1
|
Luo X, Chi ASY, Lin AH, Ong TJ, Wong L, Rahman CR. Benchmarking recent computational tools for DNA-binding protein identification. Brief Bioinform 2024; 26:bbae634. [PMID: 39657630 PMCID: PMC11630855 DOI: 10.1093/bib/bbae634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Identification of DNA-binding proteins (DBPs) is a crucial task in genome annotation, as it aids in understanding gene regulation, DNA replication, transcriptional control, and various cellular processes. In this paper, we conduct an unbiased benchmarking of 11 state-of-the-art computational tools as well as traditional tools such as ScanProsite, BLAST, and HMMER for identifying DBPs. We highlight the data leakage issue in conventional datasets leading to inflated performance. We introduce new evaluation datasets to support further development. Through a comprehensive evaluation pipeline, we identify potential limitations in models, feature extraction techniques, and training methods, and recommend solutions regarding these issues. We show that combining the predictions of the two best computational tools with BLAST-based prediction significantly enhances DBP identification capability. We provide this consensus method as user-friendly software. The datasets and software are available at https://github.com/Rafeed-bot/DNA_BP_Benchmarking.
Collapse
Affiliation(s)
- Xizi Luo
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Amadeus Song Yi Chi
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Andre Huikai Lin
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Tze Jet Ong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | | |
Collapse
|
2
|
Qayyum A, Benzinou A, Saidani O, Alhayan F, Khan MA, Masood A, Mazher M. Assessment and classification of COVID-19 DNA sequence using pairwise features concatenation from multi-transformer and deep features with machine learning models. SLAS Technol 2024; 29:100147. [PMID: 38796034 DOI: 10.1016/j.slast.2024.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such a major viral outbreak demands early elucidation of taxonomic classification and origin of the virus genomic sequence, for strategic planning, containment, and treatment. The emerging global infectious COVID-19 disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China. The virus has gone through various pathways of evolution. Due to the continued evolution of the SARS-CoV-2 pandemic, researchers worldwide are working to mitigate, suppress its spread, and better understand it by deploying deep learning and machine learning approaches. In a general computational context for biomedical data analysis, DNA sequence classification is a crucial challenge. Several machine and deep learning techniques have been used in recent years to complete this task with some success. The classification of DNA sequences is a key research area in bioinformatics as it enables researchers to conduct genomic analysis and detect possible diseases. In this paper, three state-of-the-art deep learning-based models are proposed using two DNA sequence conversion methods. We also proposed a novel multi-transformer deep learning model and pairwise features fusion technique for DNA sequence classification. Furthermore, deep features are extracted from the last layer of the multi-transformer and used in machine-learning models for DNA sequence classification. The k-mer and one-hot encoding sequence conversion techniques have been presented. The proposed multi-transformer achieved the highest performance in COVID DNA sequence classification. Automatic identification and classification of viruses are essential to avoid an outbreak like COVID-19. It also helps in detecting the effect of viruses and drug design.
Collapse
Affiliation(s)
- Abdul Qayyum
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Oumaima Saidani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia.
| | - Fatimah Alhayan
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia.
| | - Muhammad Attique Khan
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Anum Masood
- Department of Physics, Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - Moona Mazher
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
3
|
Chen J, Gu Z, Lai L, Pei J. In silico protein function prediction: the rise of machine learning-based approaches. MEDICAL REVIEW (2021) 2023; 3:487-510. [PMID: 38282798 PMCID: PMC10808870 DOI: 10.1515/mr-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| |
Collapse
|
4
|
Sadad T, Aurangzeb RA, Safran M, Alfarhood S, Kim J. Classification of Highly Divergent Viruses from DNA/RNA Sequence Using Transformer-Based Models. Biomedicines 2023; 11:biomedicines11051323. [PMID: 37238994 DOI: 10.3390/biomedicines11051323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Viruses infect millions of people worldwide each year, and some can lead to cancer or increase the risk of cancer. As viruses have highly mutable genomes, new viruses may emerge in the future, such as COVID-19 and influenza. Traditional virology relies on predefined rules to identify viruses, but new viruses may be completely or partially divergent from the reference genome, rendering statistical methods and similarity calculations insufficient for all genome sequences. Identifying DNA/RNA-based viral sequences is a crucial step in differentiating different types of lethal pathogens, including their variants and strains. While various tools in bioinformatics can align them, expert biologists are required to interpret the results. Computational virology is a scientific field that studies viruses, their origins, and drug discovery, where machine learning plays a crucial role in extracting domain- and task-specific features to tackle this challenge. This paper proposes a genome analysis system that uses advanced deep learning to identify dozens of viruses. The system uses nucleotide sequences from the NCBI GenBank database and a BERT tokenizer to extract features from the sequences by breaking them down into tokens. We also generated synthetic data for viruses with small sample sizes. The proposed system has two components: a scratch BERT architecture specifically designed for DNA analysis, which is used to learn the next codons unsupervised, and a classifier that identifies important features and understands the relationship between genotype and phenotype. Our system achieved an accuracy of 97.69% in identifying viral sequences.
