, as well as monitoring minimal residual disease and chemotherapy resistance in colorectal cancer patients. However, there are still some practical issues that need to be addressed before liquid biopsy can be widely used in clinical practice. Potential challenges may include low amounts of circulating tumor cells and circulating tumor DNA in samples, lack of pre-analytical and analytical consensus, clinical validation, and regulatory endorsement. The aim of this review was to summarize the current knowledge of the role of liquid biopsy in the management of colorectal cancer.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
20
|
Melas M, Subbiah S, Saadat S, Rajurkar S, McDonnell KJ. The Community Oncology and Academic Medical Center Alliance in the Age of Precision Medicine: Cancer Genetics and Genomics Considerations. J Clin Med 2020; 9:E2125. [PMID: 32640668 PMCID: PMC7408957 DOI: 10.3390/jcm9072125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Recent public policy, governmental regulatory and economic trends have motivated the establishment and deepening of community health and academic medical center alliances. Accordingly, community oncology practices now deliver a significant portion of their oncology care in association with academic cancer centers. In the age of precision medicine, this alliance has acquired critical importance; novel advances in nucleic acid sequencing, the generation and analysis of immense data sets, the changing clinical landscape of hereditary cancer predisposition and ongoing discovery of novel, targeted therapies challenge community-based oncologists to deliver molecularly-informed health care. The active engagement of community oncology practices with academic partners helps with meeting these challenges; community/academic alliances result in improved cancer patient care and provider efficacy. Here, we review the community oncology and academic medical center alliance. We examine how practitioners may leverage academic center precision medicine-based cancer genetics and genomics programs to advance their patients' needs. We highlight a number of project initiatives at the City of Hope Comprehensive Cancer Center that seek to optimize community oncology and academic cancer center precision medicine interactions.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Shanmuga Subbiah
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Glendora, CA 91741, USA;
| | - Siamak Saadat
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Colton, CA 92324, USA;
| | - Swapnil Rajurkar
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Upland, CA 91786, USA;
| | - Kevin J. McDonnell
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
- Center for Precision Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Das H, Naik B, Behera H. Medical disease analysis using Neuro-Fuzzy with Feature Extraction Model for classification. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2019.100288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Wang B, Kumar V, Olson A, Ware D. Reviving the Transcriptome Studies: An Insight Into the Emergence of Single-Molecule Transcriptome Sequencing. Front Genet 2019; 10:384. [PMID: 31105749 PMCID: PMC6498185 DOI: 10.3389/fgene.2019.00384] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/09/2019] [Indexed: 12/23/2022] Open
Abstract
Advances in transcriptomics have provided an exceptional opportunity to study functional implications of the genetic variability. Technologies such as RNA-Seq have emerged as state-of-the-art techniques for transcriptome analysis that take advantage of high-throughput next-generation sequencing. However, similar to their predecessors, these approaches continue to impose major challenges on full-length transcript structure identification, primarily due to inherent limitations of read length. With the development of single-molecule sequencing (SMS) from PacBio, a growing number of studies on the transcriptome of different organisms have been reported. SMS has emerged as advantageous for comprehensive genome annotation including identification of novel genes/isoforms, long non-coding RNAs and fusion transcripts. This approach can be used across a broad spectrum of species to better interpret the coding information of the genome, and facilitate the biological function study. We provide an overview of SMS platform and its diverse applications in various biological studies, and our perspective on the challenges associated with the transcriptome studies.
Collapse
Affiliation(s)
- Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.,USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| |
Collapse
|