1
|
Moon KZ, Rahman MH, Alam MJ, Hossain MA, Hwang S, Kang S, Moon S, Park MN, Ahn CH, Kim B. Unraveling the interplay between cardiovascular diseases and alcohol use disorder: A bioinformatics and network-based exploration of shared molecular pathways and key biomarkers validation via western blot analysis. Comput Biol Chem 2025; 115:108338. [PMID: 39778286 DOI: 10.1016/j.compbiolchem.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Clinical observations indicate a pronounced exacerbation of Cardiovascular Diseases (CVDs) in individuals grappling with Alcohol Use Disorder (AUD), suggesting an intricate interplay between these maladies. Pinpointing shared risk factors for both conditions has proven elusive. To address this, we pioneered a sophisticated bioinformatics framework and network-based strategy to unearth genes exhibiting aberrant expression patterns in both AUD and CVDs. In heart tissue samples from patients battling both AUD and CVDs, our study identified 76 Differentially Expressed Genes (DEGs) further used for retrieving important Gene Ontology (GO) keywords and metabolic pathways, highlighting mechanisms like proinflammatory cascades, T-cell cytotoxicity, antigen processing and presentation. By using Protein-Protein Interaction (PPI) analysis, we were able to identify key hub proteins that have a significant impact on the pathophysiology of these illnesses. Several hub proteins were identified include PTGS2, VCAM1, CCL2, CXCL8, IL7R, among these only CDH1 was covered in 10 algorithms of cytoHubba plugin. Furthermore, we pinpointed several Transcription Factors (TFs), including SOD2, CXCL8, THBS2, GREM1, CCL2, and PTGS2, alongside potential microRNAs (miRNAs) such as hsa-mir-203a-3p, hsa-mir-23a-3p, hsa-mir-98-5p, and hsa-mir-7-5p, which exert critical regulatory control over gene expression… In vitro study investigates the effect of alcohol on E-cadherin (CDH1) expression in HepG2 and Hep3B cells, showing a significant decrease in expression following ethanol treatment. These findings suggest that alcohol exposure may disrupt cell adhesion, potentially contributing to cellular changes associated with cardiovascular diseases. Our innovative approach has unveiled distinctive biomarkers delineating the dynamic interplay between AUD and various cardiovascular conditions for future therapeutic exploration.
Collapse
Affiliation(s)
- Kamelia Zaman Moon
- Department of Computer Science and Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushita 7003, Bangladesh.
| | - Md Jahangir Alam
- Department of Computer Science and Engineering, Islamic University, Kushita 7003, Bangladesh
| | - Md Arju Hossain
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Sungho Hwang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chi-Hoon Ahn
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Constantinescu-Bercu A, Lobiuc A, Căliman-Sturdza OA, Oiţă RC, Iavorschi M, Pavăl NE, Șoldănescu I, Dimian M, Covasa M. Long COVID: Molecular Mechanisms and Detection Techniques. Int J Mol Sci 2023; 25:408. [PMID: 38203577 PMCID: PMC10778767 DOI: 10.3390/ijms25010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), has emerged as a significant health concern following the COVID-19 pandemic. Molecular mechanisms underlying the occurrence and progression of long COVID include viral persistence, immune dysregulation, endothelial dysfunction, and neurological involvement, and highlight the need for further research to develop targeted therapies for this condition. While a clearer picture of the clinical symptomatology is shaping, many molecular mechanisms are yet to be unraveled, given their complexity and high level of interaction with other metabolic pathways. This review summarizes some of the most important symptoms and associated molecular mechanisms that occur in long COVID, as well as the most relevant molecular techniques that can be used in understanding the viral pathogen, its affinity towards the host, and the possible outcomes of host-pathogen interaction.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Olga Adriana Căliman-Sturdza
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Suceava Emergency Clinical County Hospital, 720224 Suceava, Romania
| | - Radu Cristian Oiţă
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Monica Iavorschi
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
- Department of Computers, Electronics and Automation, Ştefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91711, USA
| |
Collapse
|
3
|
Omer A. MicroRNAs as powerful tool against COVID-19: Computational perspective. WIREs Mech Dis 2023; 15:e1621. [PMID: 37345625 DOI: 10.1002/wsbm.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is the virus that is responsible for the current pandemic, COVID-19 (SARS-CoV-2). MiRNAs, a component of RNAi technology, belong to the family of short, noncoding ssRNAs, and may be crucial in the battle against this global threat since they are involved in regulating complex biochemical pathways and may prevent viral proliferation, translation, and host expression. The complicated metabolic pathways are modulated by the activity of many proteins, mRNAs, and miRNAs working together in miRNA-mediated genetic control. The amount of omics data has increased dramatically in recent years. This massive, linked, yet complex metabolic regulatory network data offers a wealth of opportunity for iterative analysis; hence, extensive, in-depth, but time-efficient screening is necessary to acquire fresh discoveries; this is readily performed with the use of bioinformatics. We have reviewed the literature on microRNAs, bioinformatics, and COVID-19 infection to summarize (1) the function of miRNAs in combating COVID-19, and (2) the use of computational methods in combating COVID-19 in certain noteworthy studies, and (3) computational tools used by these studies against COVID-19 in several purposes. This article is categorized under: Infectious Diseases > Computational Models.