Collapse
Affiliation(s)
- Tariq Sadad
- Department of Computer Science, University of Engineering & Technology, Mardan 23200, Pakistan
| | - Raja Atif Aurangzeb
- Department of Computer Science & Software Engineering, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Mejdl Safran
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Sultan Alfarhood
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
5
|
Hu J, Zeng WW, Jia NX, Arif M, Yu DJ, Zhang GJ. Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm. J Chem Inf Model 2023; 63:1044-1057. [PMID: 36719781 DOI: 10.1021/acs.jcim.2c00943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.
Collapse
Affiliation(s)
- Jun Hu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| | - Wen-Wu Zeng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| | - Ning-Xin Jia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| | - Muhammad Arif
- School of Systems and Technology, Department of Informatics and Systems, University of Management and Technology, Lahore54770, Pakistan
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing210094, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| |
Collapse
|
6
|
Amezaga Hechavarria A, Shafiq MO. A modified attention mechanism powered by Bayesian Network for user activity analysis and prediction. DATA KNOWL ENG 2022. [DOI: 10.1016/j.datak.2022.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Mathur G, Pandey A, Goyal S. A comprehensive tool for rapid and accurate prediction of disease using DNA sequence classifier. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022; 14:1-17. [PMID: 35789598 PMCID: PMC9243743 DOI: 10.1007/s12652-022-04099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
In the current pandemic situation where the coronavirus is spreading very fast that can jump from one human to another. Along with this, there are millions of viruses for example Ebola, SARS, etc. that can spread as fast as the coronavirus due to the mobilization and globalization of the population and are equally deadly. Earlier identification of these viruses can prevent the outbreaks that we are facing currently as well as can help in the earlier designing of drugs. Identification of disease at a prior stage can be achieved through DNA sequence classification as DNA carries most of the genetic information about organisms. This is the reason why the classification of DNA sequences plays an important role in computational biology. This paper has presented a solution in which samples collected from NCBI are used for the classification of DNA sequences. DNA sequence classification will in turn gives the pattern of various diseases; these patterns are then compared with the samples of a newly infected person and can help in the earlier identification of disease. However, feature extraction always remains a big issue. In this paper, a machine learning-based classifier and a new technique for extracting features from DNA sequences based on a hot vector matrix have been proposed. In the hot vector representation of the DNA sequence, each pair of the word is represented using a binary matrix which represents the position of each nucleotide in the DNA sequence. The resultant matrix is then given as an input to the traditional CNN for feature extraction. The results of the proposed method have been compared with 5 well-known classifiers namely Convolution neural network (CNN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN) algorithm, Decision Trees, Recurrent Neural Networks (RNN) on several parameters including precision rate and accuracy and the result shows that the proposed method gives an accuracy of 93.9%, which is highest compared to other classifiers.
Collapse
Affiliation(s)
- Garima Mathur
- Department of Computer Science and Engineering, UIT, RGPV, Bhopal, India
| | - Anjana Pandey
- Department of Information Technology, UIT, RGPV, Bhopal, India
| | - Sachin Goyal
- Department of Information Technology, UIT, RGPV, Bhopal, India
| |
Collapse
|
8
|
Yan J, Jiang T, Liu J, Lu Y, Guan S, Li H, Wu H, Ding Y. DNA-binding protein prediction based on deep transfer learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7719-7736. [PMID: 35801442 DOI: 10.3934/mbe.2022362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of DNA binding proteins (DBPs) is of great importance in the biomedical field and plays a key role in this field. At present, many researchers are working on the prediction and detection of DBPs. Traditional DBP prediction mainly uses machine learning methods. Although these methods can obtain relatively high pre-diction accuracy, they consume large quantities of human effort and material resources. Transfer learning has certain advantages in dealing with such prediction problems. Therefore, in the present study, two features were extracted from a protein sequence, a transfer learning method was used, and two classical transfer learning algorithms were compared to transfer samples and construct data sets. In the final step, DBPs are detected by building a deep learning neural network model in a way that uses attention mechanisms.