Collapse
Affiliation(s)
- Ankur Omer
- Government College Silodi, MPHED, Katni, Madhya Pradesh, India
| |
Collapse
|
4
|
Mobley JA, Molyvdas A, Kojima K, Ahmad I, Jilling T, Li JL, Garantziotis S, Matalon S. The SARS-CoV-2 spike S1 protein induces global proteomic changes in ATII-like rat L2 cells that are attenuated by hyaluronan. Am J Physiol Lung Cell Mol Physiol 2023; 324:L413-L432. [PMID: 36719087 PMCID: PMC10042596 DOI: 10.1152/ajplung.00282.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.
Collapse
Affiliation(s)
- James A Mobley
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adam Molyvdas
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kyoko Kojima
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jian-Liang Li
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Fidan O, Mujwar S, Kciuk M. Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Mol Divers 2023; 27:463-475. [PMID: 35507211 PMCID: PMC9066996 DOI: 10.1007/s11030-022-10440-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been significantly paralyzing the societies, economies and health care systems around the globe. The mutations on the genome of SARS-CoV-2 led to the emergence of new variants, some of which are classified as "variant of concern" due to their increased transmissibility and better viral fitness. The Omicron variant, as the latest variant of concern, dominated the current COVID-19 cases all around the world. Unlike the previous variants of concern, the Omicron variant has 15 mutations on the receptor-binding domain of spike protein and the changes in the key amino acid residues of S protein can enhance the binding ability of the virus to hACE2, resulting in a significant increase in the infectivity of the Omicron variant. Therefore, there is still an urgent need for treatment and prevention of variants of concern, particularly for the Omicron variant. In this study, an in silico drug repurposing was conducted through the molecular docking of 2890 FDA-approved drugs against the mutant S protein of SARS-CoV-2 for Omicron variant. We discovered promising drug candidates for the inhibition of alarming Omicron variant such as quinestrol, adapalene, tamibarotene, and dihydrotachysterol. The stability of ligands complexed with the mutant S protein was confirmed using MD simulations. The lead compounds were further evaluated for their potential use and side effects based on the current literature. Particularly, adapalene, dihydrotachysterol, levocabastine and bexarotene came into prominence due to their non-interference with the normal physiological processes. Therefore, this study suggests that these approved drugs can be considered as drug candidates for further in vitro and in vivo studies to develop new treatment options for the Omicron variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gül University, Kayseri, 38080, Turkey.