Collapse
Affiliation(s)
- Jun Yan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Tengsheng Jiang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Junkai Liu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yaoyao Lu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Shixuan Guan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haiou Li
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Smart City Research Institute, Suzhou University of Science and Technology, Suzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
9
|
Suquilanda-Pesántez JD, Aguiar Salazar ED, Almeida-Galárraga D, Salum G, Villalba-Meneses F, Gudiño Gomezjurado ME. NIFtHool: an informatics program for identification of NifH proteins using deep neural networks. F1000Res 2022; 11:164. [PMID: 35360826 PMCID: PMC8956849 DOI: 10.12688/f1000research.107925.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Atmospheric nitrogen fixation carried out by microorganisms has environmental and industrial importance, related to the increase of soil fertility and productivity. The present work proposes the development of a new high precision system that allows the recognition of amino acid sequences of the nitrogenase enzyme (NifH) as a promising way to improve the identification of diazotrophic bacteria. For this purpose, a database obtained from UniProt built a processed dataset formed by a set of 4911 and 4782 amino acid sequences of the NifH and non-NifH
proteins respectively. Subsequently, the feature extraction was developed using two methodologies: (i) k-mers counting and (ii) embedding layers to obtain numerical vectors of the amino acid chains. Afterward, for the embedding layer, the data was crossed by an external trainable convolutional layer, which received a uniform matrix and applied convolution using filters to obtain the feature maps of the model. Finally, a deep neural network was used as the primary model to classify the amino acid sequences as NifH protein or not. Performance evaluation experiments were carried out, and the results revealed an accuracy of 96.4%, a sensitivity of 95.2%, and a specificity of 96.7%. Therefore, an amino acid sequence-based feature extraction method that uses a neural network to detect N-fixing organisms is proposed and implemented. NIFtHool is available from:
https://nifthool.anvil.app/
Collapse
Affiliation(s)
| | - Evelyn Dayana Aguiar Salazar
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Diego Almeida-Galárraga
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Graciela Salum
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Fernando Villalba-Meneses
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Marco Esteban Gudiño Gomezjurado
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| |
Collapse
|
10
|
Vaz JM, Balaji S. Convolutional neural networks (CNNs): concepts and applications in pharmacogenomics. Mol Divers 2021; 25:1569-1584. [PMID: 34031788 PMCID: PMC8342355 DOI: 10.1007/s11030-021-10225-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Convolutional neural networks (CNNs) have been used to extract information from various datasets of different dimensions. This approach has led to accurate interpretations in several subfields of biological research, like pharmacogenomics, addressing issues previously faced by other computational methods. With the rising attention for personalized and precision medicine, scientists and clinicians have now turned to artificial intelligence systems to provide them with solutions for therapeutics development. CNNs have already provided valuable insights into biological data transformation. Due to the rise of interest in precision and personalized medicine, in this review, we have provided a brief overview of the possibilities of implementing CNNs as an effective tool for analyzing one-dimensional biological data, such as nucleotide and protein sequences, as well as small molecular data, e.g., simplified molecular-input line-entry specification, InChI, binary fingerprints, etc., to categorize the models based on their objective and also highlight various challenges. The review is organized into specific research domains that participate in pharmacogenomics for a more comprehensive understanding. Furthermore, the future intentions of deep learning are outlined.
Collapse
Affiliation(s)
- Joel Markus Vaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
11
|
Analysis of DNA Sequence Classification Using CNN and Hybrid Models. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1835056. [PMID: 34306171 PMCID: PMC8285202 DOI: 10.1155/2021/1835056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022]
Abstract
In a general computational context for biomedical data analysis, DNA sequence classification is a crucial challenge. Several machine learning techniques have used to complete this task in recent years successfully. Identification and classification of viruses are essential to avoid an outbreak like COVID-19. Regardless, the feature selection process remains the most challenging aspect of the issue. The most commonly used representations worsen the case of high dimensionality, and sequences lack explicit features. It also helps in detecting the effect of viruses and drug design. In recent days, deep learning (DL) models can automatically extract the features from the input. In this work, we employed CNN, CNN-LSTM, and CNN-Bidirectional LSTM architectures using Label and K-mer encoding for DNA sequence classification. The models are evaluated on different classification metrics. From the experimental results, the CNN and CNN-Bidirectional LSTM with K-mer encoding offers high accuracy with 93.16% and 93.13%, respectively, on testing data.
Collapse
|
12
|
Nanni L, Brahnam S. Robust ensemble of handcrafted and learned approaches for DNA-binding proteins. APPLIED COMPUTING AND INFORMATICS 2021. [DOI: 10.1108/aci-03-2021-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Automatic DNA-binding protein (DNA-BP) classification is now an essential proteomic technology. Unfortunately, many systems reported in the literature are tested on only one or two datasets/tasks. The purpose of this study is to create the most optimal and universal system for DNA-BP classification, one that performs competitively across several DNA-BP classification tasks.
Design/methodology/approach
Efficient DNA-BP classifier systems require the discovery of powerful protein representations and feature extraction methods. Experiments were performed that combined and compared descriptors extracted from state-of-the-art matrix/image protein representations. These descriptors were trained on separate support vector machines (SVMs) and evaluated. Convolutional neural networks with different parameter settings were fine-tuned on two matrix representations of proteins. Decisions were fused with the SVMs using the weighted sum rule and evaluated to experimentally derive the most powerful general-purpose DNA-BP classifier system.
Findings
The best ensemble proposed here produced comparable, if not superior, classification results on a broad and fair comparison with the literature across four different datasets representing a variety of DNA-BP classification tasks, thereby demonstrating both the power and generalizability of the proposed system.
Originality/value
Most DNA-BP methods proposed in the literature are only validated on one (rarely two) datasets/tasks. In this work, the authors report the performance of our general-purpose DNA-BP system on four datasets representing different DNA-BP classification tasks. The excellent results of the proposed best classifier system demonstrate the power of the proposed approach. These results can now be used for baseline comparisons by other researchers in the field.
Collapse
|
13
|
Zhang Q, Liu P, Wang X, Zhang Y, Han Y, Yu B. StackPDB: Predicting DNA-binding proteins based on XGB-RFE feature optimization and stacked ensemble classifier. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|