| | - Somdutt Mujwar
- Department of Pharmaceutical Chemistry, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
6
|
Mobley JA, Molyvdas A, Kojima K, Jilling T, Li JL, Garantziotis S, Matalon S. The SARS-CoV-2 Spike S1 Protein Induces Global Proteomic Changes in ATII-Like Rat L2 Cells that are Attenuated by Hyaluronan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.31.506023. [PMID: 36093347 PMCID: PMC9460966 DOI: 10.1101/2022.08.31.506023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants that have been characterized to date, COVID-19 has led to 571,198,904 confirmed cases, and 6,387,863 deaths worldwide (as of July 15 th , 2022). Despite tremendous advances in our understanding of COVID19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics applications combined with systems biology analysis identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in an ATII-like Rat L2 cells that include three significant network hubs: E2F1, CREB1/ RelA, and ROCK2/ RhoA. Separately, we found that pre-treatment with High Molecular Weight Hyaluronan (HMW-HA), greatly attenuated the S1 effects. Immuno-targeted studies carried out on E2F1 and Rock2/ RhoA induction and kinase-mediated activation, in addition to cell cycle measurements, validated these observations. Taken as a whole, our discovery proteomics and systems analysis workflow, combined with standard immuno-targeted and cell cycle measurements revealed profound and novel biological changes that contribute to our current understanding of both Spike S1 and Hyaluronan biology. This data shows that the Spike S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV2 induced cell injury.
Collapse
|
7
|
Samy A, Maher MA, Abdelsalam NA, Badr E. SARS-CoV-2 potential drugs, drug targets, and biomarkers: a viral-host interaction network-based analysis. Sci Rep 2022; 12:11934. [PMID: 35831333 PMCID: PMC9279364 DOI: 10.1038/s41598-022-15898-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a global pandemic impacting the daily living of millions. As variants of the virus evolve, a complete comprehension of the disease and drug targets becomes a decisive duty. The Omicron variant, for example, has a notably high transmission rate verified in 155 countries. We performed integrative transcriptomic and network analyses to identify drug targets and diagnostic biomarkers and repurpose FDA-approved drugs for SARS-CoV-2. Upon the enrichment of 464 differentially expressed genes, pathways regulating the host cell cycle were significant. Regulatory and interaction networks featured hsa-mir-93-5p and hsa-mir-17-5p as blood biomarkers while hsa-mir-15b-5p as an antiviral agent. MYB, RRM2, ERG, CENPF, CIT, and TOP2A are potential drug targets for treatment. HMOX1 is suggested as a prognostic biomarker. Enhancing HMOX1 expression by neem plant extract might be a therapeutic alternative. We constructed a drug-gene network for FDA-approved drugs to be repurposed against the infection. The key drugs retrieved were members of anthracyclines, mitotic inhibitors, anti-tumor antibiotics, and CDK1 inhibitors. Additionally, hydroxyquinone and digitoxin are potent TOP2A inhibitors. Hydroxyurea, cytarabine, gemcitabine, sotalol, and amiodarone can also be redirected against COVID-19. The analysis enforced the repositioning of fluorouracil and doxorubicin, especially that they have multiple drug targets, hence less probability of resistance.
Collapse
Affiliation(s)
- Asmaa Samy
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Mohamed A Maher
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Nehal Adel Abdelsalam
- University of Science and Technology, Zewail City, Giza, 12578, Egypt.,Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City, Giza, 12578, Egypt. .,Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
8
|
Liu X, Lou L, Zhou L. Molecular Mechanisms of Cardiac Injury Associated With Myocardial SARS-CoV-2 Infection. Front Cardiovasc Med 2022; 8:643958. [PMID: 35127841 PMCID: PMC8812276 DOI: 10.3389/fcvm.2021.643958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world. The development of cardiac injury is a common condition in patients with COVID-19, but the pathogenesis remains unclear. The RNA-Seq dataset (GSE150392) comparing expression profiling of mock human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and SARS-CoV-2-infected hiPSC-CMs was obtained from Gene Expression Omnibus (GEO). We identified 1,554 differentially expressed genes (DEGs) based on GSE150392. Gene set enrichment analysis (GSEA), Gene ontology (GO) analysis, and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that immune-inflammatory responses were activated by SARS-CoV-2, while muscle contraction, cellular respiration, and cell cycle of hiPSC-CMs were inhibited. A total of 15 hub genes were identified according to protein-protein interaction (PPI), among which 11 upregulated genes were mainly involved in cytokine activation related to the excessive inflammatory response. Moreover, we identified potential drugs based on these hub genes. In conclusion, SARS-CoV-2 infection of cardiomyocytes caused a strong defensive response, leading to excessive immune inflammation, cell hypoxia, functional contractility reduction, and apoptosis, ultimately resulting in myocardial injury.
Collapse
Affiliation(s)
- Xianfang Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Longquan Lou
- Department of General Surgery, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|